
International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

DOI : 10.5121/ijesa.2013.3301 1

TEMPORAL WORKLOAD ANALYSIS AND ITS

APPLICATION TO POWER-AWARE SCHEDULING

Ye-In Seol
1
, Jeong-Uk Kim

1
 and Young-Kuk Kim

2,

1
Green Energy Institute, Sangmyung University, Seoul, South Korea

2
Dept. of Computer Sci. & Eng., Chungnam Nat‟l University, Daejeon, South Korea

ABSTRACT

Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic

voltage scaling(DVS). The basic idea of power-aware scheduling is to find slacks available to tasks and

reduce CPU‟s frequency or lower its voltage using the found slacks. In this paper, we introduce temporal

workload of a system which specifies how much busy its CPU is to complete the tasks at current time.

Analyzing temporal workload provides a sufficient condition of schedulability of preemptive early-deadline

first scheduling and an effective method to identify and distribute slacks generated by early completed

tasks. The simulation results show that proposed algorithm reduces the energy consumption by 10-70%

over the existing algorithm and its algorithm complexity is O(n). So, practical on-line scheduler could be

devised using the proposed algorithm.

KEYWORDS

Power-aware Scheduling, Real-time Scheduling, Embedded Systems

1. INTRODUCTION

Energy consumption issues are becoming more important for mobile or battery-operated

embedded systems. Since the energy consumption of CMOS circuits, used in various

microprocessors, has a quadratic dependency on the operating voltage()[2], it is a very

useful method for reducing energy consumption to lower the operating voltage of circuits. But,

lowering the operating voltage also decreases its clock speed or frequency, so the execution times

of tasks are prolonged. This makes problem more complex for hard real-time embedded systems

where timing constraints of tasks should be met.

There has been significant research effort on Dynamic Voltage Scaling(DVS) for real-time

systems to reduce energy consumption while satisfying the timing constraints[1,4-6,8-11,13]. The

chance to lower its voltage occurs when there are slacks for the current executing real-time task.

Generally there are two sources of slack, i.e., when the sum of worst case execution times of tasks

is below the CPU‟s processing capacity and when a task completes early without consuming its

worst case execution time. Main concern of DVS algorithms is how to identify those slacks and

how to distribute them.

DVS algorithms also depend on the scheduling policy, task model, and processor architecture. In

this paper, we adopt Early-Deadline First(EDF) scheduling policy, periodic or sporadic task

model and uniprocessor system. EDF assigns dynamic priority for ready tasks and it is known as

optimal for uniprocessor system[7]. Periodic task model assumes tasks are released periodically

and their relative deadlines are the same as their respective periods. Sporadic task model allows

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

2

tasks are released randomly, but there is a restriction on the minimum inter-arrival time of the

same task. In those task models, we require a priori knowledge of tasks, i.e., period, worst-case

execution time, or minimum inter-arrival time, etc. Some works don‟t assume these kinds of

information[5], or adopt aperiodic task model[11,12]. But, many hard real-time applications are

classified as periodic or sporadic, so considering periodic and/or sporadic task model is practical.

In this paper, we introduce a notion of temporal workload which reflects how much busy the

system is. It will be showed that analyzing temporal workload provides a useful method for real-

time scheduling, especially EDF. We analyze the behaviors of EDF scheduling using temporal

workload, and present some interesting results by which we understand more deeply the features

of EDF scheduling.

Also we apply the analysis results into power-aware scheduling, and present an algorithm which

adopts the results of CC-EDF[9] and temporal workload analysis. The simulation results show

that the proposed algorithm with affordable algorithmic complexity reduces more energy

consumption than previous work.

The rest of the paper is organized as follows. In section 2, we present the system model and

notations adopted in this paper and introduce some previous works which motivate the work done

in this paper. In section 3, we define the temporal workload and analyze EDF scheduling using it.

In section 4, we present a power-aware scheduling algorithm derived from the temporal workload

analysis. In section 5, simulation results will be provided and section 6 will conclude and discuss

the future directions of this paper.

2. MOTIVATION

In this section we present the system model and introduce the result of the related work.

2.1. System Model

We consider preemptive hard real-time system in which all tasks are periodic or sporadic and

mutually independent. The target processor is DVS enabled uniprocessor and its supply voltage

and frequency are varied continuously between [vmin, vmax] and [fmin, fmax], respectively. Let

 * + be a set of periodic or sporadic tasks. Each task is represented as
() where

 is period for periodic task or minimum inter-arrival time for sporadic task;

 is work-case computation time for task Ti at the maximum frequency;

 Di is relative deadline of a task Ti.

