
International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

DOI : 10.5121/ijesa.2013.3103 33

HARDWARE ACCELERATION OF THE GIPPS MODEL
FOR REAL-TIME TRAFFIC SIMULATION

Salim Farah1 and Magdy Bayoumi2

The Center for Advanced Computer Studies, University of Louisiana at Lafayette, USA
1
snf3346@cacs.louisiana.edu,

2
mab@cacs.louisiana.edu

ABSTRACT

Traffic simulation software is becoming increasingly popular as more cities worldwide use it to better
manage their crowded traffic networks. An important requirement for such software is the ability to
produce accurate results in real time, requiring great computation resources. This work proposes an ASIC-
based hardware accelerated approach for the AIMSUN traffic simulator, taking advantage of repetitive
tasks in the algorithm. Different system configurations using this accelerator are also discussed. Compared
with the traditional software simulator, it has been found to improve the performance by as much as 9x
when using a single processing element approach, or more depending on the chosen hardware
configuration.

KEYWORDS

Traffic Simulation, Gipps Model, AIMSUN, ASIC

1. INTRODUCTION

The steady improvement in computation power has allowed for many applications previously
limited only to super-computers and data centers. Traffic simulation is one application that has
begun to gain popularity in recent years, especially in cities with notoriously busy traffic
networks such as Madrid and Singapore. The technology is used in either the design or operation
phase of a transportation network. During design, simulation helps decide upon the most efficient
and reliable configuration, while simulation during traffic operation allows for predicting rush
hours and traffic flow, as well as effective rerouting in case of road closures.

1.1 Traffic Simulators Overview

Traffic simulators are handed the system data from road traffic sensors, and already have the
information about the road network and its layout. Simulating traffic flow can be performed in
three methods. In the macroscopic method, the traffic system is modeled at no lower than the road
level and the density at the given road stretches. From there the flow development is carried out
[1]. On the other hand, the microscopic method simulates at the car level, following each car's
movement. Combining all the individual car behaviors, the overall traffic flow can be obtained.
In the middle sits the mesoscopic method which is a trade-off between the two. The microscopic
method offers the greatest accuracy at the expense of computation time, while the macroscopic
approach will produce a less accurate result in a more timely fashion.

A number of traffic simulators exist, some of which are commercially sold and widely used in a
variety of fields. These simulators have been evolving for a while, and it's safe to say they've
reached a mature state where they can perform at a reasonable speed and produce trusted results.
AIMSUN and VISSIM [2] are two popular commercial traffic simulators used by a number of
traffic engineering firms and transportation planning agencies. AIMSUN is allegedly capable of

mailto:1snf3346@cacs.louisiana
mailto:2mab@cacs.louisiana

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

34

microscopic simulation of traffic in a big-sized city with a speed 60x faster than that of real time,
or in other words simulates 1 hour in 1 minute.

1.2 Related Work

The previously discussed simulators are purely software-based, as are most implementations.
However, there have been a few proposed FPGA-based implementations. One work combines
microprocessors with FPGAs in a low-bandwidth, high-latency interconnect, dividing the tasks
between software and hardware to balance the workloads [3]. It claims to reduce the number of
needed FPGAs and to achieve a speedup of 12.8x over an AMD processor. Another FPGA design
centers around modeling the route system as a collection of interconnected cells, each cell
representing a short segment of a roadway and can be either empty or containing a single car [4].
The authors claim to be able to effectively model various geometric configurations of a traffic
system by hierarchically combining the cells.

1.3 Performance Requirements

A timely response is the obvious prime requirement of real-time simulation systems. Delays
cannot be tolerated in a traffic environment. Once a traffic congestion has been formed, it is hard
to reverse it due to the unidirectional nature of vehicle movement, and on busy highways
congestions can form in a matter of seconds in a major incident. Reacting as quickly as possible is
therefore a must, and this entails a very efficient simulation of any decision the system might
decide to take.

An important thing to note is that upon deciding on a response strategy, a potentially large
number of possible actions are simulated. Having a computing infrastructure capable of parallel
processing is therefore desirable. Still, some of the simulations may be related to each other and
depend on each other's results, and parallelizing them may not be possible. Simulation runs will in
this case add up in time and a 1 minute run would add up to 15 minutes if performed in 15
different instances.

