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ABSTRACT 
 

Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic 

voltage scaling(DVS). The basic idea of power-aware scheduling is to find slacks available to tasks and 

reduce CPU‟s frequency or lower its voltage using the found slacks. In this paper, we introduce temporal 

workload of a system which specifies how much busy its CPU is to complete the tasks at current time. 

Analyzing temporal workload provides a sufficient condition of schedulability of preemptive early-deadline 

first scheduling and an effective method to identify and distribute slacks generated by early completed 

tasks. The simulation results show that proposed algorithm reduces the energy consumption by 10-70% 

over the existing algorithm and its algorithm complexity is O(n). So, practical on-line scheduler could be 

devised using the proposed algorithm. 
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1. INTRODUCTION 
 

Energy consumption issues are becoming more important for mobile or battery-operated 

embedded systems. Since the energy consumption of CMOS circuits, used in various 

microprocessors, has a quadratic dependency on the operating voltage(    )[2], it is a very 

useful method for reducing energy consumption to lower the operating voltage of circuits. But, 

lowering the operating voltage also decreases its clock speed or frequency, so the execution times 

of tasks are prolonged. This makes problem more complex for hard real-time embedded systems 

where timing constraints of tasks should be met. 

 

There has been significant research effort on Dynamic Voltage Scaling(DVS) for real-time 

systems to reduce energy consumption while satisfying the timing constraints[1,4-6,8-11,13]. The 

chance to lower its voltage occurs when there are slacks for the current executing real-time task. 

Generally there are two sources of slack, i.e., when the sum of worst case execution times of tasks 

is below the CPU‟s processing capacity and when a task completes early without consuming its 

worst case execution time. Main concern of DVS algorithms is how to identify those slacks and 

how to distribute them. 

 

DVS algorithms also depend on the scheduling policy, task model, and processor architecture. In 

this paper, we adopt Early-Deadline First(EDF) scheduling policy, periodic or sporadic task 

model and uniprocessor system. EDF assigns dynamic priority for ready tasks and it is known as 

optimal for uniprocessor system[7]. Periodic task model assumes tasks are released periodically 

and their relative deadlines are the same as their respective periods. Sporadic task model allows 
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tasks are released randomly, but there is a restriction on the minimum inter-arrival time of the 

same task. In those task models, we require a priori knowledge of tasks, i.e., period, worst-case 

execution time, or minimum inter-arrival time, etc. Some works don‟t assume these kinds of 

information[5], or adopt aperiodic task model[11,12]. But, many hard real-time applications are 

classified as periodic or sporadic, so considering periodic and/or sporadic task model is practical. 

 

In this paper, we introduce a notion of temporal workload which reflects how much busy the 

system is. It will be showed that analyzing temporal workload provides a useful method for real-

time scheduling, especially EDF. We analyze the behaviors of EDF scheduling using temporal 

workload, and present some interesting results by which we understand more deeply the features 

of EDF scheduling.  

 

Also we apply the analysis results into power-aware scheduling, and present an algorithm which 

adopts the results of CC-EDF[9] and temporal workload analysis. The simulation results show 

that the proposed algorithm with affordable algorithmic complexity reduces more energy 

consumption than previous work. 

 

The rest of the paper is organized as follows. In section 2, we present the system model and 

notations adopted in this paper and introduce some previous works which motivate the work done 

in this paper. In section 3, we define the temporal workload and analyze EDF scheduling using it. 

In section 4, we present a power-aware scheduling algorithm derived from the temporal workload 

analysis. In section 5, simulation results will be provided and section 6 will conclude and discuss 

the future directions of this paper.  

 

2. MOTIVATION 
 

In this section we present the system model and introduce the result of the related work. 

 

2.1. System Model 
 

We consider preemptive hard real-time system in which all tasks are periodic or sporadic and 

mutually independent. The target processor is DVS enabled uniprocessor and its supply voltage 

and frequency are varied continuously between [vmin, vmax] and [fmin, fmax], respectively. Let 

  *          + be a set of periodic or sporadic tasks. Each task is represented as    
(        ) where 

 

    is period for periodic task or minimum inter-arrival time for sporadic task; 

    is work-case computation time for task Ti at the maximum frequency; 

 Di is relative deadline of a task Ti. 

          If a instance or job of task    released at   , then its absolute deadline(  ) is      . We 

will consider tasks only with      , so task    could be represented as (     ). Also the 

following notations will be used. 

    or     : the worst-case utilization of task    at the maximum frequency, i.e.,    
    ⁄ . 

   or   : the worst-case total utilization of all tasks in the system, i.e.,   ∑    . 