 If a instance or job of task released at , then its absolute deadline() is . We

will consider tasks only with , so task could be represented as (). Also the

following notations will be used.

 or : the worst-case utilization of task at the maximum frequency, i.e.,
 ⁄ .

 or : the worst-case total utilization of all tasks in the system, i.e., ∑ .

 : task‟s actual computation time which should be less than . For uncompleted

tasks, .

 : actual utilization of task, i.e., .

 : actual total utilization of system, i.e., ∑

 : task‟s remaining computation time.

 : jth instance or job of task .

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

3

 : current frequency ratio, i.e., fcur/fmax

 : task‟s execution time, i.e., .

 : task‟s remaining execution time, i.e.,

 release time of task

2.2. Related Work

EDF scheduling has been extensively investigated in the area of real-time and power-aware

scheduling[1,3-5,7-12]. But, some dynamic natures of EDF were not fully exploited, for example

dynamic density function introduced in [6]. Dynamic density of a job is defined as its remaining

execution time divided by the time to deadline. They deal with the case of unit execution time and

multi-processor system using dynamic density function. Temporal workload introduced in this

paper is similar or identical to dynamic density function, so we can say that we extended their

results into more general task model, but uniprocessor system.

While devising a new power-aware scheduling algorithm based on the temporal workload

analysis, we especially considered the results presented by Pillai and Shin[9]. They introduced a

cycle-conserving method to real-time DVS. This method reduces the operating frequency on each

task completion and increases on each task release. When a task completes its current invocation

after using computation time, they treat the task as if its worst-case execution time were .

So processor speed could be set as the actual total utilization which is always less than or

equals to worst-case total utilization .

Mei et al.[8] integrated the above cycle-conserving method and the result of Qadi et al.[10] for

sporadic task set. But, these method doesn‟t fully utilize the slack generated. Let‟s see the

following figure. If a task completed at , then during the time interval , - the system

operated at higher frequency than required. This observation provides a clue to more slow down

the processor when a task completes. We will show later that the amount of slack which could be

used for lowering processor frequency is related with temporal workload of the completed task.

Figure 1. CC-EDF[9] or CC-DVSST[8] Schedule

3. TEMPORAL WORKLOAD ANALYSIS

In this section, we introduce some definitions and analyze behaviors of EDF scheduling. This

section will provide a concrete theoretical basis for the power-aware scheduling algorithm

presented in the next section.

3.1. Temporal Workload

Definition 1: Temporal workload of a task at time , () or if not confusing, is defined

as () or 0 if it is completed before or at . Temporal workload of a system at time t,

 () or , is the sum of temporal workloads of all tasks in the system at time t.

Temporal workload of a task is similar or identical to dynamic density of a job[6], but we

introduce new notion of temporal workload to distinguish remaining execution time and

 ()

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

4

remaining computation time, so more applicable to power-aware scheduling. Following notations

are also used throughout this paper.

 or () : temporal workload of task set

 or

 () : temporal workload of a task in task set

 (() ()) : () when executes during ,), and executes

during ,).

For the time being, R because we schedule tasks with full speed of CPU, i.e., .

Lemma 1: is monotonically decreasing during a time interval ,) if no task was released

during that interval, () , and we schedule with EDF.

Proof: Let task was executed during ,), then by definition of temporal workload,

 ()

 , ()

 .

 () () .

/ 0

1 .

/

()()

 ()

()()

()()

=

 ∑

()()

(∑ (

)) (1)

By assumption, () ∑

 , and for we schedule with EDF,

 is always less than

or equals to 1, so Equation (1) is always larger than or equals to 0 which implies is

monotonically decreasing.

Now we consider which task we schedule at time t effects on temporal workload of a system.

Lemma 2: (()) (()) .

Proof: (()) and (()) are the temporal workloads of a system at time

when we schedule and respectively at time t. So,

 (())

 . ()/

 (()) . ()/

 (

) (2)

By assumption, Eq. 2 is less than 0 which implies Lemma 2 is true.

Lemma 2 provides another clue that EDF scheduling policy is optimal in preemptive uniprocessor

scheduling.

Corollary 1: (()) (()) .

Corollary 1 states that temporal workload of a system doesn‟t depend on which task execute at

time t when tasks‟ deadlines are the same.

Lemma 3: (() ()) (() ()) .

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

5

Proof: (() ()) is the temporal workload of a system when we schedule at

,) and at ,) and (() ()) is the temporal workload

of a system when we schedule at ,) and at ,) , but at time

 (), has the same because is the same for the two cases, and also. So,

Lemma 3 holds.