2. PROPOSED HARDWARE ACCELERATION
2.1. Choice of Simulation Model

Traffic simulators usually make use of two important models: the car-following model and the
lane-switching model. This work is only concerned with the car-following model, although it
could be extended to the lane-switching model if desired. The car-following model itself is
modeled differently in different simulators. VISSIM and AIMSUN are two of the most widely
used traffic simulators, and they employ different car-following models. The AIMSUN model
was ultimately chosen for the hardware acceleration, for the two following reasons.

Firstly, the AIMSUN simulator uses the Gipps car-following model, a model represented
mathematically through an algebraic equation, as opposed to the model used in VISSIM, which is
based on a psychological model that tries to mimic the behavior of the driver [5]. Mapping a
mathematical equation to hardware is more straightforward than trying to accelerate a complex
psychological model that relies on statistical decisions and specialized algorithms. The
mathematical nature of the Gipps model in AIMSUN allows the use of common hardware units
such as dividers and multipliers, and the reuse of such items in case the hardware unit is to be
used to accelerate other tasks as well.

The second reason for choosing AIMSUN is simply its superior accuracy, as was concluded in
[5]. Accuracy is not to be underestimated in traffic simulators as errors would accumulate

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

35

considering cars are all affected by each others' movements. AIMSUN was found to produce
fewer errors when taking real life situations as a reference.

The following is the primary equation representing the Gipps car-following model:

, (1)

where
V(n, t) is the speed of vehicle n at time t,
V∗(n) is the desired speed of vehicle n,
a(n) is the maximum acceleration for vehicle n,
T is the reaction time (this is equal to simulation step).

The actual model is a little more complicated than this, it uses an additional equation for
calculating the velocity value and then chooses the lower of the two values from the two
equations. However only the above equation will be accelerated here, but the same concept can be
applied to that second equation. This work hopes to show the potential of accelerating the Gipps
model, more so than performing a full-fledged acceleration. This is the reason why only part of
the model was accelerated.

2.2 Assumed System Organization

It was assumed that only the equation above was moved to hardware while the rest of the
software constituting the simulator is still unchanged. That is the code in the simulator
responsible for carrying out the calculation above is now replaced by one instruction that
performs this task. This instruction requires 4 operands: acceleration, time step, desired velocity,
and current velocity. These can be stored in special memory registers or locations prior to
executing the instruction.

Figure 1. Illustration of how an array of accelerators can concurrently simulate different cars

The hardware accelerator module can be either added to the internals of the general purpose CPU,
or installed as an add-on via some fast connection protocol like PCI Express. In the latter solution
the module would occupy the whole chip, therefore giving it a much larger area and power
budget. This in turn allows for the use of multiple modules on a single chip, performing parallel
calculations that correspond to modeling several cars simultaneously. The simulation would thus

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

36

be accelerated by several orders of magnitude, even when accounting for the communication
overhead due the bus CPU connection.

2.3 Hardware Architecture

As is evident in the equation discussed above, the hardware units that will be needed are an adder,
a multiplier, and a divider. Given these units, it's still required to perform the square root
operation. The multiplier and divider units shall be discussed first, and subsequently the square
root implementation shall be dealt with. But before that, it's worth discussing the word width that
is being assumed. Given that the maximum speed anyone is likely to achieve is below 256 km/h,
8 bits should be assigned to represent both the speed and the acceleration. However, given that
the equation also deals with decimal points, 6 more bits were assigned as fixed decimal point bits.
These allow for an accuracy of 0.0156, i.e. an error of ± 0.008, which should be acceptable for the
given application. In all, 14 bits were used to represent the numbers in use.

Figure 2. The high level organization of the hardware accelerator

For the multiplier, an entirely combinational approach was chosen, since the main target of this
work is speed and performance. With a 14-bit word, the multiplier had to use 14 14-bit adders,
adding up to 196 full adder cells. The same goes for the divider, which uses 14 14-bit subtracters,
which are essentially adders with an added inverter on one of the inputs. Obviously, significant
area is being occupied by just the multiplier and the divider. But these two units take the vast
majority of the design and everything else takes insignificant area in comparison. For instance the
square root unit already makes use of the available divider, adding only little hardware to that,
and the control unit for the design is also small in comparison. Moreover, it should be kept in
mind that we're mainly assuming the accelerator will be on a chip by itself.