     : task‟s actual computation time which should be less than   . For uncompleted 

tasks,       . 

     : actual utilization of task, i.e.,           . 

    : actual total utilization of system, i.e.,   ∑      

     : task‟s remaining computation time. 

      : jth instance or job of task   . 
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   : current frequency ratio, i.e., fcur/fmax 

    : task‟s execution time, i.e.,          . 

     : task‟s remaining execution time, i.e.,             

     release time of task    

 

2.2. Related Work 
 

EDF scheduling has been extensively investigated in the area of real-time and power-aware 

scheduling[1,3-5,7-12]. But, some dynamic natures of EDF were not fully exploited, for example 

dynamic density function introduced in [6]. Dynamic density of a job is defined as its remaining 

execution time divided by the time to deadline. They deal with the case of unit execution time and 

multi-processor system using dynamic density function. Temporal workload introduced in this 

paper is similar or identical to dynamic density function, so we can say that we extended their 

results into more general task model, but uniprocessor system.  

 

While devising a new power-aware scheduling algorithm based on the temporal workload 

analysis, we especially considered the results presented by Pillai and Shin[9]. They introduced a 

cycle-conserving method to real-time DVS. This method reduces the operating frequency on each 

task completion and increases on each task release. When a task completes its current invocation 

after using     computation time, they treat the task as if its worst-case execution time were    . 

So processor speed could be set as the actual total utilization    which is always less than or 

equals to worst-case total utilization   . 

 

Mei et al.[8] integrated the above cycle-conserving method and the result of Qadi et al.[10] for 

sporadic task set. But, these method doesn‟t fully utilize the slack generated. Let‟s see the 

following figure. If a task completed at   , then during the time interval ,     - the system 

operated at higher frequency than required. This observation provides a clue to more slow down 

the processor when a task completes. We will show later that the amount of slack which could be 

used for lowering processor frequency is related with temporal workload of the completed task. 

 

 
 

 
Figure 1.  CC-EDF[9] or CC-DVSST[8] Schedule 

 

3. TEMPORAL WORKLOAD ANALYSIS 
 

In this section, we introduce some definitions and analyze behaviors of EDF scheduling. This 

section will provide a concrete theoretical basis for the power-aware scheduling algorithm 

presented in the next section. 

 

3.1. Temporal Workload 
 

Definition 1: Temporal workload of a task    at time  ,    ( ) or     if not confusing, is defined 

as     (    ) or 0 if it is completed before or at  . Temporal workload of a system at time t, 

  ( ) or   , is the sum of temporal workloads of all tasks in the system at time t. 

 

Temporal workload of a task is similar or identical to dynamic density of a job[6], but we 

introduce new notion of temporal workload to distinguish remaining execution time and 

        

        (      ) 
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remaining computation time, so more applicable to power-aware scheduling. Following notations 

are also used throughout this paper. 

    or    ( ) : temporal workload of  task set   

   
  or    

 ( ) : temporal workload of a task    in task set   

  (   (     ) (     )) :   (        ) when executes    during ,        ), and executes    

during ,              ). 

 

For the time being, R       because we schedule tasks with full speed of CPU, i.e.,    . 

Lemma 1:    is monotonically decreasing during a time interval ,     ) if no task was released 

during that interval,   ( )   , and we schedule with EDF. 

 

Proof: Let task    was executed during ,     ), then by definition of temporal workload, 

 

  ( )  
   

    
   

   

    
   

   

    
 ,   (   )  

   

      
   

     

      
   

   

      
 . 

  ( )    (   )     .
 

    
 

 

      
/    0

   

    
 

     

      
1       .

 

    
 

 

      
/  

 
     

(    )(      )
   

       (    )

(    )(      )
   

     

(    )(      )
  

= 
 

      
 ∑

    

(    )(      )  
 

      
(  ∑ (

      

        
   

    
) )                                                   (1) 

 

By assumption,   ( )  ∑
   

    
    , and for we schedule with EDF, 

      

      
  is always less than 

or equals to 1, so Equation (1) is always larger than or equals to 0 which implies    is 

monotonically decreasing.          

                                                                                                    

Now we consider which task we schedule at time t effects on temporal workload of a system. 

Lemma 2:   (  (    ))    (  (    ))         . 