Lemma 3 implies that the order of execution has no effect on the last temporal workload of a

system if there is no deadline miss. Which task executed and how much it executed during a time

interval concern only the calculation of the last temporal workload of a system.

At Lemma 1, we proved the monotonic decreasing property of temporal workload under EDF

scheduling. More investigation shows that when a task‟s deadline expires, then the temporal

workload of a system decreases as least as the temporal workload of the task if there is no task

release during the time interval. Following Lemma proves the above discussion.

Lemma 4: () () () if there is no task release during (), ()

and we schedule using EDF.

Proof: Let‟s consider a ideal CPU that executes every tasks concurrently proportional to their

initial temporal workload. This could be accomplished by minimizing δ as small as possible in

Fig. 2.

Figure 2. Ideal CPU execution

Figure 3. Real CPU execution

The execution of ideal CPU could be relocated as the right side of Fig. 2. Because only the

amount of execution time contributes to last temporal workload by Lemma 3, temporal workload

of both side of Fig. 2 is the same. Also, the execution of real CPU could be relocated as the right

side of Fig. 3. At the right side of Fig. 3, the areas of „a‟ and „b‟ equal for total computation time

could not be changed. By Lemma 2, temporal workload of the real CPU is less than or equals to

that of the ideal CPU. The temporal workloads of tasks in ideal CPU don‟t change during the time

interval ,) and the temporal workload of the task whose deadline is sets to zero at

 . So,

 () of the real CPU () of the ideal CPU

 () () (3)

a

b

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

6

In the process of proving Lemma 4, we presented a useful high limit of temporal workload under

EDF scheduling. It is that temporal workload of ideal CPU system provides an intuitive high limit

as Eq. (3) states.

3.2. Temporal Workload Isomorphic

Now we introduce new notion to compare temporal workloads of different systems.

Definition 2: Task systems, and , are temporal-workload-isomorphic if such that

 () () for all time t.

If temporal workload value of system is always the same or constant multiples of that of system

 , then we can easily assume that schedulability conditions of two systems are very close or the

same and schedule behaviors are very similar to each other.

Lemma 5: Following two periodic task systems, and are temporal-workload-isomorphic under

worst-case execution scenarios.

 * (), where * + could be multiset. EDF scheduling}

 *

 (
 ∑) . *

 + is distinct set of * +, i.e.,

 if . is for all of A

such that
 . EDF scheduling} .

Proof: Let’s consider
 in and its cousin tasks * + in , i.e.,

 for . Then release times

and deadlines of all above tasks are the same. Under EDF scheduling, deadline of task is the only

criterion of scheduling, then we can make the following condition hold that if we schedule a job

of
 , then a job of some corresponding ‟s is scheduled. If not, then there could be one or more

jobs whose deadline is coincided with . But, despite the existence of another job of the same

deadline and a different schedule could be done at that moment, by Lemma 3 and

Corollary 1. Also, the last time at which all jobs of the same deadline are completed is the same

for and . So, Lemma 5 holds.

Now, we consider the schedulability condition of task system using temporal workload.

Following Lemma is directly implied from the definition of temporal workload because temporal

workload identifies the amount of work to be done until deadline of each task.

Lemma 6: If two finite task system and are temporal-workload-isomorphic, then

schedulability conditions of two systems are identical.

Proof: We prove this Lemma by contradiction. If task system has violated its timing constraints

and not, then there exists a task of such that

 .

But temporal workload of system could not reach infinite because it has finite tasks and each

task of system has finite value of temporal workload. This contradicts with assumption of this

Lemma.

3.3. Upper Bound of Temporal Workload

Definition 3: Task system is temporal-workload-upper-bounded if () for all time t.

 will denote the upper bound .

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

7

Because temporal workload of a system denotes the ratio of overhead to CPU capacity, we may

schedule all the tasks of the system without violating its timing constraints if is below or

the same as 1. Following theorem shows above discussion is true.

Theorem 1: If () for all time t, i.e., , then task set is schedulable using

EDF.

Proof: We will prove it by induction on time t. Let‟s assume that this theorem holds until time t,

i.e., we successfully scheduled the tasks until time t. At time t, we can still schedule the highest

priority task, i.e., the shortest deadline task, without violating its deadline if there is no task

release during () for ()
 (). If there is a task release at time where

 , then we can insist that this theorem still hold until time because there is no

deadline during (). From the assumption, at , the temporal workload of task set

should be less or equals to 1. So, we proved that this theorem still holds until or

which are larger than t if it holds at t.

