
International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

DOI : 10.5121/ijesa.2012.2303 23

MULTI OBJECTIVE DESIGN SPACE EXPLORATION

FOR GRID ALU PROCESSOR

Reza Asgari
1
, Ali Ahmadian Ramaki

2
, Reza Ebrahimi Atani

3
 and Asadollah

Shahbahrami
 4

1
Department of Computer Engineering, Guilan University, Rasht, Iran

rezaasgari@msc.guilan.ac.ir
2
Department of Computer Engineering, Guilan University, Rasht, Iran

ahmadianrali@msc.guilan.ac.ir
3
Department of Computer Engineering, Guilan University, Rasht, Iran

rebrahimi@guilan.ac.ir
4
Department of Computer Engineering, Guilan University, Rasht, Iran

shahbahrami@guilan.ac.ir

ABSTRACT

Todays billions of transistors allow architects to design different huge processor to increasing parallel

execution of instructions, which leads to increasing complexity of architecture. Establishing a trade-off

between the complexity and performance to finding optimal design is a big challenge. In this paper we are

going to focus on the design space exploration the Grid ALU Processor (GAP) to finding optimal design

for it. To do so we address a multi-objective optimization method based on Pareto Front. This method helps

us find best configuration of GAP at maximum performance and minimum complexity.

KEYWORDS

Grid ALU Processor, Design Space Exploration, Pareto Front

1. INTRODUCTION

Nowadays most of the researches in designing processors are focused on multicore architectures.

These architectures are appropriate for programs that have the parallel nature and are not useful

for sequential programs [1]. For parallel execution of sequential programs we need processors

that change sequence of instructions to execute Independent instructions together. One of

processors that raise parallel execution of instructions is Grid ALU processor that called GAP [2].

This processor has features of superscalar and reconfigurable systems with an array of Functional

Units (FUs) to execute instructions simultaneously that reorder by a configure unit. One of the

challenges of this processor (and all novel architectures) is to cope with the increasing complexity

of designs.

All novel processor architectures like GAP expose lots of parameters, e.g. the number of

processor cores, cache sizes, or memory bandwidth. Theses parameters form a huge design space.

With multiple objectives and under specific constraints, as timing behavior or the availability and

affordability of hardware resources, good points consisting of a combination of parameters have

to be found. It is getting very hard for the system designers to cope with such increased

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

24

complexity. For example, with 50 parameters each of them having 8 possible values, the number

of possible configuration is 2^150 [20]. This means the designer must study 2^150 possible

configuration to finding best design for processor. Then we need an approach to exploring huge

space of these elements.

The goal of this paper is to purpose an approach to solving Design Space Exploration (DSE)

problem automatically. This approach must find best configure of elements to design optimal

processor that leads us to high performance whit less complexity. Unfortunately performance and

complexity are in contrast, and then we need a method to establishing a trade-off between them

simultaneously. Multi-objective optimization methods do this for us, so we are using a multi-

objective optimization method based on Pareto Front. Pareto Front helps us to take all objectives

into consideration simultaneously and maintains the diversity of solutions with ensuring that

every element of Pareto Front is a good solution [17].

The rest of this paper continued as follows: Next section describes Background of this research.

Section III describes the purposed method following by an implementation and evaluation in

Section IV. Section V gives an overview of related works. At the end of the paper, the conclusion

is provided.

2. BACKGROUND

In the following section, we give an overview of GAP. Also we introduce multi-objective

optimization problem in part B.

2.1. Grid ALU Processor

The main goal of GAP architecture is parallel execution of the program instructions that written

sequentially. The GAP combines elements of superscalar processor architectures with a coarse-

grained reconfigurable array of functional units [2]. GAP architecture contains a two-dimensional

Functional Units (FUs). Instructions are inserted into FUs with Instruction fetch, decode,

configuration units, and execute. This processor uses a branch control unit for controlling

conditions and ensures correct selection of branches as well as memory access control using load

and store units. In addition for faster access to memory it deploys two caches memory which are

referred to as instruction cache and data cache.

