
International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

DOI:10.5121/ijgca.2015.6203 27

Optimized Assignment of Independent Task for
Improving Resources Performance in

Computational Grid

Sarpreet Singh
1
, R.K. Bawa

2
,

1
Assistant Professor, Department of Computer Science& Engineering,

Sri Guru Granth Sahib World University, Fatehgarh Sahib
2
Professor, Department of Computer Science, Punjabi University Patiala

2

Abstract

Grid computing has emerged from category of distributed and parallel computing where the

heterogeneous resources from different network are used simultaneously to solve a particular problem that

need huge amount of resources. Potential of Grid computing depends on my issues such as security of

resources, heterogeneity of resources, fault tolerance & resource discovery and job scheduling. Scheduling

is one of the core steps to efficiently exploit the capabilities of heterogeneous distributed computing

resources and is an NP-complete problem. To achieve the promising potential of grid computing, an

effective and efficient job scheduling algorithm is proposed, which will optimized two important criteria to

improve the performance of resources i.e. makespan time & resource utilization. With this, we have

classified various tasks scheduling heuristic in grid on the basis of their characteristics.

Keywords

Grid Computing, Scheduler, ETC matrix, Makespan, Resource utilization

1. Introduction

Grids computing is evolved from existing technology like distributed & parallel computing , web

services, Internet, various cryptography technologies having more intelligent security features and

virtualization feature for the next-generation of e-Science and e-business applications [1]. Grid

computing is based on the cooperation of multiple processing elements on multiple distributed &

dynamic machines, to boost the computational power in the scientific problem and other field

which require huge capacity of the CPU cycles & other resources. Due to the dynamic nature of

the resources, a grid is another form of heterogeneous computing (HC) system. Different kind of

resources used in grid like computation resources (i.e. a machine sharing its CPU), storage

resources(i.e. a machine sharing it’s RAM or disk space), communication resources (i.e. sharing

of bandwidth or a communication path), software and licenses and many other special equipment

(i.e. sharing of devices). [2]

The resource management system (RMS) which is central component of a grid computing accepts

requests from user and assigns resource from the overall pool of grid resources which fulfill user

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

28

requirement. There are number of issues in RMS such as resource discovery, resource scheduling,

resource monitoring, resources inventories, resource provisioning, load balancing, fault isolation,

service level management system [3]. However, grid scheduling and grid load balancing are the

main issues [4].

Scheduling the jobs to the resources in grid computing is also complicated due to the distributed,

dynamic and heterogeneous nature of the resources [5].Scheduling is one of the core steps to

efficiently exploit the capabilities of heterogeneous distributed resource. A scheduling is a

process that maps and manages the execution of inter-dependent tasks/independent task on the

distributed resources. It allocates suitable resources to various tasks to satisfy the agreement

between resource producer & resource consumer. Poor scheduling will reduce performance of the

nodes participating in grid system. Due heterogeneous, dynamic nature of resources, the problem

of mapping tasks on distributed services belongs to a class of problems known as NP-hard

problem [6]. Due to dynamic & heterogeneous nature of resources, neither algorithm can produce

optimal schedule. We can only make our best to find the most suitable solution for users.

Working of grid scheduler passing from four stages i.e. a) Resource discovery b) Resource

selection c) Job selection d) Job execution. Scheduler is responsible for selecting resources from

pool resources and schedule tasks in such a way that the resource usage policy and task

constraints are satisfied, in terms of execution time, deadline & cost of the resources utilized [7].

Scheduler returns the “best” such schedule. “Best” is defined by some performance metric [8]. All

scheduling algorithms which were mostly considering only single parameter i.e.