Theorem 1 states that if we preserve the upper bound of temporal workload below or equal to 1,

then it is always schedulable. Also theorem 1 provides a sufficient condition for the

schedulability of a system. Now we investigate the temporal workload upper bounds of periodic

task systems.

Theorem 2: For a periodic or sporadic task system * (). EDF+, s ∑ .

Proof: We already said that ideal CPU with EDF scheduling policy provides an upper bound of

temporal workload. For a periodic or sporadic task system of ideal CPU, clearly its temporal

workload is always less than or equals to its total utilization. So theorem 2 holds.

3.3. Temporal Workload at Lower Processing Speed

Now, we consider the case of , i.e., CPU‟s processing speed is not always 1.

Lemma 7: Following two periodic task systems, and are temporal-workload-isomorphic under

worst-case execution scenarios.

 * () ∑ , CPU‟s processing speed is (), EDF},

 * (
)

 , CPU‟s processing speed is 1, EDF}.

Proof: Clearly at time t = 0, () () by definition 1. And when we execute a task

of system , at time t, following holds.

 () () .

 ()

 ()
 ()

 ()

 ()

 (4)

Eq. (4) states that if we execute tasks of the same deadline at the same time for system and ,

then the ratio of temporal workloads of two systems are not changed. Because and use EDF

scheduling policy and execution times(not computation times) and deadlines of and its

corresponding
 are identical under worst-case execution scenarios, Lemma 7 holds. There could

be the cases when we execute of and
 of , i.e., deadlines of two tasks are coincidently

exact, but by Lemma 3 and Corollary 1, Lemma 7 still holds as we insisted at Lemma 5.

Corollary 2: For a periodic task system * () ∑ +, then we can schedule

with constant CPU speed .

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

8

Proof: By Lemma 7, we can construct a temporal-workload-isomorphic system of whose

 is 1 and its CPU processing speed is 1. Then by theorem 1, the newly constructed task set

could be successfully scheduled with EDF. By Lemma 6, this shows that original task set could

be successfully scheduled.

Using Lemma 7 and Corollary 2, we can safely lower processing speed for periodic real-time task

system when its total utilization is below 1 as many previous works for power-aware scheduling

said.

Following theorem is the repetition of Theorem 4 of DVSST paper[10]. DVSST algorithm scales

up CPU whenever new task releases and scales down whenever its deadline expires exactly as

much as utilization of that task.

Theorem 3: Sporadic task system with ∑ and DVSST algorithm, it is schedulable using

EDF if and only if ∑ .

Proof: “Only If” part: As the assertion stated in [10], if , then EDF will not find a feasible

schedule, therefore DVSST combined with EDF will not find a feasible schedule.

“If” part: As we stated at Lemma 4, ideal CPU can provide an upper bound of temporal

workload. So, whenever a new task released, temporal workload of ideal CPU system increased

as much as utilization of that task during , - and whenever a deadline of a task expires it

decreased also as much as that amount. Now suppose that there is neither new task release nor

deadline expiration during , - and is the temporal workload of ideal CPU during the time

interval, then we can construct a new task system whose total utilization is 1 and each task
 has

the same deadline of original corresponding task and its computation time
 is .

Then by Theorem 1, we can schedule new task system using EDF and by Lemma 6, we can say

that we can schedule original task system with EDF for two task systems are temporal workload

isomorphic during the interval. And for two task systems have identical deadline distributions, we

always make sure that (
) pair of tasks execute at the same time in each system without

violating EDF policy. So by Lemma 7, above process could be repeated at every time interval

during which neither new task releases nor deadline expires. This proves „if‟ part.

Following theorem 4 states that temporal workload analysis provides another useful

schedulability test.

Theorem 4: Let = {periodic or sporadic task systems whose total utilizations are less than or

equal to 1}, = {task systems whose are less than or equal to 1}, and = {task

systems whose loading factors[5](((∑) ())) are less than or equal to

1}, then

 .

Proof: By Theorem 2,3 and Corollary 2, clearly . But doesn’t assume

neither minimum interval nor periodicity of tasks, so .

 is the maximum set of tasks which could be scheduled by EDF because loading factor test

provides necessary and sufficient condition[5]. So, . But, for the following task

set * () + , , but . So,

Theorem 4 holds.

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

9

The temporal workload of the task set in Theorem 4 is infinite when N is infinite, so there is no

upper limited value of which provides necessary condition for schedulability test.

