
International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

DOI : 10.5121/ijesa.2012.2301 1

ONLINE ADAPTIVE FAULT TOLERANT BASED

FEEDBACK CONTROL SCHEDULING ALGORITHM

FOR MULTIPROCESSOR EMBEDDED SYSTEMS

Oumair Naseer1and Rana Atif Ali Khan2

1Department of Computer Science, University of Warwick, Coventry, United Kingdom
o.naseer@warwick.ac.uk

2School of Engineering, University of Warwick, Coventry, United Kingdom
Atif.khan@warwick.ac.uk

ABSTRACT

Since some years ago, use of Feedback Control Scheduling Algorithm (FCSA) in the control scheduling co-

design of multiprocessor embedded system has increased. FCSA provides Quality of Service (QoS) in terms

of overall system performance and resource allocation in open and unpredictable environment. FCSA uses

quality control feedback loop to keep CPU utilization under desired unitization bound by avoiding

overloading and deadline miss ratio. Integrated Fault tolerance (FT) based FCSA design methodology

guarantees that the Safety Critical (SC) tasks will meet their deadlines in the presence of faults. However,

current FCSA design model does not provide the optimal solution with dynamic load fluctuation. This

paper presented a novel methodology of designing an online adaptive fault tolerant based feedback control

algorithm for multiprocessor embedded systems. This procedure is important for control scheduling co-

design for multiprocessor embedded systems.

KEYWORDS

Feedback based control scheduling algorithm, Multiprocessor Embedded Systems, Fault Tolerance and

Control Scheduling Co-design,

1. INTRODUCTION

Use of control theory in real time embedded systems design has increased massively over the past
few years, and this trend keeps on evolving day by day [1]. Due to the large number of real time
constrains and requirements, the design complexity of feedback based control co-design of
multiprocessor embedded systems has increased and over 90% of the embedded controllers are
used to control real time processes and deceives[2]. Scheduling is the key lever in real time
computing system for overall system performance and resource utilization. Traditional scheduling
algorithms used in embedded system design are Rate Monotonic (RM) and Early Deadline First
(EDF). From the control point of view, all these classic scheduling algorithms are open loop [10]
and these algorithms are designed based on the assumption that mapping of the jobs/tasks is
predefined and Worst Case Execution Time (WCET) of jobs is known a priori. Due to the open
and uncertain environment, the overall execution time of both safety critical and non safety
critical tasks varies. It is very difficult to predict actual timing constraints of the task before
execution. To avoid this uncertainty, feedback based control scheduling algorithms are employed

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

2

in control system co-design of real time multiprocessor embedded systems [11] [12, 13, and 14].
FCSA combines the feedback based control theory in hardware/software co-design of embedded
systems, so that the available resources can be used optimally and the overall performance of the
system can be increased.

Faults associated to multiprocessor embedded systems can occur either in hardware or in
software. These faults are categorised into (i) transient faults: occur only for a short period of time
and (ii) permanent faults: affects the system everlastingly [3, 4]. Traditional Fault tolerant
schemes are based on the hardware redundancy [2 and 5] and can avoid only a single transient or
a single permanent fault. This method incurs high hardware cost to add a new functionality. On
the other hand, FT schemes can be implemented in software as well. Most promising FT schemes
are; (i) Active replication, in which a task is replicated on two or processors and replicas perform
the required services [6]. (ii) Re-execution; in re-execution whenever a fault is detected, task is
re-executed from the start which increases execution overhead to a large extent. (iii) Primary back
up; in this scheme each task has a backup when a fault is detected, backup task is executed to
perform the required services.(iv) Check pointing [7]; in check pointing Safety Critical task is
divided into n sub-tasks and each sub-task contains a check point appended by either a
programmer [8] or by the compiler [9]. Fault is detected based on these check points. In case of
fault, there are two options either to roll back or roll forward. This scheme is helpful in avoiding
the transient faults. From the scheduling point of view, a combination of active replication and re-
execution provides more optimized system design and better CPU performance.