makespan(completion time of last finished task or job) which is not sufficient to produce idle grid

system. According to Wright [9], a scheduler is designed to satisfy one or more of the following

common objectives: (a) maximizing system throughput; (b) maximizing resource utilizations; (c)

maximizing economic gains; and (d) minimizing the turn-around time for an application. To

minimize the overall turn-around time of the tasks and thus increase the throughput of the system,

it is important that right resources be assigned to every task. Since task may have dependency or

independency between each other’s, so there are two case to assign tasks in grid. First case is for

dependent task. In this, split the task into multiple subtasks. Then these subtasks assigned to a

resource which fulfill the requirements of task. These tasks may have dependency among

themselves. This process is termed matching. After this order of execution of the subtasks is

identified. During this ordering, dependencies may be considered & the process of ordering for

execution is called scheduling. The overall process of matching and scheduling is termed

mapping. Second case is for mapping is for independent tasks. The aim of mapping in both above

cases is to maximize an objective function, which is based on QoS attributes such as execution

time, response time or those requested by the users of the HC system [10]. To achieve such

objective, certain heuristics have been developed for mapping. In the following section, various

mapping heuristics will be discussed and the assumptions made while describing the heuristics.

2. Related Work

Mapping heuristics can be either static or dynamic. In Static mapping information regarding all

participating nodes is collected & matching and scheduling decisions are made before the actual

execution of the task. In dynamic mapping, matching and scheduling decisions are made on the

fly as the application executes. The accuracy of static mapping heuristics depends on the accuracy

of these estimates. The result scheduling in the grid systems are based on the mapping heuristics.

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

29

The component called mapper maintains a two dimensional matrix known as the expected time to

compute (ETC) matrix. It contains the expected execution times of a task that are running on all

participating node in the grid. execution time of the tasks on different nodes is represented by row

entries in ETC & time taken by a node to execute tasks is represented by column entries in ETC.

2.1 Heuristic descriptions

This section, discuss five heuristics for scheduling tasks to various machines which are

participating in grid. Then we propose an efficient heuristic called Optimized Assignment of

Independent Task (OAIT) algorithm

Opportunistic Load Balancing: OLB assigns tasks to the next available machine in grid. If

more than one machine is available, any one machine is chosen arbitrarily. It does not consider

expected execution time of the task on that machine. [11]

Fast Greedy or Minimum Completion Time (MCT): This heuristic assigns each task to the

machine which completes in minimum time. MCT heuristic does not consider execution time of a

task on that machine, so some time execution time of task will be increase on the machine where

the task has to be assigned. [12]

Minimum Execution Time (MET): In this heuristic task is assigned in to machine which give

least execution time for that task’s execution. Due to this, it can cause load imbalance on

resources. MET has advantage over MCT, is its simplicity of implementation. [13]

Min-min: The Min-min heuristic begins with the set of all unmapped tasks. Then, minimum

completion time for each task is found on every machine. Next, the task with the overall

minimum completion time is selected and assigned to the corresponding machine (hence the

name Min-min). Last, the newly mapped task is removed from U, and the process repeats until all

tasks are mapped (i.e., U is empty). Min-min & MCT both heuristic produce minimum

completion time. [13][14]

Max-Min: The max-min mapping heuristic is similar to the min-min mapping heuristic. The first

step of this heuristic is identical to the min-min heuristic. In the second step, instead of choosing

the task having the minimum of earliest completion times among all the tasks, max-min chooses

the task having maximum of earliest completion times and assigns it to the corresponding

machine. The machine availability time is updated and the process is repeated for every task in

the metatask. The max-min mapping heuristics would generally outperform min-min mapping

heuristics, when the number of short tasks is greater than that of long tasks. [12][14].

3. Proposed OAIT Algorithm

All discussed heuristics in previous section are known for reducing makspan time based on

different set of inputs. But utilization of resources is not up to the mark. While proposed OAIT

algorithm reduces makspan as well as optimizes the resource utilization & balance the load on all

participating nodes.

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

30

When a job is received, mostly heuristic try to find node, which executes job in minimum time

without considering current load on that node. As a result some nodes will be overload & load

distribution is imbalance. But OAIT heuristic, assigning bigger jobs before assignment of smaller

jobs by considering current load on nodes as shown in fig 1. N represent node. Length of Bar

represent the execution capacity of node i.e. more length more execution capacity. Let us consider

two jobs one is heavy job J5 (i.e. with maximum number of instruction) assign to fast node N0 &

second light job J1 (i.e. with minimum number of instruction) assign to low execution capacity

node N3.As a result waiting period for longer jobs will be reduced & also till the completion of

longer jobs many smaller jobs will be executed parallel on other light nodes. This will give better

resource utilization & reduce the overall turnaround time.