4. POWER-AWARE SCHEDULING ALGORITHM
4.1. An On-Line Algorithm

In section 3, we analyzed scheduling behaviours of EDF using temporal workload. Now we apply

the results into power-aware scheduling. As we stated at section 2, previous algorithms such as

CC-EDF, DVSST and CC-DVSST don‟t fully utilize the slacks generated by early completed

tasks. But, based on the temporal workload analysis, we can find more slacks to slow down the

CPU speed. Before presenting more discussion, let‟s introduce new definition.

Definition 4: Temporal idleness () of a task at time t is defined as following.

0 until its completion and after its deadline.

 () if it was completed at time and .

 () if .

The real value of depends on the status of system and how to calculate will be presented later.

Likewise the definition of temporal workload of a system, temporal idleness of a system, () or

 , is defined as the sum of (). Note that () is the same as () of uncompleted case.

Now, consider the amount of computation time until its completion. At CC-EDF and CC-DVSST,

they lower the processing speed of task when it is completed. This means that its pace of

computation is faster than actual execution needed as stated at section 2. Following figure shows

the situation.

Figure 4. Computation time comparison

At time , task was completed, so during , -, its computation time(=) is

larger than needed () as amount of (). If we assume that task executed with its

temporal workload during , - , then () () equals to () and

 () () equals to () . But, () , (
) (). So, , i.e., . It is that the

amount of slack could be used until its deadline is () () , i.e.,

 (). Following lemma shows it formally.

Lemma 8: At CC-EDF or CC-DVSST scheduling, the amount of computation time exceeding its

actual pace until its completion time() is the same as , () ()- ().

Proof: , () ()- ()

 0

1 ()

 ()

 ()

b

a

c

d

e

f

 g

h

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

10

 , - (5)

But, by definition, , so,

(5) , () ()- , - ()

 () ()

Using Lemma 8, if a task completed at time t, then we can slow down processing speed by

amount of when executing lower priority tasks than until its deadline, because CC-EDF or

CC-DVSST slows down processing speed by the amount of () . The proposed

algorithm tries to use slacks of already completed higher priority tasks which are necessarily

generated by assuming worst-case execution scenarios and follows the result of CC-EDF when

running task‟s priority is higher than those of already completed tasks. Also, if we cannot utilize

those slacks by some reasons, i.e., when executing higher priority tasks or when slacks are too

much to fully utilize, then we evenly distribute those unused slacks until corresponding deadlines.

One more consideration occurs when there is idle period. Let‟s consider periodic task set
* () () () ()+ . If and complete at t=1 and t=2,

respectively, and completes early at t=2.5, then ()=1.5/4.5=3/7. If we lower the

processing speed as much as (), then actual processing capacity during t=[3,6) is (1-

3/7)*3=12/7 which is less than sum of WCET of and . Deadline miss occurs because

there is idle period during t=[2.5,3). During the idle period, the total processing capacity which

should be processed under the actual execution scenarios is larger than sum of slack used. So, we

should reduce future slacks to compensate larger processing capacity. Following figure shows it.

Figure 5. Slack reduction example

The amount of slack which should be reduced is , and is the same as , (

())-. At the above figure, the area „a‟ is the same as „b‟+‟c‟. And if exceeds , we

could save some slacks because only (length of idle period) should be processed by CPU.

0 1 2 2.5 3 4.5 6

0 1 2 2.5 3 4.75 6.5

idle period deadline miss

a
b c

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

11

Figure 6. Temporal idleness management

global variables

 last_idle_time

 last_cpu_speed

 last_calculation_time

 ex_ratio, ex_flag, ex_task

 // current total utilization, i.e., ∑ ∑

 // completed task set sorted by deadline

compute_cpu_speed() // is the highest priority task or NULL if no ready task

 cpu_speed =

 for all tasks ti at

 if or is NULL

 if (cpu_speed (()))

 cpu_speed (())

 else

 ex_ratio =(()) cpu_speed

 ex_flag = 1, ex_task =

 cpu_speed = 0

 break

 else if (ex_flag 0 && (()))

 ex_ratio = (())

 ex_flag = 1, ex_task =
 break

 last_calculation_time =

 return cpu_speed

decrease_temporal_idleness()

 idle_time = last_idle_time - tcur

 idle_work = idle_time * last_cpu_speed

 for all tasks ti at TC

 if (idle_work == 0)

 break

 (()) ()

 if (idle_work)

 idle_work

 () ()

 break

 else

 idle_work = idle_work
 ()

increase_temporal_idleness()

 for all tasks whose priority is less than or equals to that of ex_task at

 if (ex_flag 1)

 busy_ratio = ex_ratio

 ex_flag = 0

 else

 busy_ratio = (())

 busy_time = last_calculation_time

 busy_work = busy_time busy_ratio

 if ()

 (busy_work)/()

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

12

Figure 7. Power-aware scheduling algorithm

Now, following theorem proves the correctness of our algorithm.