2. RELATED WORK

For soft real time computing systems, a feedback performance control is presented in [16] which
primarily focus on applying control theory to real time scheduling and utilization control. A state
of the art feedback control scheduling algorithm for real time computing systems with variable
execution time is presented in [17] which provide the performance guarantee for hard real time
tasks. Feedback based Dynamic Voltage Scaling (FDVS) method to select proper frequency and
voltage for Fault tolerant hard real time embedded system is presented in [32, 35]. Author also
tries to provide QoS by reducing energy consumption and satisfying hard real time constraints in
the presence of transient faults. It also provides a technique to integrate DVS with control theory
for hard real time embedded systems. An analysis of distributed feedback control with shared
communication and resources utilization for real time computing system is addressed in [19].
Integrated Fault tolerance scheme check-pointing for real time embedded systems is presented in
[7]. A perspective on integrating feedback control and computing for control scheduling co-
design is addressed in [18].Feedback control design for networked control system; a novel
approach for designing feedback based control scheduling for the networked systems is presented
in [20, 21]. Up to date feedback control scheduling algorithms based on Fuzzy logic controller for
network control is presented in [12]. An adaptive neural network based feedback control
scheduling for real time computing systems is presented in [13 and 14]. In [11], author presented
an approach to recover system from fault mode for parallel systems using check-pointing FT
scheme. A Trade offs between fault tolerant schemes and control theoretical method is presented
in [33, 34]. In [15], author provides a double feedback based control scheduling approach for real
time computing systems to optimize overall system performance. A feedback based control
scheduling for hard real time systems is addressed in [18] but this work doesn’t address the online
adaptation. Feedback based control scheduling co-design approach for real time embedded
systems is presented in [20] and this work shows that closed loop systems are not hard real time
systems. Although, control systems are more robust in nature and uncertain to time variations but
they also suffers from time jitters and data loss. In [22, 23], author tires to capture the time
variation of Safety Critical (SC) tasks over network for better resource utilization in
correspondence with sampling intervals and time delays to achieve QoS in terms of CPU

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

performance. System response in presence of Fault and recovery schemes for hard real time
systems to achieve dependability in X
A fault tolerant scheduling for hard real time
only focuses on maintaining CPU scheduling with specified scheduling bound by making sure
that SC tasks will meet their deadlines. Moreover, this work doesn’t capture the state of the task
in Fault mode and provides less information about data loss. To the best of our knowledge, this is
the first work that addresses
tolerance together for multiprocessor

3. PROBLEM STATEMENT

The primary objective of integrated FT based
performance and resource utilization, by keeping CPU utilization at schedulable bound
presence of faults. The design methodologies of integrated
are based on the separation of the concerns [15]. These concerns are deriv
assumptions that feedback controllers can be designed by assuming the fixed predefined mapping,
hard deadlines and fixed time period
community because they help the control embedded system designer to design control loops
without concerning the nature of the over
a new methodology of designing an online adaptive fault tolerant based feedback control
algorithm for multiprocessor embedded systems
resource utilization.

4. MULTI PROCESSOR SYSTEM

System architecture constitutes a distributed shared Hardware (HW) platform with a network
topology[24, 25], where every hardware node can communicate with every other
1 shows the high level multiprocessor system architecture model
partitioning concepts. It also describes the application execution environment, where
are connected through a network bus. Each
dedicated for SC tasks and second one is dedicated for the non
capability of executing both safety critical and non safety critical
an I/O controller, CPU, sensors and actuators, RAM, ROM and a Feedback based scheduling
Controller (FSC). Every HW node in
same configuration. Feedback based control scheduling algorithm is implemented on the top of
RTOS layer. It is assumed that the allocations of tasks are predefined and faults can occur at any
time.

Figure 1: Integrated system architecture: Tasks of mix

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

. System response in presence of Fault and recovery schemes for hard real time
systems to achieve dependability in X-by-Wire (XBW) systems is addressed in [29 and 30].
A fault tolerant scheduling for hard real time embedded system is addressed in [31], but this work
only focuses on maintaining CPU scheduling with specified scheduling bound by making sure

eir deadlines. Moreover, this work doesn’t capture the state of the task
in Fault mode and provides less information about data loss. To the best of our knowledge, this is
the first work that addresses online adaptive feedback based control scheduling

together for multiprocessor embedded systems.