Fetch, decode and configuration units simultaneously work with FUs. The array is arranged in

row and columns of ALUs (see the Figure. 1 [2]). Every column in the array is assigned to a

single top register in the original GAP architecture. This leads to a number of columns in the

array equal to the number of physical registers. Information flow in each column is top to down

[1]. Each ALU can read the output information of previous row. ALUs in each row are

synchronous and information in a row cannot transfer between ALUs.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

25

Figure 1. Architecture of the Grid ALU Processor [2]

The placement strategy in the ALUs is as follows: instructions that have no dependence on

previous instructions (or instructions that related to them) put in a row and execute. Instructions

that related to previous instructions can put in to next rows. When facing to a loop, later than

placement of loop instructions, in the array for the next iterations of the loop not required to do

fetch, decode and configuration steps and instruction can be executed immediately. Branch

control unit makes sure misprediction penalty does not occur [1, 14].

The placement of instructions into the array is depicted by the following simple code fragment of

pseudo machine instructions that adds 15 numbers out of subsequent memory cells followed by

negating the result and depicted in (2).

Figure. 2 depicts the dependency graph of the 9 instructions, which can be recognized again at the

placement of the instructions within the ALU array shown in fig. 3. The instructions 1 to 3 are

placed within the first row of the array. Instruction 4 depends on R2 which is written in the first

row and, therefore, it must be located in the second row. It reads the address as a result of

instruction 2 and forwards the data received from memory into the column R4 which is the

destination register of the load. The instructions 5 to 7 are placed in an analog way. Instruction 8

is a conditional branch that could change program flow. To sustain the hardware simplicity,

conditional branches have to be placed below the lowest already arranged instruction. In this case,

the branch has to be located after the third row. The last instruction must be placed after the

branch in the fourth row. Hence, if the branch is taken, the GAP takes a snapshot of the register

contents at the corresponding row and copies the data into the top registers (which is called “Top

Regs” in Figure.3). In this case, instruction 9 is discarded. Otherwise, the sub is executed without

any time loss [14].

2.2. Multi Objective Optimization

To understand, some of the most important concepts are listed below:

Multi-objective optimization is a process that usually can make two or more parameters optimal

which conflict with each other simultaneously. In most cases where multi optimizations have to

be performed there is not a single solution that simultaneously minimizes/maximizes each

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

26

objective. Indeed multi-objective optimization would ensure that with changes to one parameter,

changes from other parameters do not cause any negative influence on the final result [21].

A general multi-objective problem can be mathematically depicted in equation (1).

 min/max y = f (x) = [f1(x), f2(x),…, fm(x)] (1)

 Subject to: x = x1, x2, …, xn ∈ X

 y = y1, y2, …, ym ∈ Y

Where x is called the decision vector, X is the parameter pace, y is the objective vector and Y is

the objective space yk = fk(x) where k = 1, 2, 3, …, m.

One of the most popular methods that used to solving multi-objective optimization called Pareto

Front. Pareto optimality is a concept that formalizes the trade-off between a given set of mutually

contradicting objectives. A solution is Pareto optimal when it is not possible to improve one

objective without deteriorating at least one of the other. A set of Pareto optimal solutions

constitute the Pareto front [21].

3. PROPOSED APPROACH

To find an optimal design between possible designs we will use multi-objective optimization

based on Pareto Front. The factors that inspect for optimization operation are Clock cycle Per

Instruction (CPI) and design complexity. In the section A we talk about calculation of parameters

used in optimization process and in section B we explain Pareto Front and how to make use of

this method for our approach.

3.1. Calculation of Parameters

CPI is a division of CPU clock cycles to count numbers of executed instructions [18]. For

calculation of clock cycles, we use a simulator program. We write the simulator in java

programming language based on descriptions about GAP that represented in [1, 2, 14, 15, 16].

This simulator would be described in section IV.

Parameters that considered for definition of design are: 1) Number of FUs Rows={4, 5, 6,…, 32},

2) Number of FUs Columns={4, 5, 6,…, 31}, 3) Cache Size={4k, 8k, 16k} and 4) Load/Store

Units={Number of Rows}.

1. move R1,#15

2. move R2,#addr

3. move R3,#0

 loop:

4. load R4,[R2]

5. add R3,R3,R4

6. add R2,R2,#4

7. sub R1,R1,#1

8. jnz R1,loop ; (end of loop ?)

9. sub R1,R3,R1

 (2)

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

27

Figure 2. Dependency graph of the example instructions

Combination of these parameters with different values constructs a set of all possible designs.

After constructing the desired set, with execution of a program on simulator, the value of CPI

calculated for every state. In this case we test JPEG program because of its potential loop-based

structure [3], then GAP can execute it in ideal mode.