Theorem 5: The algorithm presented at Fig. 3, schedules every periodic or sporadic task set if and

only if ∑ .

Proof: “Only If” part: If , then EDF will not find a feasible schedule, therefore our

algorithm will not find a feasible schedule because our algorithm is the same as EDF or DVSST

when tasks execute always at worst-case execution scenarios, i.e., () and for

 t and i.

„If” part: We will show that temporal workload of a system adopting our algorithm is always less

than or equals to that of another ideal system which schedules tasks without violating their timing

constraints. Then by lemma 6 and theorem 1, we can insist that our scheduling algorithm also

satisfy real-time constraints.

when task arrived

 if (exceed_flag)

 increase_temporal_idleness()

 else if (cpu was idle)

 decrease_temporal_idleness()

 last_cpu_speed = compute_cpu_speed()

 set cpu speed as last_cpu_speed

when task completed

 =

 if (exceed_flag)

 increase_temporal_idleness()

 insert into

 last_cpu_speed = compute_cpu_speed()

 if there is no task to execute

 last_idle_time =

 set cpu as idle

 else

 set cpu speed as last_cpu_speed

on deadline of task

 if (exceed_flag)

 increase_temporal_idleness()

 else if (cpu was idle)

 decrease_temporal_idleness()

 delete from

 last_cpu_speed = compute_cpu_speed()

 if there is no task to execute

 last_idle_time =

 set cpu as idle

 else

 set cpu speed as last_cpu_speed

cf. : current time,

 : current ready task of highest priority or NULL if no ready task.

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

13

Let‟s consider ideal CPU of ideal system which can anticipate task‟s actual computation time

when released and can execute active tasks with concurrently with the speed of CU. This ideal

system of figure 8 resembles the system of figure 2.

Figure 8. CC-EDF schedule : ideal CPU and ideal execution

Our real system starts to execute with TU speed and slows down with () when some

tasks are completed. And we already said that , ()- () is exactly the

same as () () . Therefore we can apply following operation to scheduling

result of our real system which replaces some areas of by the same areas of . Following

figures shows it.

Figure 9. Slack exchange process

During the time interval , - which has no idle period, we can apply the above operation for all

areas of . Then temporal workload of the last applied result is less than or equals to that of ideal

system because the total computing capacity of the former is larger than or equals to that of the

latter and the computing capacity of the former is always exhausted by tasks which have shorter

or the same deadlines of tasks of the latter.

During idle period, there exist some areas of ideal system which cannot find counterparts of real

system. Those areas could be filled up or substituted with the areas of future slacks of already

completed tasks as was illustrated at figure 5 and above exchange operation could be also applied

for them. The temporal workload of substitution and exchange result is also less than or equals to

that of ideal system for the same reason.

Now temporal workload of our real system is always less than or equals to that of substitution and

exchange result because the total computing capacity of the former is always larger than or the

same as that of the latter and the same tasks are executed. This proves this theorem.

4.2. An Illustrative Example

Let‟s consider an illustrative example, a periodic task system *() () () ()+.
Total utilization of task system is 1 and is also 1. Suppose that actual computation

times of tasks , and are 1/2, 1/2, and 1/3 respectively. Then following figure shows the

result of our scheduling algorithm.

At time t=1/2, completes its execution and we can set processing speed as (
()) =1 - 0.5/1.5=2/3.

 ()

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

14

At time t=1/2+3/4=5/4, completes its execution, the processing speed should be
 =1-1/3-0.5/(7/4)=8/21. During [5/4,2], computation time of is 8/21*3/4=2/7. Deadline of

 is 2 and is released at that time, so =1-2/7=5/7.

Figure 10. Scheduling example

At t=2+7/10, completes its execution and =1-0.5/(13/10)-2/7=30/91.

During [2+7/10,3], will executes with speed of 30/91 and its computation time is

30/91*3/10=9/91, so total computation time of until released is 2/7+9/91=245/637.

At t=3, releases, and its deadline is less than . So, will execute with speed of

 (()) =1-5/13=8/13.