 

Proof:   (  (    )) and   (  (    )) are the temporal workloads of a system at time     

when we schedule    and    respectively at time t. So, 

 

  (  (    ))  
   

      
   

     

      
   

   

      
   

   

      
  

  .  (    )/  
   

      
   

   

      
   

     

      
   

   

      
  

  (  (    ))    .  (    )/  
     

      
 

   

      
 

   

      
 

     

      
  (

 

      
 

 

      
)   (2) 

 

By assumption, Eq. 2 is less than 0 which implies Lemma 2 is true.     

                                        

Lemma 2 provides another clue that EDF scheduling policy is optimal in preemptive uniprocessor 

scheduling. 

 

Corollary 1:   (  (    ))    (  (    ))         . 

 

Corollary 1 states that temporal workload of a system doesn‟t depend on which task execute at 

time t when tasks‟ deadlines are the same. 

 

Lemma 3:   (   (     ) (     ))    (   (     ) (     ))               . 
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Proof:   (   (     ) (     )) is the temporal workload of a system when we schedule    at 

,        ) and    at ,              ) and   (   (     ) (     )) is the temporal workload 

of a system when we schedule    at ,        )  and    at ,              ) , but at time 

  (        ),    has the same     because     is the same for the two cases, and    also. So, 

Lemma 3 holds.             

                                                                                                   

Lemma 3 implies that the order of execution has no effect on the last temporal workload of a 

system if there is no deadline miss. Which task executed and how much it executed during a time 

interval concern only the calculation of the last temporal workload of a system. 

 

At Lemma 1, we proved the monotonic decreasing property of temporal workload under EDF 

scheduling. More investigation shows that when a task‟s deadline expires, then the temporal 

workload of a system decreases as least as the temporal workload of the task if there is no task 

release during the time interval. Following Lemma proves the above discussion. 

 

Lemma 4:   (    )    ( )     ( ) if there is no task release during (    ),   ( )    

and we schedule using EDF. 

 

Proof: Let‟s consider a ideal CPU that executes every tasks concurrently proportional to their 

initial temporal workload. This could be accomplished by minimizing δ as small as possible in 

Fig. 2.  

 
 

Figure 2. Ideal CPU execution 

 

 
 

 
Figure 3. Real CPU execution 

 

The execution of ideal CPU could be relocated as the right side of Fig. 2. Because only the 

amount of execution time contributes to last temporal workload by Lemma 3, temporal workload 

of both side of Fig. 2 is the same. Also, the execution of real CPU could be relocated as the right 

side of Fig. 3. At the right side of Fig. 3, the areas of „a‟ and „b‟ equal for total computation time 

could not be changed. By Lemma 2, temporal workload of the real CPU is less than or equals to 

that of the ideal CPU. The temporal workloads of tasks in ideal CPU don‟t change during the time 

interval ,      ) and the temporal workload of the task whose deadline is      sets to zero at 

    . So, 

 

  (    ) of the real CPU    (    ) of the ideal CPU 

    ( )     ( )                                                                                                                (3)  

 

  
   

         

    
    

    

            

a 

b 
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In the process of proving Lemma 4, we presented a useful high limit of temporal workload under 

EDF scheduling. It is that temporal workload of ideal CPU system provides an intuitive high limit 

as Eq. (3) states. 

 

3.2. Temporal Workload Isomorphic 
 

Now we introduce new notion to compare temporal workloads of different systems. 

Definition 2: Task systems,   and  , are temporal-workload-isomorphic if     such that 

   ( )      ( ) for all time t. 

 

If temporal workload value of system   is always the same or constant multiples of that of system 

 , then we can easily assume that schedulability conditions of two systems are very close or the 

same and schedule behaviors are very similar to each other. 

 

Lemma 5: Following two periodic task systems,   and   are temporal-workload-isomorphic under 

worst-case execution scenarios. 

 

  *      (     ), where *  + could be multiset. EDF scheduling} 

  *  
    

  (  
  ∑    ) . *  

 + is distinct set of *  +, i.e.,   
    

  if      .     is for all   of A 

such that   
    . EDF scheduling} . 

 

Proof: Let’s consider   
  in   and its cousin tasks *  + in  , i.e.,   

     for    . Then release times 

and deadlines of all above tasks are the same. Under EDF scheduling, deadline of task is the only 

criterion of scheduling, then we can make the following condition hold that if we schedule a job 

of   
 , then a job of some corresponding   ‟s is scheduled. If not, then there could be one or more 

jobs whose deadline is coincided with    .  But, despite the existence of another job of the same 

deadline and a different schedule could be done at that moment,         by Lemma 3 and 

Corollary 1. Also, the last time at which all jobs of the same deadline are completed is the same 

for   and  . So, Lemma 5 holds.       