For calculation of design complexity we use (3) [2, 16]:

Complexity = CALUs + CLSUs + Ccache (3)

move #15
move
#addr

sub #1

 load

 jmpnz

add #4

sub

add

1 2

7 4

8 5 6

9

move #0

3

move

#15

move

#addr

move

#0

nop

sub

#1

add

#4

nop

load

nop

nop

nop

add

nop

nop

sub

nop

nop

0 0 0 0

2 3

4 7 6

5

9

Load/store R2 R3 R4

Top

Regs

R1

1

nop

load

nop

B
ra

n
c
h
 c

o
n

tr
o
ll

er
=

0
?

8

Figure 3. Placement of the example instruction

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

28

In (3) CX presents complexity of element X ∈ {ALUs, Load/Store, Cache}. The values of CALUs,

CLSUs, Ccache are respectively calculates from (4), (5) and (6). The variables that used here depicted

in Table I.

CALU = (Cc*hr + Cr*Cc*hALU) + (Cr*Cc*Cl*hl) (4)

CLSUs = (Cr*hLSU) + (Cr*Cl*hl) (5)

Ccache = Cache Area*hc (6)

Table 1. Values of Using Constants in Calculation of Complexity Design

Variable Value Comments

Cc

{4, 5, 6,…,

31}
Number of Columns

Cr
{4, 5, 6,…,

32}
Number of Rows

Cl 1

Number of Configuration

Layers for FUs array, in this

case we used just one layer

hr 0.02 complexity of Register

hALU 1 FU comprising an ALU

hl 0.02 Configuration Layer for a FU

hLSU 3.50
complexity of Load/store

Units

hc 3 (1/mm
2
) complexity of Cache

For calculate hr, hALU, hl, hLSU, and hc we used ratio of area size of each components to area size of

source component. We consider ALU as source component, and to calculate area size of

components we used results of [22] (in this paper authors calculate area and delay for different

hardware elements like cache, integer ALU and etc.). For exapmle hr = (average area for register

per bit / average area for integer ALU per bit) = (4.06e+4 / 2.41e+6) = 0.017 ≈ 0.02.

3.2. Approach

To find optimal design we will use Pareto Front. According to the definition of Pareto Front [17]:

We may define optimization criterion in a multi-objective problem on the basis of dominance

concept as follows: for two decision vectors X1 and X2, X1 dominates X2 (X1 ≺ X2) if and only

if two conditions are satisfied [19]: 1) X1 is not worse than X2 in all objectives. 2) X1 is strictly

better than X2, at least in one objective.

The decision vector of X ∈ Xf is also called non-dominated in relation to A ⊆ Xf if and only if ∃ a

∈A ∶ X ≺ a holds. X is Pareto optimum if and only if it is non-dominant in relation to Xf. Thus

vertex X is regarded as optimum in perspective of being able to improve none of its objectives

regardless of making other objective value worse [17].

To reduce the number of comparisons for finding Pareto optimal (with attention to (7) and (8)),

instead of comparing each decision vector with total, first we divide decision vectors to sets that

contain two members. In each set, decision vectors are compared and dominating vector goes to

the next step, if none of the two vectors can dominate each other, two vectors go to the next step.

In the next step, the place of decision vectors are randomly changed for comparison and again

vectors are compared to each other. The process continues to have finally a set of decision vectors

that non-dominate each other. Such set is the answer. This process depicted in (9). Pseudo code in

(10) describes Dominate function that used in (9).

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

29

// Algorithm to finding optimal set of designs

Input: design rules

Output: optimal design of GAP

S = all possible design that return from GAP

simulator

 While (elements of S are not changed) {

 for (i = 0 ; i< S.length ; i+=2)

 Add Dominate (Si,Si+1) to temp

 S = temp

 S = RandomExchange(S)

 //randomly exchange elements of

array

 }

Return S

(9)

X1<X2 ⇔∀i ∈ {1, 2,…, n} : fi(x1)≤fi(x2)

 ^ ∃i ∈ {1, 2,…, n} : fi(x1)<fi(x2)

(7)

X1<X2 ⇔∀i ∈ {1, 2,…, n} : fi(x1)≤fi(x2)

 ^ ∃i ∈ {1, 2,…, n} : fi(x1)<fi(x2)
X2<X3 ⇔∀i ∈ {1, 2,…, n} : fi(x2)≤fi(x3)

 ^ ∃i ∈ {1, 2,…, n} : fi(x2)<fi(x3)

fi(x1)≤fi(x2) ≤fi(x3)⇒ fi(x1)≤fi(x3)

fi(x1)<fi(x2) <fi(x3)⇒ fi(x1)<fi(x3) ⇒ x1< x3

(8)