At time t=3+13/16, will be completed and will execute with speed of

≒0.387, and it will complete at t≒3.823. Then, during [3.823,4], there is no ready task, so slack

reduction process should be done.

At t=4, will be released and it will be executed with speed of ≒0.722 until t≒4.693. At t≒

4.693, there is no ready task, so slack reduction process should be done at t=6 when and

are released. At t=6, will be executed with speed of ≒0.889, and so on.

5. EXPERIMENTAL RESULTS

We evaluated our proposed algorithm using RTSIM[14] which is a real-time simulator. RTSIM

can simulate the behaviors of dynamic voltage scaling algorithms as well as traditional real-time

scheduling algorithms. In this simulation, it is assumed that a constant amount of energy is

required for each cycle of operation at a given voltage. This quantum is scaled by the square of

the operating voltage, consistent with energy dissipation in CMOS circuits()[2,5]. Only

the energy consumed by CPU was computed and any other source of energy consumption was

ignored. Also we do not consider preemption overheads, task switch overheads, and operating

frequency change overheads. It is also assumed that the CPU consumes no energy during idle

period and its operating frequency range is continuous at [fmin=0, fmax=1].

We compared our proposed algorithm with CC-EDF[9], DVSST[10], and CC-DVSST[8]. CC-

EDF assumes periodic task model, so we compared it at periodic task system. DVSST and CC-

DVSST assume sporadic task model, so we compared them at sporadic task system.

To evaluate the effect of number of tasks in the system, we generated 10 or 20 tasks for each

comparison. Their periods or minimum inter arrival times are chosen randomly in the interval [1-

1000]ms. We divided task set into three groups to reflect more real environments. One group of

tasks have short period in the interval [1-10]ms, another group of tasks have medium period in the

interval [10-100]ms, and the last group of tasks have long period in the interval [100-1000]ms.

0 1 2 3 4 5 6 7

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

15

Figure 11. Simulation results : for periodic tasks(left) and for sporadic tasks(right)

The simulation was performed also by varying the load ratio of tasks, i.e., the ratio of the actual

computation time to the worst case computation time. For all simulations, the worst-case total

utilization of system is always 1, i.e., . Above figures show the simulation results.

Figure 11(left) shows the result for periodic task system. In this case, our proposed

algorithm(PWA-TW) always outperforms CC-EDF, and the ratio of energy saving is up to 10%.

The effect of number of tasks in the system could be neglected on the simulation result as the

figures show. Also the number of CPU frequency changes was almost the same for the two

algorithms, so more energy saving could be acquired at real environments.

Figure 11(right) shows the result for sporadic task system. In this case, our proposed algorithm

also outperforms both DVSST and CC-DVSST. For DVSST, the ratio of energy saving is up to

70% and for CC-DVSST, up to 10 %. The effect of number of tasks in the system could be also

neglected, but the number of CPU frequency change of our algorithm was larger than that of

DVSST and almost the same as that of CC-DVSST. So, the ratio of energy saving to DVSST

could be shrinked. But our algorithm has huge performance gain to DVSST, so in spite of

frequency change overheads, it is expected that our algorithm still outperforms to DVSST at real

environments.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

non-DVS
DVSST
CC-DVSST
PAS-TW

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

non-DVS
CC-EDF
PAS-TW

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

non-DVS
CC-EDF
PAS-TW

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

non-DVS
DVSST
CC-DVSST
PAS-TW

load ratio
20 tasks

E
n
er

g
y
(n

o
rm

al
iz

ed
)

E
n
er

g
y
(n

o
rm

al
iz

ed
)

load ratio
20 tasks

E
n
er

g
y
(n

o
rm

al
iz

ed
)

E
n

er
g

y
(n

o
rm

al
iz

ed
)

E
n

er
g

y
(n

o
rm

al
iz

ed
)

load ratio load ratio
10 tasks 10 tasks

E
n
er

g
y
(n

o
rm

al
iz

ed
)

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

16

6. CONCLUSION

In this paper, we analyzed the behaviors of EDF scheduling and presented a power-aware

scheduling algorithm for periodic and sporadic tasks. Temporal workload analysis provides

another sufficient condition for schedulability of preemptive real-time task scheduling and

another formal method to prove the correctness of power-aware scheduling algorithms. The

proposed algorithm also adopts the results of cycle conserving method(CC-EDF) and sporadic

task scheduling(DVSST). The simulation results show that the proposed algorithm outperforms

existing algorithms up to 10-70 % with respect to CPU energy saving.

In the future we would like to improve the proposed algorithm. This could be done if we assign

all slacks generated by early completed higher priority tasks into the task of highest priority

among uncompleted ready tasks instead of evenly distributing them until the ends of deadlines.