N0 J5

N1 J0

 N2 J4

 N3 J1

 N4 J3

 N5 J2

Fig 1: Job distribution

3.1 Proposed grid scheduling architecture

Grid is basically a collection of resources. Each resource consists of number of machine & each

machine may have more than one number of processing elements (PE). Fig 1 shows the proposed

Grid scheduling architecture. The architecture is composed of Job queue, Grid scheduler (GS),

Machines, Local scheduler (LS), processing elements (PE). User submits job to Job queue. The

GS analyzes the job’s requirements and then select appropriate machine, after gathering

information from various Local Scheduler which are connected with GS. Then GS pass job to

selected Local Scheduler. LS have complete information about their local PE like execution

capacity, current load etc. This information is used by LS, to select the best PE using the

proposed scheduling policy & assign the jobs for execution.

Fig 2: Grid Scheduling Architecture

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

31

3.2 Terminology used in Proposed OAIT algorithm:

 JOBQUEUE [id][# instruction]. Its 2D array having two parameters i.e. job Id & number

of instructions.

 Job Size: Define by number of instructions.

 Node (Mi,PEj): Define by i
th
 PE on j

th
 machine.

 Turnaround time (TAT): It is the numeric value of node. Its interval from the time of

submission of a job till completion of job. If the TAT value of any node is non-zero,

means node is busy to executing task & calculated by:

 TAT = Old TAT of node + (number of instruction /Power of node (Hz))

 Power of node: Capacity to executing jobs. Define by MIPS(millions of instruction per

second)

 Expected time to compute (ETC) matrix: its 2D array, where rows represent participating

machines in grid & column entry represents all PE on that machine. Each entry in ETC

represent by TAT of that node. Shown in fig 3.

 PE1 PE.. PEn

MC1

MC2

MC..

MCn

Fig 3. ETC Matrix

 Temp_TAT_F[][]: Its representation is similar to ETC matrix & use to store TAT value

of each node (Mi,PEj) for executing job having minimum number of instructions.

 Temp_TAT_L[][]:Its representation is similar to ETC matrix & use to store TAT value of

each node (Mi,PEj) for executing job having maximum number of instructions.

3.3 OAIT Algorithm

1. Create Grid resource by defining number of machines & PE with MIPS rating.

2. Submit jobs in array JOBQUEUE[id][# instruction]

3. Sort the jobs of JOBQUEUE [id][# instruction] in ascending order, based on second

parameter of JOBQUEUE(i.e. # instruction).

4. Initialize entry of ETC [][] matrix to zero.

5. Scheduler component read two jobs at same time, first Job#min i.e. one with minimum

number of instructions & second Job#max i.e. with maximum number of instructions from

JOBQUEUE [][] , until JOBQUEUE will be empty

a) Calculate TAT for Job#min & Job#max on every node separately, & store in array

"Temp_TAT_f [][] ” & "Temp_Tat_L [][]” respectively.

b) Choose the minimum value (TATmin) from array Temp_Tat_L[][] & select its

corresponding Machine(MCl) & processing element (PEl)

c) Choose the maximum value (TATmax)from array Temp_Tat_f[][] but less than

the TATmin i.e. (TATmax<TATmin) & select its corresponding machine MCf & PEf

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

32

d) if(MCf ==MCl && PEf ==PEl)

i. Choose the second largest value (TATsec_max) from array

Temp_Tat_f[][] but less than the TATmin i.e. (TATsec_max<TATmin) &

select its corresponding MCf & PEf

ii. ETC[MCf][PEf]=TATsec_max;

ETC [MCl][PEl]= TATmin;

e) Else update array ETC[][]

i. ETC [MCf][PEf]= TATmax;

ii. ETC [MCl][PEl]= TATmin;

f) Go to step 5.