// Dominate (Si,Si+1)

Input: 2 decision vector a and b

Output: dominated vector

Int BetterInAnyObjective = 0;

for (i = 1; i < noObjectives && a[i] <= b[i]; i++)

 if (a[i] < b[i])

 BetterInAnyObjective = 1

if((i >= noObjectives) &&

(BetterInAnyObjective>0))

 return a

return a and b //if a cannot dominate b

(10)

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

30

4. IMPLEMENTATION AND EVALUATION

To studying results of GAP architecture, we design a simulator in java programming language in

which fetch, decode and configure units are synchronized by Wait() and Signal() functions.

Executions of instructions placed in rows are also synchronous. Load and store units work as

follows: all units can read simultaneously but if one needs to write must wait until all units that

come with read operations finish their work. The task is managed by semaphores.

The simulator gives design properties and an assembly source code of a program (in this case we

test JPEG program) as input, and then the simulator first configures the GAP architecture by

design properties (such as number of rows and columns, cache size, design layer, number of

registers for each column (one or two) and etc) and then runs the input program. After running the

program, the simulator returns CPI of GAP for this program and architecture complexity as

output. The steps of our algorithm show the process as follows (except step 1, other steps are

doing automatically by algorithm):

1) Design GAP properties ranges by User

2) Create set of S = {all possible designs}

3) Create set of CC by sending each of si∈S to simulator and calculate CPI and complexity for si

4) Send ci ∈ CC to the algorithm that explained in section IV, part B.

5) Return set of optimal design form the algorithm to the user.

To assess the performance of GAP architecture, we run JPEG program on Simple Scalar

processor simulator and GAP simulator (the parameters of each simulator give in Table II), for

each simulator we calculate the Instructions per Cycle (IPC). Simulation results show that on

increasing the number of rows and columns in GAP, the value of IPC improves. For instance for a

state with 32 columns when the number of rows is greater than 6, the value of IPC for GAP is

better than Simple Scalar’s IPC. The results of JPEG program execution on simulator of Simple

Scalar processor and GAP processor simulator (with 31 columns and 4, 8, 16 and 32 rows) are

showed in Figure. 4.

With attention to (3) and (4), the conclusion is that complexity and the number of columns and

rows have a linear relationship that means on increasing the number of rows and columns,

complexity increases. Figure. 5 depicts the correlation. The bigger is number of columns, the

more is number of instructions which can be executed simultaneously.

This results in reduction of CPI. On the other hand, growing number of rows causes the loops of

program put in rows and in second iteration of loop execution there is no need to fetch, decode

and configure operations consequently it reduces as well the number of clock cycle needed for

execution of the program. On the other hand with respect to figure. 6, it can be seen on increasing

the complexity, the value of CPI decreases. Since the value of CPI however, is less the

performance improves, hence we can conclude that increasing number of rows and columns

improves performance of system. Now the question is that how much escalating number of rows

and columns may ameliorate the performance?

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

31

Figure 4. Comparing Simple Scalar and GAP(with 31 columns and 4, 8, 16 and 32 rows) whit

IPC for the JPEG.

Table 2. Parameters of Simulators

Parameters Simple Scalar GAP

Integer ALUs 4 31 per row

Multipliers 1 1 per row

Brach prediction bimod bimod

Branch target

buffer
512*4 none

Load / Store Unit 8 One per row

The results of simulation illustrate by increasing the number of columns to 31, the value of CPI

then reduce but for values greater than 31 the rate of changes in CPI value is ignorable. By

examining results (when the number of columns is at 31) we observe if the number of rows

increases, CPI decreases at the same time. The CPI reduction goes on until the number of rows

rises to 32. From this point onward, however, number of rows surges up, the rate of changes in

CPI remains negligible.

As mentioned earlier, we are going to find a set of solutions that CPI and complexity remain

optimal. By exploration of more than 3000 samples, the algorithm selects a set of optimal design

consisting nearly 60 solutions as optimal design set. Figure. 7 delineates the correlation of

complexity and CPI.

