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ABSTRACT

In this paper, we analyze and compare the performance of fusion methods based on four different
transforms: i) wavelet transform, ii) curvelet transform, iii) contourlet transform and iv) nonsubsampled
contourlet transform. Fusion framework and scheme are explained in detail, and two different sets of
images are used in our experiments. Furthermore, eight different performancemetrics are adopted to
comparatively analyze the fusion results. The comparison results show that the nonsubsampled contourlet
transform method performs better than the other three methods, both spatially and spectrally. We also
observed from additional experiments that the decomposition level of 3 offered the best fusion performance,
anddecomposition levels beyond level-3 did not significantly improve the fusion results.
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1. INTRODUCTION

Image fusion techniques have been employed in various applications, such as concealed weapon
detection, remote sensing, and medical imaging. Combining two or more images of the same
scene usually produces a better application-wise visible image [1]. The fusion of different images
can reduce the uncertainty related to a single image. Furthermore, image fusion should include
techniques that can implement the geometric alignment of several images acquired by different
sensors. Such techniques are called a multi-sensor image fusion [2]. The output fused images are
usually efficiently used in many military and security applications, such as target detection, object
tracking, weapon detection, night vision, etc.

There are many different methods in image fusion process. The Brovey Transform (BT), Intensity
Hue Saturation (IHS) and Principal Component Analysis (PCA) [3] provide the basis for many
commonly used image fusion techniques. Intensity-hue-saturation method is the oldest method
used in image fusion. It performs in RGB domain. The RGB input image is then transformed to
IHS domain. Inverse IHS transform is used to convert the image to RGB domain [4]. Brovey
transform is based on the chromacity transform. In the first step, the RGB input image is
normalized and multiplied by the other image. The resultant image is then added to the intensity
component of the RGB input image [5]. Principal component analysis-based image fusion
methods are similar to IHS methods, without any limitation in the number of fused bands. Some
of these techniques improve the spatial resolution while distorting the original chromaticity of the
input images, which is a major drawback.

Recently, great interest has arisen on new transform techniques that utilize the multi-resolution
analysis, such as wavelet transform (WT). The multi-resolution decomposition schemes
decompose input images into different scales or levels of frequencies. Wavelet based image
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fusion techniques are implemented by replacing the detail components (high frequency
coefficients) from a colored input image with the detail components from another gray-scale input
image. However, the wavelet based fusion techniques are not optimal in capturing two-
dimensional singularities from the input images. The two-dimensional wavelets, which are
obtained by a tensor-product of one-dimensional wavelets, are good in detecting the
discontinuities at edge points. However, the 2-D wavelets exhibit limited capabilities in detecting
the smoothness along the contours [6]. Moreover, the singularity in some objects is due to the
discontinuity points located at the edges. These points are located along smooth curves rendering
smooth boundaries of objects.

The discrete wavelet transform (DWT), stationary wavelet transform (SWT), and dual-tree
complex wavelet transform (DTCWT) cannot capture curves and edges of images well. More
reasonable bases should contain geometrical structure information when they are used to
represent images. Candes and Donoho proposed the curvelet transform (CVT) with the idea of
representing a curve as a superposition of bases of various lengths and widths obeying the scaling
law width≈length2 [7]-[9]. The CVT is referred to as the true 2-D transform.

Different from the CVT which is first developed in continuous domain and then is discretized for
sampled data, contourlet transform (CT), introduced by Do and Vetterli, starts with a discrete-
domain construction [10]. This transform is more suitable for constructing multi-resolution and
multi-directional expansions using non-separable Pyramid Directional Filter Banks (PDFB) with
small redundancy factor [1].As illustrated in Figure 1, the image fusion techniques can be
organized into three main categories. Primitive fusion schemes, such as averaging, weighted
averaging and global Principal-Component-Analysis (PCA), are performed solely in the spatial
domain. Despite the easy implementation, these methods pay the expenses of reducing the
contrast and distorting the spectral characteristics [11]. To solve these problems, more
sophisticated fusions in the transform domain employ properties like multi-resolution
decomposition. It decomposes images at different scale to several components, which account for
important salient features of images [11]. Therefore, it enables a better performance than those
performed in the spatial domain. The methods in the third category utilize statistical ways, such as
Bayesian optimization to obtain the fused image; however, it suffers from a significant increase of
computational complexity [12], [13].

Figure 1.Categories of image fusion methods

In this paper, we mainly focus on the image fusion techniques in transform domain as spatial
domain methods are well-studied and statistical domain methods suffer from a significant
increase of computational complexity. In Section 2, wavelet transform, curvelet transform,
contourlet transform and nonsubsampled contourlet transform are discussed in terms of principle,
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advantages and drawbacks. In Section 3, we explain the fusion framework, scheme and quality
assessment metrics that are employed in our study. In Section 4, experimental study and analysis
are discussed, and the conclusion is provided in Section 5.