TATEMENT

integrated FT based FCSA is to provide QoS in terms of CPU
performance and resource utilization, by keeping CPU utilization at schedulable bound

esign methodologies of integrated Feedback based scheduling algorithms
are based on the separation of the concerns [15]. These concerns are deriv

feedback controllers can be designed by assuming the fixed predefined mapping,
d time period. These assumptions are widely used in the control

community because they help the control embedded system designer to design control loops
nature of the overall system in the presence of faults. This paper presented

methodology of designing an online adaptive fault tolerant based feedback control
algorithm for multiprocessor embedded systems which provides better CPU performance and

YSTEM ARCHITECTURE

System architecture constitutes a distributed shared Hardware (HW) platform with a network
, where every hardware node can communicate with every other HW

multiprocessor system architecture model and resources elaborating the
partitioning concepts. It also describes the application execution environment, where
are connected through a network bus. Each HW node has two cores; one core is completely

tasks and second one is dedicated for the non SC tasks [27-29]. Each node has a
capability of executing both safety critical and non safety critical tasks. Node resource consists of

sensors and actuators, RAM, ROM and a Feedback based scheduling
node in integrated multiprocessor system architecture

same configuration. Feedback based control scheduling algorithm is implemented on the top of
layer. It is assumed that the allocations of tasks are predefined and faults can occur at any

system architecture: Tasks of mix-criticality (SC and non SC) executes on
the same node.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

3

. System response in presence of Fault and recovery schemes for hard real time
in [29 and 30].

], but this work
only focuses on maintaining CPU scheduling with specified scheduling bound by making sure

eir deadlines. Moreover, this work doesn’t capture the state of the task
in Fault mode and provides less information about data loss. To the best of our knowledge, this is

scheduling and fault

FCSA is to provide QoS in terms of CPU
performance and resource utilization, by keeping CPU utilization at schedulable bound in the

Feedback based scheduling algorithms
are based on the separation of the concerns [15]. These concerns are derived from the

feedback controllers can be designed by assuming the fixed predefined mapping,
. These assumptions are widely used in the control

community because they help the control embedded system designer to design control loops
This paper presented

methodology of designing an online adaptive fault tolerant based feedback control
CPU performance and

System architecture constitutes a distributed shared Hardware (HW) platform with a network
HW node. Fig.

and resources elaborating the
partitioning concepts. It also describes the application execution environment, where HW nodes

cores; one core is completely
Each node has a

tasks. Node resource consists of
sensors and actuators, RAM, ROM and a Feedback based scheduling

integrated multiprocessor system architecture utilizes the
same configuration. Feedback based control scheduling algorithm is implemented on the top of

layer. It is assumed that the allocations of tasks are predefined and faults can occur at any

criticality (SC and non SC) executes on

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

4

5. FEEDBACK BASED CONTROL SCHEDULING MODEL

FCSA is implemented as a set of tasks running on top of an off-the-shelf Real Time Operating
System (RTOS) using fixed-priority and pre-emption. Control performance in terms of stability
and tracking error relies on the values of sampling rates and sensors to actuators latencies. From
the control theory point of view, multiprocessor embedded systems are non-linear in nature and
are usually modelled by a set of periodic tasks assigned to one or several processors[26]. A Worst
Case Execution Time (WCET) technique is used to analyse fixed-priority real-time computing
systems. Task periods are the main actuators of the control system running on the top of a fixed
priority scheduler with the aim to adjust on-line sampling periods of the controllers in order to
meet the computing resource requirements and CPU utilization. Control inputs variables are the
periods of the control tasks and output variable is the measured CPU utilization as shown in the
below Fig 2.

Figure 2: Feedback Control Scheduling Architecture.

Controller model design is flexible and well known approaches are Proportional Integral
Differential (PID) controller, Linear Quadratic (LQ) controller, Fuzzy logic controller and
adaptive neural network. U(k) is the total CPU load measured for each period of scheduling task
and M(k) is the task deadline miss ratio. Ud is the desired load and Md is the controller variable,
to control the task deadline miss ratio. Adding Feed-forward admission controller allows future
tasks cost anticipation and for enhanced transient behaviour.