6. After every second, another thread decrement every TAT value of ETC matrix

7. If all entry in ETC matrix become zero then exit

Initialize all entry of ETC matrix to zero, represent nodes are free. JOBQUEUE receive jobs from

user & rearrange in ascending order according to priority. Priority may be defined by any criteria,

but in proposed OAIT priority is number of instructions. Proposed OAIT heuristic read two jobs

from JOBQUEUE at same time i.e. one with minimum instruction (Job#min) & second with

maximum instruction (Job#max). Find the node NL, which execute Job#max in minimum time &

calculate TATmin. For better resources utilization & reduce the makespan for all pending Jobs ,

OAIT finds slowest node from pool of nodes which executes Job#min with maximum time &

calculate TATmax , but less than TATL i.e. (TATmax < TATmin). Update the ETC matrix by final

Tmax & TATmin corresponding to the node. After assignment of all jobs, decrement thread called,

which decrement the TAT value of busy nodes by one after every second, till TAT value of nodes

becomes zero.

4. Experimental Detail:

OAIT, MET, Min-Min, Max-Min, MCT heuristics are implemented on Grid simulator (GridSim).

Table 1 shows the scenario of Grid, in which four machines are used with different number of PE

to execute the Jobs. Each PE has specific MIPS rating. Table 2 shows set of 40 jobs with number

of instruction (MI) that are executed on Grid simulator using different scheduling heuristic.

Machine PE0 (mips) PE1 (mips) PE2 (mips) PE3 (mips)

Mc0 90 150 600

Mc1 80 350

Mc2 700

Mc3 450 60 200 120

Table 1

Job id # instruction (MI) Job id # instruction(MI)

Job0 20000 job20 2000

job1 16000 job21 10000

job2 12000 job22 3000

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

33

job3 13000 job23 70000

job4 19000 job24 650000

job5 15000 job25 30000

job6 60000 job26 30000

job7 7000 job27 89900

job8 2000 job28 32900

job9 45000 job29 12000

job10 3000 job30 4000

job11 65500 job31 2000

job12 18000 job32 34000

job13 5500 job33 130000

job14 30000 job34 99900

job15 14500 job35 14500

job16 300000 job36 18000

job17 120000 job37 3000

job18 320000 job38 184000

job19 315000 job39 150000

Table2

5. Result & Conclusion

The proposed OAIT algorithm is evaluated for Makespan time, Resource utilization and

compared with the other existing heuristics. Table 3 compare the makespan time of the proposed

OAIT algorithm and the existing MET, Min-Min, Max-Min, MCT heuristics. From fig 4, it is

found that proposed OAIT algorithm reduces the Makespan time i.e. executes all the jobs in

minimum time, comparatively to other existing heuristics.

 Scheduling Heuristics Makespan time(sec)

OAIT 1082

MET 4222

Min-Min 3413

Max-Min 4899

MCT 1496

Table 3.Compartition of Makespan time

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

34

Fig 4 Makespan Time

Table 4 compares Resource utilization time (how much time resources are used to executing the

assigned jobs) by proposed OAIT algorithm and other existing MET, Min-Min, Max-Min, MCT

heuristics. From fig 5, it is found that proposed OAIT algorithm gives better result as

comparatively to other existing heuristics. OAIT algorithm use resources in optimized way & for

constant time till the execution of last job. This will also help to distribute computational load

among all participating nodes according to capacity of node. While MET, Max-Min, Min-Min

shows unbalanced execution load, which lead to poor utilization of resources. MCT shows better

result for utilizing resources but not so well as comparatively than proposed OAIT algorithm.

Nodes
OAIT MET Max-Min Min-Min MCT

Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)

Mc-0 /PE-0 954 0 9604 0 355

Mc-0/PE-1 1066 0 8016 3065 915

Mc-0 /PE-2 1043 0 5566 5743 1191

Mc-1 /PE-0 999 0 8849 0 243

Mc-1 /PE-1 1079 0 7345 2279 1000

Mc-2 /PE-0 1072 4222 7842 3640 1496

Mc-3 /PE-0 1050 0 6759 2004 1170

Mc-3 /PE-1 1007 0 9765 0 116

Mc-3 /PE-2 1010 0 7107 3449 427

Mc-3 /PE-3 1082 0 7921 1399 382

Table 4: Comparison of Resource utilization

1082

4222

3413

4899

1496

0

1000

2000

3000

4000

5000

6000

Makespan

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

35

Fig. 5 Resources utilization

REFERENCES

[1] I. Foster and C. Kesselman (Eds.). The Grid: Blueprint for a Future Computing Infrastructure,

Morgan Kaufmann Publishers, USA, 1999.