2. TRANSFORM DOMAIN

2.1. Wavelet Transform
Since there is no subsampling process and the size of the filters increases in each scale, the
stationary wavelet (SWT) is computationally inefficient, especially in multiple dimensions [14].
In addition, the SWT only provides details in three directions for each scale. To overcome these
problems, the dual-tree complex wavelet (DTCWT) is proposed, which is approximately shift-
invariant, directionally selective, and computationally efficient. Dual-tree of wavelet filters is
used to obtain the real and imaginary parts of complex wavelet coefficients. A simple delay of
one sample between the filters of the first level in each tree is conducted, and then odd-length and
even-length linear-phase filters are used alternately. The filters in the two trees are just time-
reverse of each other. Figure 2 shows the practical implementation of the DTCWT on a 1-D
signal. h0(n), h1(n) denote the low-pass/high-pass filter pair for the upper filter bank, and g0(n),
g1(n) denote the low-pass/high-pass filter pair for the lower filter bank. The DTCWT satisfies the
property of approximate shift-invariance and directional selectivity in multiple dimensions. More
details of the DTCWT are available in [14].

Figure 2.Practical implementation of the DTCWT on a 1-D signal. Analysis filter bank for the DTCWT
(left). Synthesis filter bank for the DTCWT (right) [14]

2.2. Curvelet Transform

The DWT, SWT, and DTCWT cannot capture curves and edges of images well. More reasonable
bases should contain geometrical structure information when they are used to represent images.
Candès and Donoho proposed the curvelet transform (CVT) with the idea of representing a curve
as a superposition of bases of various lengths and widths obeying the scaling law, width≈length2.
Two examples of the CVT bases are shown in Figure 3(a). Figure 3(b) presents two examples of
wavelet bases. In Figure 3, it can be seen that the CVT is more suitable for the analysis of image
edges, such as curve and line characteristics, than the wavelet. The CVT is referred to as the true
2-D transform. The discrete version implemented in this research uses a ‘wrapping’ transform.
The flowchart of the second generation of the curvelet transform is presented in Figure 4. Firstly,
the 2-D FFT is applied to the source image to obtain Fourier samples. Next, a discrete localizing
window smoothly localizes the Fourier transform near the sheared wedges obeying the parabolic
scaling. Then, the wrapping transformation is applied to re-index the data. Finally, the inverse 2-
D FFT is used to obtain the discrete CVT coefficients. More details can be found in [9].
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(a)                               (b)

Figure 3.Comparison between curvelet bases and wavelet bases. (a) Two bases of curvelet. (b) Two bases
of wavelet [9]

Figure 4.Flowchart of the second generation of curvelet transform via wrapping

2.3. Contourlet Transform
The wavelet transform is good at isolating the discontinuities at object edges, but cannot detect
the smoothness along the edges. Moreover, it can capture limited directional information. The
contourlet transform can effectively overcome the disadvantages of wavelet; contourlet transform
is a multi-scale and multi-direction framework of discrete image. In this transform, the multi-
scale analysis and the multi-direction analysis are separated in a serial way. The Laplacian
pyramid (LP) [15] is first used to capture the point discontinuities, then followed by a directional
filter bank (DFB) [16] to link point discontinuities into linear structures. The overall result is an
image expansion using basic elements like contour segments. The framework and filter bank of
contourlet transform are shown in Figure 5.First, multi scale decomposition by the Laplacian
pyramid, and then a directional filter bank is applied to each band pass channel.

Figure 5. The contourlet transform framework (left) and the contourlet filter bank (right)

Contourlet expansion of images consists of basis images oriented at various directions in multiple
scales with flexible aspect ratio. In addition to retaining the multi-scale and time-frequency
localization properties of wavelets, the contourlet transform offer high degree of directionality.
Contourlet transform adopts nonseparable basis functions, which makes it capable of capturing
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the geometrical smoothness of the contour along any possible direction. Compared with
traditional image expansions, contourlet can capture 2-D geometrical structure in natural images
much more efficiently [17].Furthermore, for image enhancement, one needs to improve the visual
quality of an image with minimal image distortion. Wavelet-based methods present some
limitations because they are not well adapted to the detection of highly anisotropic elements such
as alignments in an image. Contourlet transform has better performance in representing the image
salient features such as edges, lines, curves and contours than wavelet transform because of its
anisotropy and directionality. Therefore, it is well-suited for multi-scale edge based image
enhancement.To highlight the difference between the wavelet and contourlet transform, Figure 6
shows a few wavelet and contourlet basis images. It is possible to see that contourlets offer a
much richer set of directions and shapes, and thus they are more effective in capturing smooth
contours and geometric structures in images.