Processor utilization model is defined in the following equation which holds for any number of
processors [22, 31].
 ��� + 1� = 	���� +
����� (1)

Where � ∈ �� represents the processor utilization vector with size n;�� ∈ �� represents the
change to task execution rate from the m number of tasks running on the processor.
 ∈ ����,
and is defined as;

 = � � (2)

Where K is the available subtask allocation matrix that record which number of particular tasks
are running on which processors. � = ���� ���, ��, … , ���is a diagonal matrix, and��, where

i=1,2,3…n,are scalar values that denote the ratio between the change to the actual utilization of
processor i and its estimation�����. The size of ��measures the estimation error, i.e., how much
the actual execution time of each task on processor i deviates from its estimated value.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

5

6. ONLINE ADAPTIVE CONTROLLER DESIGN

Online adaptive control mainly consists of a Linear Quadratic (LQ) controller and a Recursive
Least Square model estimator (RLS) as shown in the below figure.

Figure 3: Online adaptive controller model.

RLS based Model Estimator learns and update the LQ model of the FT based FCSA. A reference
point is set to keep the output at the desired value. This is done by setting the control inputs by
minimizing a quadratic cost function.

6.1. RLS-based Model Estimator

FT based FCSA is a multiprocessor embedded system and can be modelled as a multiple-input-
multiple-output (MIMO) as follows:
 ��� ����!� = "�� ��#�!� + ��!� �3�

Where ��� �� and "�� �� are matrix polynomials in the back-ward shift operators.
 ��� �� = % − ��� �− . . . − ��� � (4)
 "�� �� = "(� � − "� �− . . . − "� �� � �5�

where %is the order of the FT based FCSA multiprocessor system, ��!�is a sequence of
independent, identicallydistributed n-dimensional random vectors with zero mean representing
disturbances. We assume that ��!� is independent of ��! − *�and #�! − *� for * > 0.
 #�!� = ���!�is the controlinput which is the vector of estimation task execution rate change, and ��!� is thecontrol output which is the vector of processor utilizations.RLS based model estimator
with exponential forgetting estimates the coefficient matrices� � and * " online, where 0 < � <1and0 ≤ s < %, and their valueskeep on changing due to varying runtime conditions. CUP
utilization model equation can be re-written as;
 ��� + 1� = 0���1��� + ��� + 1� (6)

Where
 1��� = 2#3��� . . . #3�� − % + 1��3��� . . . �3�� − % + 1�43 �5�

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

 0��� =

RLS estimator with exponential forgetting
and is defined as:

�� + 1

Where

06�� + 1� =

7 ���� = 7 ��� − 1�

where 06��� is the estimation of the
covariance matrix; λ is the forgetting factor

6.2. Linear Quadratic (LQ) Optimal

The primary objective of online adaptive controller
reference command with small tracking error.
This is done by minimizing the quadratic cost function

 	 =

where 9 is a positive-semi-definite weighting matrix on thetracking errors, (a higher weight
indicates higher importance value
definiteweighting matrix to penalize large changes in
diagonal matrices and their relative magnitude
smaller changes in the control input.

7. EXPERIMENTS AND RESULTS

The purpose of the first experiment is to keep the CPU utilization at
without knowledge of actual task executio
which means actual execution time is 30% of the estimated time. Also
assigned based on the estimated exec

Figure 4: Result of experiment 1: CPU utilization at desired set point 0.8123.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

� � = 2"(, . . . "� �, ��, . . . �:4 (7)

RLS estimator with exponential forgetting identifies the time varying parameters of matrix

1� = ��� + 1� + 06�!�1��� (8)

� = 0��� +
�� + 1�13���7�� − 1�
; + 13���7�� − 1�1��� �5�

� + <1 + �; − 1� 13���7�� − 1�1���
�13���1����� = 1���13��� �

is the estimation of the 0��� ;
��� is the estimationerror vector,
getting factor0 < λ < 1.