                                                         

Now, we consider the schedulability condition of task system using temporal workload. 

Following Lemma is directly implied from the definition of temporal workload because temporal 

workload identifies the amount of work to be done until deadline of each task. 

 

Lemma 6: If two finite task system   and   are temporal-workload-isomorphic, then 

schedulability conditions of two systems are identical. 

 

Proof: We prove this Lemma by contradiction. If task system   has violated its timing constraints 

and   not, then there exists a task    of   such that 

 

       

   

    
           

      

    
   . 

 

But temporal workload of system   could not reach infinite because it has finite tasks and each 

task of system   has finite value of temporal workload. This contradicts with assumption of this 

Lemma.                                                                                                                                          

 

3.3. Upper Bound of Temporal Workload 
 

Definition 3: Task system   is temporal-workload-upper-bounded if    ( )    for all time t. 

      will denote the upper bound  . 
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Because temporal workload of a system denotes the ratio of overhead to CPU capacity, we may 

schedule all the tasks of the system without violating its timing constraints if      is below or 

the same as 1. Following theorem shows above discussion is true. 

Theorem 1: If    ( )    for all time t, i.e.,        , then task set    is schedulable using 

EDF. 

 

Proof: We will prove it by induction on time t. Let‟s assume that this theorem holds until time t, 

i.e., we successfully scheduled the tasks until time t. At time t, we can still schedule the highest 

priority task, i.e., the shortest deadline task, without violating its deadline if there is no task 

release during (      ) for      ( )     
 ( ). If there is a task release at time     where 

        , then we can insist that this theorem still hold until time     because there is no 

deadline during (     ). From the assumption, at    , the temporal workload of task set    

should be less or equals to 1. So, we proved that this theorem still holds until      or     

which are larger than t if it holds at t.                           

                                                    

Theorem 1 states that if we preserve the upper bound of temporal workload below or equal to 1, 

then it is always schedulable.  Also theorem 1 provides a sufficient condition for the 

schedulability of a system. Now we investigate the temporal workload upper bounds of periodic 

task systems. 

 

Theorem 2: For a periodic or sporadic task system   *   (     ). EDF+,        s ∑       . 

Proof: We already said that ideal CPU with EDF scheduling policy provides an upper bound of 

temporal workload. For a periodic or sporadic task system of ideal CPU, clearly its temporal 

workload is always less than or equals to its total utilization. So theorem 2 holds.    

                    

3.3. Temporal Workload at Lower Processing Speed 
 

Now, we consider the case of      , i.e., CPU‟s processing speed is not always 1. 

Lemma 7: Following two periodic task systems,   and   are temporal-workload-isomorphic under 

worst-case execution scenarios. 

 

  *      (     ) ∑         , CPU‟s processing speed is  (  ), EDF}, 

  *      (     
 )   

      , CPU‟s processing speed is 1, EDF}. 

Proof: Clearly at time t = 0,    ( )     ( )   by definition 1. And when we execute a task 

of system  ,    at time t, following holds. 

 

  (   )    ( )    . 

  
 (   )    

 ( )    
  ( )

 
   

  ( )   

 
 

  (   )

 
                                                               (4) 

 

Eq. (4) states that if we execute tasks of the same deadline at the same time for system   and  , 

then the ratio of temporal workloads of two systems are not changed. Because   and   use EDF 

scheduling policy and execution times(not computation times) and deadlines of    and its 

corresponding   
  are identical under worst-case execution scenarios, Lemma 7 holds. There could 

be the cases when we execute    of    and   
 of  , i.e., deadlines of two tasks are coincidently 

exact, but by Lemma 3 and Corollary 1, Lemma 7 still holds as we insisted at Lemma 5.                   

                                                                                                                     

Corollary 2: For a periodic task system   *      (     ) ∑         +, then we can schedule 

with constant CPU speed  .  
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Proof: By Lemma 7, we can construct a temporal-workload-isomorphic system of   whose 

     is 1 and its CPU processing speed is 1. Then by theorem 1, the newly constructed task set 

could be successfully scheduled with EDF. By Lemma 6, this shows that original task set could 

be successfully scheduled.          