Figure 6. Comparison between actual 2-D wavelets (left) and contourlets (right) [10]

2.4. Nonsubsampled Contourlet Transform
The contourlet transform achieves better expression than discrete wavelettransform, especially for
edges and contours. However,dueto the downsampling and upsampling, the contourlet transform
islack of shift-invariance and results in ringing artifacts.

The shift-invariance is required in image analysisapplications, such as edge detection,
contourcharacterization, image fusion and so on. Therefore,nonsubsampled contourlet transform
(NSCT) was proposed[18]based on nonsubsampled pyramid decomposition andnonsubsampled
filter bank (NSFB). In NSCT, themultiscale analysis and the multidirection analysis arealso
separated, but both of them are shift-invariant. First, thenonsubsampled pyramid (NSP) is used to
obtain a multiscaledecomposition by using two-channelnonsubsampled 2-D filter bands. Second,
thenonsubsampled directional filter bank is used to splitband pass sub-bands in each scale with
differentdirections. Figure 7 shows two-level decomposition using a combination of a NSP and
NSFB. Since there isno downsampling in pyramid decomposition, low-passsub-band has no
frequency aliasing.The bandwidthof low-pass filter is larger than π/2. Hence, the nonsubsampled
contourlet transformoffers better frequency characteristics than the original contourlet transform.
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(a) (b)

Figure 7.  Nonsubsampled contourlet transform. (a) NSFB structure that implements the NSCT. (b)
Idealized frequency partitioning obtained with the proposed structure [19]

3. IMAGE FUSION
In our study, image fusion is performed for two different sets of imagery: i) Multispectral and
Panchromatic Images and ii) Hyperspectral and Panchromatic Images. For each group of
imagery, two source images are fused together based on the fusion methods in transform domain;
i) Wavelet transform, ii) Curvelet transform, iii) Contourlet transform and iv) Nonsubsampled
contourlet transform. More details about the source images are elaborated in Section 4.

3.1. Fusion Framework
The fusion framework used in the experiments is shown in Figure 8. First, source images are
decomposed into multiscale and multidirectional components, and these components are fused
together based on a certain fusion scheme. Next, inverse transform is performed in order to obtain
a final fused image. The framework is generally the same for each transform; however, the main
difference is how each transform decomposes the source images into multiscale or
multidirectional components. Therefore, we can perform experimental study under the same
conditions, and we can investigate the effectiveness of each transform method properly. Wavelet
transform method decomposes the source images into multiscale components. On the other hand,
the other three transform methods decompose the source images into both multiscale and
multidirectional components.

Figure 8.  Fusion framework

3.2. Fusion Scheme
As mentioned above, the general framework is identical for each of the transform methods (WT,
CVT, CT, NSCT) that are employed in our study. However, each transform method decomposes
the source images in different ways to obtain necessary frequency coefficient sets. After the
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decomposition step, frequency components are ready to be utilized in the next step, which is the
fusion process. All of the transform methods follow the same fusion scheme and rule that are
described as follows:

1. The source images are decomposed according to each transform in order to obtain multiscale
or multidirectional frequency coefficients. In our experiments, decomposition level of 3 was
used since the level beyond 3 did not give significant improvement.

2. The maximum frequency fusion rule is used for the fusion of the frequency coefficients. In
other words, higher frequency coefficients are selected from each set, and these selected
frequency coefficients are used as coefficients of the fused image.

3. The inverse transform step is performed to obtain the final fusion image. The fused
coefficients are subject to the inverse transform.

3.3. Quality Assessment Metrics
We need specific analysis criteria in order to measure and evaluate the performance of the
experimental results. Qualitative and quantitative inspections are two major means to evaluate the
performance of distinct fusion schemes. However, qualitative approaches may contain subjective
factors and can be influenced by personal preferences or eyesight. Due to these problems,
quantitative approaches are often required and more desired to evaluate the experimental results.

For quantitative evaluation, a variety of fusion quality assessment methods have been introduced
by different researchers. However, it is often not easy to obtain convincing evaluations based on a
sole criterion, especially in comparative analysis of fusion results.  Therefore, in the comparative
study, more than one criterion are adopted to ensure that the analysis is accurate.

In this paper, we employ various quality assessment metrics, and they can be classified into two
categories: i) spectral analysis and ii) spatial analysis. Correlation coefficient (CC) [20], relative
average spectral error (RASE) [21], spectral angle mapper (SAM) [22] and spectral information
divergence (SID) [23] are used for spectral analysis. On the other hand, for spatial analysis, we
employ entropy (E) [24, 25], universal image quality index (UIQI) [26], signal-to-noise ratio
(SNR) and average gradient (AG) [27].