Linear Quadratic (LQ) Optimal Controller

of online adaptive controller is to let the FT based FCSA output track the
command with small tracking error. by avoiding large changes to the control inputs.

minimizing the quadratic cost function A defined as follows:

= >9 ?��� + 1� − �@AB�� + 1�C>�
 (10)

+‖E�#��� − #�� − 1��‖�

definite weighting matrix on thetracking errors, (a higher weight
indicates higher importance value of the corresponding output variable). E is a positive
definiteweighting matrix to penalize large changes in the control inputs. 9 andE a

and their relative magnitude provides a way to trade-off tracking accuracy for
control input.

ESULTS

The purpose of the first experiment is to keep the CPU utilization at the desired set point = 0.8123
without knowledge of actual task execution time. For this experiment, g=0.30 for both processors
which means actual execution time is 30% of the estimated time. Also initial task rates are

estimated execution times to make the utilization equal to the set point.

: Result of experiment 1: CPU utilization at desired set point 0.8123.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

6

identifies the time varying parameters of matrix 0���

� �9�

is the estimationerror vector, 7��� is the

output track the
large changes to the control inputs.

(10)

definite weighting matrix on thetracking errors, (a higher weight
is a positive-
are defined as

off tracking accuracy for

the desired set point = 0.8123
for both processors

initial task rates are
equal to the set point.

: Result of experiment 1: CPU utilization at desired set point 0.8123.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

Fig. 4 shows the processor utilization responses.
task rates are then increased gradually
point of0.8123.

The purpose of the second experiment is to find the upper bound on the estimated execution time
For this g is set to 7 for both CPUs
estimated value. Both processors are
gradually until the utilization of both processors converges to the set point of

Figure 5: Result of experiment 2: CPU Over utilized condition.

Fig. 5 shows the processor utilization responses.
due to model estimation inaccuracies, but as model
they converge to the utilization set

The purpose of third experiment is to investigate the robustness of online adaptive controller, for
this the task execution rate is varied dynamically a

Figure 6: Result of experiment 3, investigating robustness (load fluctuation) of controller.
Fig. 6 shows the processor utilization responses. When the
400th and 800thsample steps, the
point 0.8123with very smaller oscillation

8. CONCLUSION AND FUTURE

In this paper, an online adaptive Fault tolerance based Feed
multiple embedded systems is presented. The CPU model is investigated form different
perspective by first keeping the CPU under

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

shows the processor utilization responses. Both processors are underutilized
task rates are then increased gradually until the utilization of both processors converges to the set

The purpose of the second experiment is to find the upper bound on the estimated execution time
or both CPUs which means that the actual execution time is seven times the

oth processors are initially over-utilized. The task rates are then decreased
until the utilization of both processors converges to the set point of0.8123.

: Result of experiment 2: CPU Over utilized condition.

ssor utilization responses. CPU utilization exhibits some initial oscillations
due to model estimation inaccuracies, but as model estimation becomes more accurate later and
they converge to the utilization set point 0.8123 quickly.

experiment is to investigate the robustness of online adaptive controller, for
this the task execution rate is varied dynamically and the CPU utilization is again set to 0.8123.

: Result of experiment 3, investigating robustness (load fluctuation) of controller.
shows the processor utilization responses. When the workload is changed at the

sample steps, the online adaptive controller keeps the utilizations at the desired set
smaller oscillation.

UTURE CONSIDERATIONS

In this paper, an online adaptive Fault tolerance based Feedback control scheduling algorithm for
multiple embedded systems is presented. The CPU model is investigated form different
perspective by first keeping the CPU under-utilized and then increasing the task rate initially, then

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

7

Both processors are underutilized initially. The
until the utilization of both processors converges to the set

The purpose of the second experiment is to find the upper bound on the estimated execution time.
seven times the

utilized. The task rates are then decreased

some initial oscillations
becomes more accurate later and

experiment is to investigate the robustness of online adaptive controller, for
nd the CPU utilization is again set to 0.8123.