Figure 5. Correlation of complexity and number of Row (whit constant column number)

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

32

Figure 6. Correlation of complexity and CPI for Row = 4, 5, 6

Figure 7. Correlation of complexity and CPI for some of the optimal designs and initial designs

5. RELATED WORK

Several research works try to generalize design space exploration and provide frameworks for

architecture exploration, although most of them do not bring design space exploration beyond

parameter exploration. The Magellan framework for multicore exploration fuses power/area

measurement and statistical exploration techniques, and exposes a larger range of multicore

parameters [4]. ReSP enables the exploration of architectures composed of transaction-level

SystemC components, as well as hardware/software trade-offs [5]. FADSE (is a Framework for

Automatic Design Space Exploration) attempts to include as much ADSE algorithms as possible,

to offer connectors to existing computer simulators (M5, GEMS, Multi2sim, NS3, etc) and to run

in parallel the design space exploration process [20].

Most applications of reconfigurable architectures always require an additional processor as

master. This processor has two tasks to fulfill: first, it has to provide configuration data to and,

second, it has to take care about the activities of the reconfigurable system. Additionally, the

presence and the architecture of the reconfigurable part must be taken into account at the software

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

33

development phase. Example architectures with reconfigurable parts as coprocessor are the

MOLEN [6], the GARP [7], and the MorphoSys [8] architectures. The XTENSA chip from

Tensilica, the CHIMAERA [9] project, and the PRISC processor [10] use reconfigurable

functional, units within the processor pipeline; see [11] for a more detailed overview.

ArchExplorer [12] is another automatic design space exploration (ADSE) tool. Researchers can

upload their own hardware simulators for different architecture components in order to weigh the

performance against other designs. The uploaded simulator has to be made compatible with the

interface provided by the ArchExplorer developers. Having the simulator been uploaded, it

automatically becomes part of the design space exploration tool and it is simulated and compared

with other similar microarchitectures. The simulator continuously runs on the ArchExplorer

servers. Any user can check any time what is the best configuration found so far for its simulated

microarchitecture and also compare it with other implementations.

8. CONCLUSIONS

This paper tried to solving design space exploration problem. For achievement this goal we work

on Grid ALU processor and study different configuration of this processor. To finding optimal

configuration of GAP, we use multi-objective optimization based on Pareto Front that optimizes

CPI and complexity of design.

The algorithm depicted in this paper automatically generates new designs of GAP and sends them

to GAP simulator, after execution of JPEG program, the simulator returns CPI and complexity of

each design to the algorithm. In last step, the algorithm finds optimal design based on Pareto

Front. Section IV showed only 2% of possible designs were selected as optimal set and then we

get to single out one design from this set proportional to our necessity.

In future work we are going to optimize the GAP architecture by making changes on ALUs

configuration. Also we attempt to design a graphical user interface for our method to make it

easier to use.

REFERENCES

[1] H. Calborean and L. Vintan, “An Automatic Design Space Exploration Framework for Multicore

Architecture Optimizations”, 9th Roedunet International Conference, pp. 202-207, 2010.

[2] R. Jahr, T. Ungerer, H. Calborean, and L. Vintan, “Automatic Multi-Objective Optimization of

Parameters for Hardware and Code Optimizations”, International Conference on High Performance

Computing and Simulation, pp. 308 – 316, 2011.

[3] A. Shahbahrami, B. Juurlink, S. Vassiliadis, “Improving the Memory Behavoir of Vertical Filtering in

the Discrete Wavelet Transform”, 3rd Conference on Computing frontiers, 2006.

[4] S. Kang and R. Kumar, ‘‘Magellan: A Search and Machine Learning-Based Framework for Fast

Multicore Design Space Exploration and Optimization’’, Design, Automation, and Test in Europe,

ACM Press, pp. 1432-1437, 2008.

[5] G. Beltrame, L. Fossati, and D. Sciuto, ‘‘Resp: A Nonintrusive Transaction-Level Reflective MPSOC

Simulation Platform for Design Space Exploration’’, IEEE Trans. CAD of Integrated Circuits and

Systems, vol. 28, no. 12, pp. 1857-1869, 2009.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

34

[6] S. Vassiliadis, S. Wong, and S. D. Cotofana, “The Molen ρµucoded Processor”, 11th International

Conference on Field-Programmable Logic and Applications, Springer-Verlag Lecture Notes in

Computer Science, Vol. 2147, pp. 275–285, 2001.

[7] J. Hauser and J. Wawrzynek. “Garp: A MIPS Processor with a Reconfigurable Coprocessor”, IEEE

Symposium on Field Programmable Custom Computing Machines, 1997.