The Babylonian method was used for the computation of the square root. Initially a rough
estimation based on the number of bits to the right of the first '1' in the number is done, giving a
starting point close to the solution so that the unit would converge much faster. Subsequently, the
following operation is conducted multiple times until it converges to a constant number:

, (2)

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

37

where S is the number the square root of which is being sought. It was observed that it only took
two clock cycles (or iterations) at most for the operation to converge to a constant value, due
mainly to a relatively accurate estimation done beforehand.

Figure 3. Area distribution of the accelerator. Total area was 7016 μm2.

3. RESULTS

The Verilog code for the accelerator was synthesized with a 45 nm standard cell library
(FreePDK45). The operating frequency was set to be 250 MHz, which is about the highest the
design could reach without timing violations. Although this may seem like too low for such an
advanced technology, the entire computation only takes 4 clock cycles, or 16 ns. If desired,
however, the clock frequency may be significantly increased if instead of entirely combinational
dividers and multipliers, hybrid ones were used that take a few clock cycles to complete one
division or multiplication operation. That would also dercease the area of these units due to the
reuse of the adders/subtracters. When considering packing several of these accelerators on one
chip, this becomes especially important. The implemented design occupies an area of 7016 μm2
with an estimated power consumption of 2.3 mW.

This result was compared with an estimation of the time required to complete the computation of
the Gipps model equation on a general purpose processor. A short program that performs the
same computation was written in C, and was run on an Intel Core i3-350M processor, which is a
mid-range dual core processor with 3 MB of cache, and 2 threads per core, making a total of 4
virtual cores. The computer was running a Linux 64-bit OS, and has a total of 4 GB of RAM.
Code profiling functions were added to the C program to measure the execution time, and the
computation was run for 100 iterations in order to average out any inaccuracies in the profiling
measurement. The average execution time was 144 ns, which is 9x slower than the hardware
accelerator. When using multiple processing elements of the accelerator, this speedup would be
multiplied by the number of PEs in use.

4. CONCLUSION

The use of hardware accelerators for improving the performance of the AIMSUN traffic simulator
has been shown to be significantly effective. The hardware accelerator uses high performance
multiplication and division units, and is able to perform an accurate square root operation in only
two clock cycles. By comparison, the software code written in C and performing the same
computation was 9x slower. The obtained speedup would in fact be multiplied when the

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.1, March 2013

38

accelerator includes several computation units working in parallel, which is feasible when the
accelerator is implemented off-chip. Future work could concentrate on finding an efficient way
for using and placing an array of acceleration modules working concurrently on a single chip.

REFERENCES

[1] Magne L., S. Rabut, and J. F. Gabard, (2000) “Towards an Hybrid Macro Micro Traffic Flow
Simulation Model”, INFORMS Spring 2000 Meeting, Salt Lake City, Utah, U.S.A.

[2] H. Xiao, R. Ambadipudi, et al, (2005) “Methodology for Selecting Microscopic Simulators:
Comparative Evaluation of AIMSUN and VISSIM”, Technical Report CTS 05-05, Department of
Civil Engineering, Univ. of Minnesota.

[3] Ttipp , J. L., Mortveit , H. S., Hansson , A. A., Gokhale , M, (2005) “Metropolitan Road Traffic
Simulation on FPGAs”, Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines.

[4] Gordon Russell, Paul Shaw, John McInnes, Neil Ferguson, and George Milne, (1995) “The Rapid
Simulation of Urban Traffic Using Field-Programmable Gate Arrays”, Proceedings of the
International Conference on the Application of New Technologies to Transport Systems,
Australasian Road Research Board Ltd.

[5] S. Panwai, H. Dia, (2005) "Comparative Evaluation of Microscopic Car-Following Behavior",
IEEE Transactions on Intelligent Transportation Systems, Volume 6, Issue 3 Pp. 314--325.