: Result of experiment 3, investigating robustness (load fluctuation) of controller.
workload is changed at the 300th ,

keeps the utilizations at the desired set

back control scheduling algorithm for
multiple embedded systems is presented. The CPU model is investigated form different

utilized and then increasing the task rate initially, then

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

8

keeping CPU over-utilized and then decreasing task rate gradually. Finally, the robustness of the
system is investigated by dynamically varying the task execution time. The overall system model
is more stable and provides Quality of Services in terms of CPU performance and resource usage.
For g=7, which means the actual execution time is seven times the estimated value, the system
remains stable with little oscillation and all tasks meet their deadlines. However, if the task
execution time increases beyond this value, the system no longer remain stable and oscillation
results in the deadline miss of tasks.

Feedback scheduling has become an important methodology in dynamic co-design of control and
scheduling for real time multiprocessor embedded systems. With different structures and
algorithms, it enables better use of the computing resources and leads to better CPU performance.
In future, a more improved CPU utilization model and advance hybrid online controller may
result in better overall system performance and resource usage. However, the practical
implementation of feedback scheduling-based control systems is an almost completely open
issue.

9. REFERENCES

[1] B. Bouyssounouse, J. Sifakis, Embedded Systems Design: The ARTIST Roadmap for Research and

Development, Springer, 2005.
[2] P. Agrawal. Fault tolerance in multiprocessor systems without dedicated redundancy, IEEE

transactions on computers, 37:358-362, March 1988,
[3] P. A. Bernstein. Sequoia: A fault-tolerant tightly coupled multiprocessor for transaction processing,

Computer, 21:37-45, February 1988.
[4] J-C., Laprie, & B. Randell, Basic Concepts and Taxonomy of Dependable and Secure Computing,

IEEE Transactions on DependableSecure Computing (TDSC), 1(1), pages 11{33, 2004.
[5] R. M. Keichafer, C.J. Walter, A.M. Finn & P.M. Thambidurai, The MAFT Architecture for

Distributed Fault Tolerance, IEEE Transactions on Computers, 37(4), pages 398{405, 1988.
[6] S. Poledna, P. Barrett, A. Burns, & A. Wellings, Replica Determinism and Flexible Scheduling in

Hard Real-Time Dependable Systems, IEEE Transactions on Computers, 49(2), pages 100{111, 2000.
[7] S. Poledna, P. Barrett, A. Burns, & A. Wellings, Replica Determinism and Flexible Scheduling in

Hard Real-Time Dependable Systems, IEEE Transactions on Computers, 49(2), pages 100{111, 2000.
[8] Avi Ziv, jehoshua Bruck, Analysis of check pointing schemes for multiprocessor systems, 13th

Symposium on Reliable Distributed Systems, 1994.
[9] K. M. Chandy and C. V. Ramamoorthy, Rollback and recovery strategies for computer programs,

IEEE Transactions on computers, 21:546-556, June 1972,
[10] J. Long, W. K. Fuchs, and J. A. Abraham. Fowrawd recovery using check pointing in parallel

systems. In the 19th International Conference on Parallel Processing, pages 272-275, August 1990.
[11] C. Lu, J.A. Stankovic, G. Tao, S.H. Son, “Feedback control real-time scheduling: framework,

modeling, and algorithms”, Real-time Systems, Vol.23, No.1/2, pp. 85-126, 2002.
[12] Sha, L., T. Abdelzaher, K.-E. Årzén, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, A. Cervin, J.

Lehoczky, A. Mok, “Real-time scheduling theory: A historical perspective”, Real-time Systems,
Vol.28, 2004.

[13] A. Goel, Walpole, and M. Shor. "Real-rate scheduling," in proceedings of the 10th IEEE Real-Time
and Embedded technology and Applications Symposium (RTAS), pp. 434-441, 2004.

[14] S. Lin and G. Manimaran. "Double-Loop Feedback-Based scheduling Approach for Distributed Real-
Time Systems," in proceedings of the High Performance Computing (HiPC), pp. 268-278, 2003.