[2] Jarek Nabrzyski, Jennifer M. Schopf & Jan Weglarz, Grid Resource Management– State of the art

and Future trends, Kluwer Academic Publisher

[3] Sharma, A., & Bawa, S. Comparative analysis of resource discovery approaches in grid

computing.

Journal of Computers, 3(5), 60-64, 2008.

[4] Moallem, A., & Ludwig, S. Using artificial life techniques for distributed grid job scheduling.

Proceedings of the 2009 ACM Symposium on Applied Computing, 1091-1097, (2009).

[5] Li, Y. A bio-inspired adaptive job scheduling mechanism on a computational grid. International

Journal of Computer Science and Network Security, 6(3B), 1-7., 2006

[6] J. D. Ullman, NP-complete Scheduling Problems, Journal of Computer and System Sciences,

10:384-393, 1975

[7] Maozhen Li, Mark Baker, The Grid Core Technologies, A John Wiley & Sons, Inc., 2005.

[8] H. Dail, H. Casanova, and F. Berman, A Decoupled Scheduling Approach for the GrADS

Environm ent, in Proc. 2002 ACM/IEEE conference on Supercomputing,pp.1-14, Baltimore,

Maryland USA, November 2002

[9] D Wright, Cheap Cycles from the Desktop to the Dedicated Cluster: Combining Opportunistic and

Dedicated Scheduling with Condor, Proceeding of HPC Revolution 01, Illinois, 2001.

[10] Howard Jay Siegel and Shoukat Ali. Techniques for mapping tasks to machines in heterogeneous

computing systems. Journal of Systems Architecture, 46(8):627–639, 2000. Available online at:

citeseer.ist.psu.edu/siegel00techniques.html (accessed January 1st, 2009).

[11] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,M. Theys, B.

Yao, D. Hensgen and R. Freund, A Comparison of Eleven Static Heuristics for Mapping a Class

of Independent Tasks onto Heterogeneous Distributed Computing Systems, in J. of Parallel and

Distributed Computing, vol.61, No. 6, pp. 810-837, 2001

[12] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bni, Muthucumaru Maheswaran, Albert

I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra A. Hensgen, and Richard F.

Freund. A comparison study of static mapping heuristics for a class of metatasks on heterogeneous

0
2000
4000
6000
8000

10000
12000

Ex
e

cu
ti

o
n

 t
im

e

Processing Nodes

OAIT MET Max-Min Min-Min MCT

International Journal of Grid Computing & Applications (IJGCA) Vol.6, No.1/2, June 2015

36

computing systems. In Heterogeneous ComputingWorkshop, volume 8, pages 15–29. IEEE

Computer Society, 1999.

[13] Technical Report No. 2006-504 “Scheduling Algorithms for Grid Computing: State of the Art and

Open Problems ’’, Fangpeng Dong and Selim G. Akl ,School of Computing, Queen’s University

Kingston, Ontario ,January 2006

[14] Sameer Singh Chauhan, and R. C. Joshi,” A Weighted Mean Time Min-Min Max-Min Selective

Scheduling Strategy for Independent Tasks on Grid”, In Advance Computing Conference (IACC),

IEEE, pp. 4-9 ISBN: 978-1-4244-4790-9 , 2010

Authors

Er. Sarpreet Singh has done Master in the area of Grid Computing from Department of

Computer science, Punjabi University, Patiala, INDIA. Presently he is working as

Assistant professor at Sri Guru Granth sahib World University, Fatehgarh sahib & doing

his Ph.D from Punjabi University, Patiala, INDIA. His area of interest is Grid & distributed

computing

Dr. Rajesh K. Bawa has done Master’s and Ph.D degree in the area of Numerical

Computing from IIT Kanpur INDIA. Presently he is working as Head & Professor in

Department of Computer science, Punjabi University, Patiala, INDIA. His present area of

interest is Parallel and Scientific Computation. He has published many research papers in

international & national journals.