Using Lemma 7 and Corollary 2, we can safely lower processing speed for periodic real-time task 

system when its total utilization is below 1 as many previous works for power-aware scheduling 

said. 

 

Following theorem is the repetition of Theorem 4 of DVSST paper[10]. DVSST algorithm scales 

up CPU whenever new task releases and scales down whenever its deadline expires exactly as 

much as utilization of that task. 

 

Theorem 3: Sporadic task system   with ∑        and DVSST algorithm, it is schedulable using 

EDF if and only if ∑         . 

 

Proof: “Only If” part: As the assertion stated in [10], if    , then EDF will not find a feasible 

schedule, therefore DVSST combined with EDF will not find a feasible schedule. 

 

“If” part: As we stated at Lemma 4, ideal CPU can provide an upper bound of temporal 

workload. So, whenever a new task released, temporal workload of ideal CPU system increased 

as much as utilization of that task during ,     - and whenever a deadline of a task expires it 

decreased also as much as that amount. Now suppose that there is neither new task release nor 

deadline expiration during ,     - and   is the temporal workload of ideal CPU during the time 

interval, then we can construct a new task system whose total utilization is 1 and each task   
  has 

the same deadline of original corresponding task    and its computation time   
  is     .  

 

Then by Theorem 1, we can schedule new task system using EDF and by Lemma 6, we can say 

that we can schedule original task system with EDF for two task systems are temporal workload 

isomorphic during the interval. And for two task systems have identical deadline distributions, we 

always make sure that (     
 ) pair of tasks execute at the same time in each system without 

violating EDF policy. So by Lemma 7, above process could be repeated at every time interval 

during which neither new task releases nor deadline expires. This proves „if‟ part.       

               

Following theorem 4 states that temporal workload analysis provides another useful 

schedulability test. 

 

Theorem 4: Let     = {periodic or sporadic task systems whose total utilizations are less than or 

equal to 1},       = {task systems whose      are less than or equal to 1}, and      = {task 

systems whose loading factors[5](    ((∑              )  (     ))) are less than or equal to 

1}, then  

 

              . 

 

Proof: By Theorem 2,3 and Corollary 2, clearly          . But       doesn’t assume 

neither minimum interval nor periodicity of tasks, so          .  

 

     is the maximum set of tasks which could be scheduled by EDF because loading factor test 

provides necessary and sufficient condition[5]. So,           . But, for the following task 

set   *   (        )                     + ,       , but        . So, 

Theorem 4 holds.        
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The temporal workload of the task set   in Theorem 4 is infinite when N is infinite, so there is no 

upper limited value of      which provides necessary condition for schedulability test. 

 

4. POWER-AWARE SCHEDULING ALGORITHM 
4.1. An On-Line Algorithm 
 

In section 3, we analyzed scheduling behaviours of EDF using temporal workload. Now we apply 

the results into power-aware scheduling. As we stated at section 2, previous algorithms such as 

CC-EDF, DVSST and CC-DVSST don‟t fully utilize the slacks generated by early completed 

tasks. But, based on the temporal workload analysis, we can find more slacks to slow down the 

CPU speed. Before presenting more discussion, let‟s introduce new definition. 

 

Definition 4: Temporal idleness    ( ) of a task    at time t is defined as following. 

 

 

0 until its completion and after its deadline. 

    (     ) if it was completed at time    and     . 

   ( )    if     . 

 

 

The real value of   depends on the status of system and how to calculate will be presented later.  

Likewise the definition of temporal workload of a system, temporal idleness of a system,   ( ) or 

  , is defined as the sum of    ( ). Note that    (  ) is the same as    (  ) of uncompleted case. 

Now, consider the amount of computation time until its completion. At CC-EDF and CC-DVSST, 

they lower the processing speed of task    when it is completed. This means that its pace of 

computation is faster than actual execution needed as stated at section 2. Following figure shows 

the situation. 

 
 

 
Figure 4. Computation time comparison 

 

At time   , task    was completed, so during ,     -, its computation time(=       ) is 

larger than needed (    ) as amount of (   ). If we assume that task    executed with its 

temporal workload during ,    - , then    (  )  (    )  equals to    (      )  and 

   (  )  (    )  equals to    (      ) . But,           (      ) , (    
   )        (      ). So,                , i.e.,        . It is that the 

amount of slack could be used until its deadline is (   )    (   )         , i.e., 

    (    ). Following lemma shows it formally. 