[15] J.A. Stankovic, T. He, T.F. Abdelzaher, M. Marley, G. Tao, S.H. Son, and C. Lu. "Feedback Control
Real-TimeScheduling in Distributed Real-Time Systems," in proceedings of the IEEE Real-Time
Systems, 2001.

[16] K.E. Årzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson, and L. Sha, Integrated
control and scheduling. Technical Report ISRN LUTFD2/TFRT7586SE. Lund Institute of
Technology, Sweden, 1999.

[17] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment,” J. ACM, vol 20,no. 1, pp. 46-61, 1973.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

9

[18] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, “Feedback Control Real-Time Scheduling: Framework,
Modeling, and Algorithms,”Real-Time Systems J., vol. 23, no. 1/2, pp. 85-126, 2002.

[19] Feng Xia and Youxian Sun, Control-scheduling codesign: A prespective on integrating control and
computing. Dynamics of Continuous, Discrete and Impulsive Systems - Series B, vol. 13, no. S1.
2008

[20] Jianguo Yao and Xue Liu, Mingxuan Yuan, Zonghua Gu, Online Adaptive Utilization Control for
Real-Time Embedded Multiprocessor Systems, ACM, 2008.

[21] Payam Naghshtabrizi and Jo˜ao P. Hespanha. Analysis of Distributed Control Systems with Shared
Communication and Computation Resources, American Control Conference, 2009.

[22] J. Liu, Real-Time Systems: Prentice Hall PTR 2000.
[23] C. Lu, X. Wang, and K. X., "Feedback utilization control in distributed real-time systems with end-to-

end tasks," Parallel and Distributed Systems, IEEE Transactions on, vol. 16, no. 6, pp. 550-561, 2005.
[24] CAN Specification, Controller Area Network Specification and Implementation, Robert Bosch

GmbH, http://www.semiconductors.bosch.de/pdf/can2spec.pdf, 1991.
[25] The FlexRay Group, FlexRay Communications System Protocol Specification, Version 2.1,

http://www.°exray.com/, 2005.
[26] Daniel Simon, NeCS-INRIA and Alexandre Seuret NeCS-CNRS Peter Hokayem and John Lygeros,

Eduardo Camacho, State of the art in control/computing co-design. The Joint Laboratory for Petascale
Computing (JLPC). 2010.

[27] C. Wilwert, N. Navet, Y.-Q. Song & F. Simonot-Lion, Design of Automotive X-by-Wire Systems, In
The Industrial Communication Technology Handbook, CRC Press, 2004.

[28] V. Claesson, S. Poledna & J. Soderberg, The XBW Model for Dependable Real-Time Systems,
International Conference on Parallel and Distributed Systems (ICPADS), pages 130{138, 1998.

[29] X-by-Wire Project, Brite-EuRam 111 Program, X-By-Wire – Safety Related Fault Tolerant Systems
in Vehicles, Final Report, 1998.

[30] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “Survey of recent results in networked control systems,”
Proc. of IEEE, vol. 95, no. 1, pp. 138–62, Jan. 2007.

[31] P. Naghshtabrizi, “Delay impulsive systems: A framework for modeling networked control systems,”
Ph.D. dissertation, University of California at Santa Barbara, Sep. 2007.

[32] A. Jhumka, M. Hiller, & N. Suri, Assessing Inter-Modular Error Propagation in Distributed Software,
IEEE Symposium on Reliable Distributed Systems (SRDS), pages 152{161, 2001.

[33] Ali Sharif Ahmadian, Mahdieh Hosseingholi, and Alireza Ejlali, A Control-Theoretic Energy
Management for Fault-Tolerant Hard Real-Time Systems, Real-Time Systems Symposium (RTSS),
2011.

[34] S. Ghosh, R. Melhem, and D. Mosse, "Fault-Tolerant Scheduling on a Hard Real-Time
Multiprocessor System," in Proc. 8th Int. Symp. Parallel Processing, pp. 775-782, 1994.

[35] Y. Zhang and K. Chakrabarty, "Dynamic Adaptation for Fault Tolerance and Power Management in
Embedded Real-Time Systems," ACM Trans. Embedded Computing Systems, vol. 3, no. 2, pp. 336-
360, 2004.