[8] M. H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M. Filho, and V. C. Alves, “Design

and Implementation of the Morphosys Reconfigurable Computing Processor”, Journal of VLSI Signal

Processing Systems 24(2–3), pp. 147-164, 2000.

[9] S. Hauck, T. Fry, M. Hosler, and J. Kao. “The Chimaera Reconfigurable Functional Unit”, IEEE

Symposium on Field-Programmable Custom Computing Machines, pp. 87–96, 1997.

[10] R. Razdan and M. D. Smith. “A High-Performance Microarchitecture with Hardware-Programmable

Functional Units”, 27th Annual International Symposium on Microarchitecture, pp. 275–285, 1994.

[11] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of Systems and Software”, ACM

Computing Surveys, pp. 171–210, 2000.

[12] V. Desmet, S. Girbal, O. Temam, and B. France, “Archexplorer. org: Joint Compiler/Hardware

Exploration for Fair Comparison of Architectures”, Interact workshop at HPCA, 2009.

[13] B. Shehan, R. Jahr, S. Uhrig, and T. Ungerer, ”Reconfigurable Grid Alu Processor: Optimization and

Design Space Exploration”, 13th Euromicro Conference on Digital System Design: Architectures,

Methods and Tools, pp. 71-79, 2010.

[14] S. Uhrig, B. Shehan, R Jahr, and Theo Ungerer, “A Two-dimensional Superscalar Processor

Architecture”, Computation World: Future Computing, Service Computation, Cognitive, Adaptive,

Content, Patterns, pp. 608-611, 2009.

[15] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler, “A Design Space Evaluation of Grid

Processor Architectures”, 34th ACM/IEEE International Symposium on Microarchitecture, MICRO-

34 Proceedings, pp. 40-51, 2001.

[16] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi, “A Comprehensive

Memory Modeling Tool and its Application to the Design and Analysis of Future Memory

Hierarchies”, 35th Annual International Symposium on Computer Architecture, IEEE, pp. 51–62,

2008.

[17] R. Asgari, M.G. Moghaddam, S. S. Sahraei, and R. A. Ebrahimi, “An Approach to Ontologies

Alignment Based Upon Pareto Front”, 5th International Computer and Instructional Technologies

Symposium, 2011.

[18] D. Patterson and J. Hennessy , “Computer organization and Design: the Hardware/Software Interface

Textbook”, 3rd ed, 2004.

[19] K. Deb, “Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design”, Kanpur

Genetic Algorithms Laboratory, 1999.

[20] H. Calborean and L. Vintan, “Framework for Automatic Design Space Exploration of Computer

Systems”, University of Sibiu, ISSN 1583-7149, 2011.

[21] C. Coello, G. Lamont, and D.A. Veldhuizen, “Evolutionary Algorithms for Solving Multi-Objective

Problems(Second Edition)”, Springer, 2007.

[22] S. Gupta, S. W. Keckler, and D. Burger, “Technology Independent Area and Delay Estimates for

Microprocessor Building Blocks”, University of Texas at Austin, Tech. Rep, 2000.

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012

35

Reza Asgari

Reza Asgari was born in Iran, Ghazvin. He recieved his BSc degree from university of

Guilan, Iran in 2011. He is now MSc student at university of Guilan, Iran. His research

interests in operating system and database security.

Ali Ahmadian Ramaki

Ali Ahmadian Ramaki was born in Iran on August 10, 1989. He recieved his BSc

degree from university of Guilan, Iran in 2011. He is now MSc student at university of

Guilan, Iran. His research interests in computer security, network security and

intelligent intrusion detection.

Reza Ebrahimi Atani

Reza Ebrahimi Atani received his BSc degree from university of Guilan, Rasht, Iran in

2002. He also recieved MSc and PhD degrees all from Iran University of Science and

Technology, Tehran, Iran in 2004 and 2010 respectively. Currently, he is the faculty

member and assistant professor at faculty of engineering, University of Guilan. His

research interests in cryptography, computer security, network security, information

hiding and VLSI design.

Asadollah Shahbahrami

Asadollah Shahbahrami received his BSc degree from Iran University of Science &

Technology, Tehran, Iran in 1993. He also recieved MSc from Shiraz University,

Shiraz, Iran in 1996 and PhD degree from Delft University of Technology, Delft,

Netherland in 2008. Currently, he is the faculty member and assistant professor at

faculty of engineering, University of Guilan. His research interests in advanced

computer architecture, SIMD programming, digital image and video processing and

reconfigurable architecture.