This method may lower processor frequency much more than the proposed algorithm. Also we

would like to apply the temporal workload analysis into another area of real-time task scheduling,

for example, aperiodic task acceptance problem. If we could maintain the temporal workload of a

system below or equal to 1, then real-time constraints of all tasks in the system are met. So this

may provide an effective method for aperiodic task scheduling.

ACKNOWLEDGEMENTS

This work was supported by the Industrial Strategic Technology Development Pro-

gram(10041740, Development of a software that provides customized real-time optimal control

monitoring services by integrating equipments in buildings with web service) funded by the

Ministry of Trade, Industry and Energy(MOTIE, Korea).

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, “Power-aware scheduling for periodic real-

time tasks,” IEEE Trans. on Computers, Vol. 53, pp 584-600, 2004.

[2] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor design,” In Proc. of

Twenty-Eighth Hawaii Int‟l Conf. on System Sciences, Vol. 1, 1995.

[3] H. Chetto and M. Chetto. “Some Results of the Earliest Deadline Scheduling Algorithm,” IEEE

Transactions on Software Engineering, Vol.15(10),pp.1261–1269, 1989.

[4] W. Kim, J. Kim, and S. L. Min, “A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard

Real-Time Systems Using Slack Time Analysis,” In Proc. of Design, Automation and Test in Europe,

pp. 788–794, 2002.

[5] C. H. Lee and K. G. Shin, “On-line dynamic voltage scaling for hard real-time systems using the EDF

algorithm,” In Proc. of IEEE Int‟l Real-Time Systems Symposium, pp. 319-327, 2004.

[6] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Multiprocessor real-time scheduling considering

concurrency and urgency,” ACM SIGBED Review, Vol. 7(1), 2010.

[7] C. L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time

environment,” J. ACM Vol.20(1), pp 46-61, 1973.

[8] J. Mei, K. Li, J. Hu, S. Yin, and E. H-M Sha, “Energy-aware preemptive scheduling algorithm for

sporadic tasks on DVS platform,” Microprocessors & Microsystems, Vol.37, pp. 99-112, 2013.

[9] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded operating

systems,” ACM SIGOPS Operating System Review,Vol.35(5), pp. 89-102, 2001.

[10] A. Qadi, S. Goddard, and S. Farritor, “A dynamic voltage scaling algorithm for sporadic tasks,” In

Proc. of IEEE Int'l Real-Time Systems Symposium, pp 52-62, 2003.

[11] D. Shin and J. Kim, “Dynamic voltage scaling of periodic and aperiodic tasks in priority-driven

systems,” In Proc. of the Asia and South Pacific Design Automation Conference, pp 653-658, 2004.

[12] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,” Real-Time

Systems, Vol.10(2),pp.179–210, 1996.

International Journal of Embedded Systems and Applications (IJESA) Vol.3, No.3, September 2013

17

[13] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,” In Proc. of the

IEEE Foundations of Computer Science, pp.374–382, 1995.

[14] RTSIM:Real-time system simulator, http://rtsim.sssup.it.

AUTHORS

Ye-In Seol received his B.S. degree in Nuclear Engineering from Seoul National

University, Korea in 1992, M.S. degree in Computer Science and Statistics from Seoul

National University in 1994. He is a chief researcher in Green Energy Institute of

SangMyung University in Seoul. His research interests include embedded system,

real-time system and building automation system.

Jeong-Uk Kim received his B.S. degree in Control and Instrumentation Engineering

from Seoul National University, Korea in 1987, M.S. and Ph.D. degrees in Electrical

Engineering from Korea Advanced Institute of Science and Technology in 1989, and

1993, respectively. He is a professor in SangMyung University in Seoul. His research

interests include smart grid demand response, building automation system, and

renewable energy.

Young-Kuk Kim received the B.S. and M.S. degrees in Computer Science and

Statistics from Seoul National University, Korea in 1985 and 1987 respectively and the

Ph.D. degree in Computer Science from University of Virginia, Charlottesville,

Virginia in 1995. After his Ph.D., he visited VTT Information Technology, Finland

and SINTEF Telecom & Informatics, Norway as an ERCIM research fellow during

1995-1996. He joined the Chungnam National University as a faculty member of the

Computer Science Department in March 1996. From August 2002 to July 2003, he

visited Computer Science Department at University of California, Davis as an

exchange scholar. His research interests include real-time systems, database systems,

multimedia and mobile information systems