 

Lemma 8: At CC-EDF or CC-DVSST scheduling, the amount of computation time exceeding its 

actual pace until its completion time(   ) is the same as ,   (  )  (       )-  (     ). 

  

Proof: ,   (  )  (       )-  (     )  

 

     0
   

     
 

  

  
 

   

  
1  (     )      

  

  
 (        )  

   

  
 (        )  

b 

a 

c 

d 

e 
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 g 
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     ,                                      -                                                  (5) 

 

But, by definition,           , so, 

 

(5)  ,  (     )     (     )-    ,            -  (     )                                     

       (       )  (     )                                                                        
                                

Using Lemma 8, if a task    completed at time t, then we can slow down processing speed by 

amount of     when executing lower priority tasks than    until its deadline, because CC-EDF or 

CC-DVSST slows down processing speed by the amount of (       ) . The proposed 

algorithm tries to use slacks of already completed higher priority tasks which are necessarily 

generated by assuming worst-case execution scenarios and follows the result of CC-EDF when 

running task‟s priority is higher than those of already completed tasks. Also, if we cannot utilize 

those slacks by some reasons, i.e., when executing higher priority tasks or when slacks are too 

much to fully utilize, then we evenly distribute those unused slacks until corresponding deadlines. 

 

One more consideration occurs when there is idle period. Let‟s consider periodic task set   
*   (     )    (   )    (   )    (   )+ . If      and      complete at t=1 and t=2, 

respectively, and      completes early at t=2.5, then    (   )=1.5/4.5=3/7. If we lower the 

processing speed as much as    (   ), then actual processing capacity during t=[3,6) is (1-

3/7)*3=12/7 which is less than sum of WCET of      and     . Deadline miss occurs because 

there is idle period during t=[2.5,3). During the idle period, the total processing capacity which 

should be processed under the actual execution scenarios is larger than sum of slack used. So, we 

should reduce future slacks to compensate larger processing capacity. Following figure shows it. 

 

 
 

 
Figure 5. Slack reduction example 

 

The amount of slack which should be reduced is      , and is the same as ,   (   

(     ))-. At the above figure, the area „a‟ is the same as „b‟+‟c‟. And if    exceeds   , we 

could save some slacks because only     (length of idle period) should be processed by CPU. 

0        1          2   2.5  3              4.5            6  

0        1         2   2.5  3                4.75             6.5  

idle period deadline miss 

a 
b c 
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Figure 6. Temporal idleness management 

global variables 

     last_idle_time 

     last_cpu_speed 

     last_calculation_time 

     ex_ratio, ex_flag, ex_task 

       // current total utilization, i.e., ∑        ∑         

        // completed task set sorted by deadline 

 

compute_cpu_speed(   )  //    is the highest priority task or NULL if no ready task 

     cpu_speed =   

     for all tasks ti at    

          if         or    is NULL 

               if ( cpu_speed   (    (       ))) 

                    cpu_speed   (    (       )) 

               else 

                    ex_ratio =(    (       ))   cpu_speed 

                    ex_flag = 1, ex_task =    

                    cpu_speed = 0 

                    break 

          else if ( ex_flag    0 && (    (       ))   ) 

               ex_ratio = (    (       ))  

               ex_flag = 1, ex_task =     
               break 

     last_calculation_time =      

     return cpu_speed 

 

decrease_temporal_idleness() 

     idle_time = last_idle_time - tcur 

     idle_work = idle_time * last_cpu_speed 

     for all tasks ti at TC 

         if ( idle_work == 0) 

              break 

             (    (       ))  (       ) 

         if (      idle_work) 

                    idle_work  

                      (       )  (       ) 

              break 

         else 

              idle_work = idle_work       
                  (       ) 

 

increase_temporal_idleness() 

     for all tasks    whose priority is less than or equals to that of ex_task at    

         if ( ex_flag    1) 

              busy_ratio = ex_ratio 

              ex_flag = 0 

         else 

              busy_ratio = (    (       ))  

         busy_time = last_calculation_time        

         busy_work = busy_time   busy_ratio 

         if (        ) 

                     (busy_work)/(       ) 
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Figure 7. Power-aware scheduling algorithm 

 

Now, following theorem proves the correctness of our algorithm. 

Theorem 5: The algorithm presented at Fig. 3, schedules every periodic or sporadic task set if and 

only if ∑         .  

 

Proof: “Only If” part: If    , then EDF will not find a feasible schedule, therefore our 

algorithm will not find a feasible schedule because our algorithm is the same as EDF or DVSST 

when tasks execute always at worst-case execution scenarios, i.e.,    ( )    and         for 

  t and i. 

 

„If” part: We will show that temporal workload of a system adopting our algorithm is always less 

than or equals to that of another ideal system which schedules tasks without violating their timing 

constraints. Then by lemma 6 and theorem 1, we can insist that our scheduling algorithm also 

satisfy real-time constraints. 

when task    arrived 

     if ( exceed_flag) 

          increase_temporal_idleness() 

     else if ( cpu was idle) 

          decrease_temporal_idleness() 

               

     last_cpu_speed = compute_cpu_speed(    ) 

     set cpu speed as last_cpu_speed 

 

when task    completed 

         =     

     if ( exceed_flag) 

          increase_temporal_idleness() 

     insert    into    

     last_cpu_speed = compute_cpu_speed(    ) 

     if there is no task to execute 

          last_idle_time =      

          set cpu as idle 

     else 

          set cpu speed as last_cpu_speed 

 

on deadline of task    

     if ( exceed_flag) 

          increase_temporal_idleness() 

     else if ( cpu was idle) 

          decrease_temporal_idleness() 

               

     delete    from    

     last_cpu_speed = compute_cpu_speed(    ) 

     if there is no task to execute 

          last_idle_time =      

          set cpu as idle 

     else 

          set cpu speed as last_cpu_speed 

 

cf.      : current time,   

         : current ready task of highest priority or NULL if no ready task. 
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Let‟s consider ideal CPU of ideal system which can anticipate task‟s actual computation time 

when released and can execute active tasks with concurrently with the speed of CU. This ideal 

system of figure 8 resembles the system of figure 2.  
 

 
Figure 8. CC-EDF schedule : ideal CPU and ideal execution 

 

Our real system starts to execute with TU speed and slows down with (     ) when some 

tasks are completed. And we already said that ,    (       )-  (     )    is exactly the 

same as (       )  (     )   . Therefore we can apply following operation to scheduling 

result of our real system which replaces some areas of   by the same areas of  . Following 

figures shows it. 

 

 
 

Figure 9. Slack exchange process 

 

During the time interval ,     - which has no idle period, we can apply the above operation for all 

areas of  . Then temporal workload of the last applied result is less than or equals to that of ideal 

system because the total computing capacity of the former is larger than or equals to that of the 

latter and the computing capacity of the former is always exhausted by tasks which have shorter 

or the same deadlines of tasks of the latter. 

 

During idle period, there exist some areas of ideal system which cannot find counterparts of real 

system. Those areas could be filled up or substituted with the areas of future slacks of already 

completed tasks as was illustrated at figure 5 and above exchange operation could be also applied 

for them. The temporal workload of substitution and exchange result is also less than or equals to 

that of ideal system for the same reason. 

 

Now temporal workload of our real system is always less than or equals to that of substitution and 

exchange result because the total computing capacity of the former is always larger than or the 

same as that of the latter and the same tasks are executed. This proves this theorem.    

         

4.2. An Illustrative Example 
 

Let‟s consider an illustrative example, a periodic task system   *(     ) (   ) (   ) (     )+. 
Total utilization of task system   is 1 and       is also 1. Suppose that actual computation 

times of tasks   ,   and    are 1/2, 1/2, and 1/3 respectively. Then following figure shows the 

result of our scheduling algorithm. 

 

At time t=1/2,      completes its execution and we can set processing speed as   (      
(           ))          =1 - 0.5/1.5=2/3.  

 

    
    

    

    

    
    

    

         

    
        (        ) 
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At time t=1/2+3/4=5/4,      completes its execution, the processing speed should be          
     =1-1/3-0.5/(7/4)=8/21. During [5/4,2], computation time of      is 8/21*3/4=2/7. Deadline of 

     is 2 and      is released at that time, so         =1-2/7=5/7.  

 
 

Figure 10. Scheduling example 

 

At t=2+7/10,      completes its execution and               =1-0.5/(13/10)-2/7=30/91. 

During [2+7/10,3],     will executes with speed of 30/91 and its computation time is 

30/91*3/10=9/91, so total computation time of      until released is 2/7+9/91=245/637.  

 

At t=3,      releases, and its deadline is less than     . So,      will execute with speed of 

  (      (           ))          =1-5/13=8/13.  

 

At time t=3+13/16,      will be completed and      will execute with speed of               

≒0.387, and it will complete at t≒3.823. Then, during [3.823,4], there is no ready task, so slack 

reduction process should be done.  

 

At t=4,      will be released and it will be executed with speed of   ≒0.722 until t≒4.693. At t≒

4.693, there is no ready task, so slack reduction process should be done at t=6 when      and      

are released. At t=6,      will be executed with speed of  ≒0.889, and so on. 

 

5. EXPERIMENTAL RESULTS 
 

We evaluated our proposed algorithm using RTSIM[14] which is a real-time simulator. RTSIM 

can simulate the behaviors of dynamic voltage scaling algorithms as well as traditional real-time 

scheduling algorithms. In this simulation, it is assumed that a constant amount of energy is 

required for each cycle of operation at a given voltage. This quantum is scaled by the square of 

the operating voltage, consistent with energy dissipation in CMOS circuits(     )[2,5]. Only 

the energy consumed by CPU was computed and any other source of energy consumption was 

ignored. Also we do not consider preemption overheads, task switch overheads, and operating 

frequency change overheads. It is also assumed that the CPU consumes no energy during idle 

period and its operating frequency range is continuous at [fmin=0, fmax=1]. 

 

We compared our proposed algorithm with CC-EDF[9], DVSST[10], and CC-DVSST[8]. CC-

EDF assumes periodic task model, so we compared it at periodic task system. DVSST and CC-

DVSST assume sporadic task model, so we compared them at sporadic task system. 

 

To evaluate the effect of number of tasks in the system, we generated 10 or 20 tasks for each 

comparison. Their periods or minimum inter arrival times are chosen randomly in the interval [1-

1000]ms. We divided task set into three groups to reflect more real environments. One group of 

tasks have short period in the interval [1-10]ms, another group of tasks have medium period in the 

interval  [10-100]ms, and the last group of tasks have long period in the interval [100-1000]ms.  

0        1        2       3        4       5        6       7    
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Figure 11. Simulation results : for periodic tasks(left) and for sporadic tasks(right) 
 

The simulation was performed also by varying the load ratio of tasks, i.e., the ratio of the actual 

computation time to the worst case computation time. For all simulations, the worst-case total 

utilization of system is always 1, i.e.,     . Above figures show the simulation results. 

 

Figure 11(left) shows the result for periodic task system. In this case, our proposed 

algorithm(PWA-TW) always outperforms CC-EDF, and the ratio of energy saving is up to 10%.  

The effect of number of tasks in the system could be neglected on the simulation result as the 

figures show. Also the number of CPU frequency changes was almost the same for the two 

algorithms, so more energy saving could be acquired at real environments. 

 

Figure 11(right) shows the result for sporadic task system. In this case, our proposed algorithm 

also outperforms both DVSST and CC-DVSST. For DVSST, the ratio of energy saving is up to 

70% and for CC-DVSST, up to 10 %. The effect of number of tasks in the system could be also 

neglected, but the number of CPU frequency change of our algorithm was larger than that of 

DVSST and almost the same as that of CC-DVSST. So, the ratio of energy saving to DVSST 

could be shrinked. But our algorithm has huge performance gain to DVSST, so in spite of 

frequency change overheads, it is expected that our algorithm still outperforms to DVSST at real 

environments. 
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6. CONCLUSION 
 

In this paper, we analyzed the behaviors of EDF scheduling and presented a power-aware 

scheduling algorithm for periodic and sporadic tasks. Temporal workload analysis provides 

another sufficient condition for schedulability of preemptive real-time task scheduling and 

another formal method to prove the correctness of power-aware scheduling algorithms. The 

proposed algorithm also adopts the results of cycle conserving method(CC-EDF) and sporadic 

task scheduling(DVSST). The simulation results show that the proposed algorithm outperforms 

existing algorithms up to 10-70 % with respect to CPU energy saving.   

 

In the future we would like to improve the proposed algorithm. This could be done if we assign 

all slacks generated by early completed higher priority tasks into the task of highest priority 

among uncompleted ready tasks instead of evenly distributing them until the ends of deadlines. 

This method may lower processor frequency much more than the proposed algorithm. Also we 

would like to apply the temporal workload analysis into another area of real-time task scheduling, 

for example, aperiodic task acceptance problem. If we could maintain the temporal workload of a 

system below or equal to 1, then real-time constraints of all tasks in the system are met. So this 

may provide an effective method for aperiodic task scheduling. 
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