4. EXPERIMENTAL STUDY AND ANALYSIS
In our experiments, two different data sets are used. The first data set is a multispectral (MS)
image and the second data set is a hyperspectral (HS) image. Each data set is explained more in
detail in the following subsections 4.1 and 4.2 respectively. Moreover, the following subsections
explain how the pre-processing is performed over the source images prior to the image fusion.

4.1. Fusion of Multispectral and Panchromatic Images

The first data set was downloaded from [28]. This is a MS image with 2.8m resolution, which
was acquired by the commercial satellite IKONOS. It is possible to get a 0.7m panchromatic
(PAN) image of the same scene from the same resource; however, we pre-process the original
MS image to make a PAN image that can be used as the source image. Moreover, we pre-process
the original MS image to make a downgraded MS image which can be used as the second source
image. By doing this, we can eliminate the step of co-registering two source images and
computational load can be significantly reduced. Furthermore, we can obtain a perfectly co-
registered pair of source images; in our case, PAN and MS images.

Based on the above discussion, the original multispectral image is shifted, in both horizontal and
vertical directions, to produce a shifted multispectral image, and then the sequence was convolved
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with Gaussian smooth filter point-spread function (PSF) of size 3×3 with variance equal to 0.5.
Then, it is downsampled in both horizontal and vertical directions by factor of two. Lastly, zero-
mean Gaussian noise was added to the sequence. The final result is a synthesized multispectral
image that can be used in our experiment as the first source image. In order to get the second
source image, panchromatic image, the original multispectral image is spectrally integrated over
the entire spectral range. The final result is a synthesized panchromatic image that can be used as
the second source image [29]. The original MS image is used as a reference image, and the fusion
results are compared to the reference MS image to quantitatively analyze the performance.

Two source images (PAN and MS) and the original MS image as a reference are shown in Figure
9. The fusion results of (a) WT, (b) CVT, (c) CT and (d) NSCT are shown in Figure 10
respectively.

(a) (b) (c)

Figure 9. The original MS image and two synthesized source images. (a) Original MS image. (b)
Synthesized PAN source image. (c) Synthesized MS source image

(a) (b)                                 (c)                                 (d)

Figure 10. Fusion results. (a) WT. (b) CVT. (c) CT. (d) NSCT

Table 1. A performance comparison using quality assessment metrics.

Fusion
Method

Spectral Analysis Spatial Analysis

CC RASE SAM SID E UIQI SNR AG

WT 0.846 44.853 0.277 0.236 4.578 0.674 68.652 5.267

CVT 0.859 44.738 0.268 0.227 5.163 0.683 68.738 5.331
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CT 0.862 44.682 0.256 0.214 5.327 0.691 68.744 5.562

NSCT 0.879 44.527 0.245 0.205 5.582 0.699 68.757 5.924

4.2. Fusion of Hyperspectral and Panchromatic Images
The second data set is a hyperspectral image from MultiSpec© by Purdue University [30]. One
more comparative analysis is performed on a pair of hyperspectral and panchromatic images in
order to analyze the fusion results with higher reliability. The original HS image is used as a
reference image, and the original HS image is synthesized to obtain a pair of perfectly registered
HS and PAN images. The pre-processing is performed the same way as the first data set.

The original (reference) HS image and two source images (HS and PAN) are shown in Figure 11.
In Figure 12, we can see the fusion results of each transform method; (a) WT, (b) CVT, (c) CT
and (d) NSCT respectively. A performance comparison is provided in Table 2.

(a) (b) (c)

Figure 11. The original HS image and two synthesized source images. (a) Original HS image. (b)
Synthesized PAN source image. (c) Synthesized HS source image

(a) (b) (c) (d)

Figure 12. Fusion results. (a) WT. (b) CVT. (c) CT. (d) NSCT
Table 2.  A performance comparison using quality assessment metrics.

Fusion
Method

Spectral Analysis Spatial Analysis

CC RASE SAM SID E UIQI SNR AG

WT 0.653 46.769 0.247 0.182 6.137 0.621 65.657 5.183

CVT 0.659 46.756 0.242 0.179 6.382 0.648 66.374 5.369

CT 0.662 46.741 0.236 0.166 6.624 0.653 67.498 5.636



International Journal on Information Theory (IJIT), Vol.3, No.1, January 2014

16

NSCT 0.719 46.628 0.228 0.153 6.836 0.684 68.833 5.847

As we can see from Tables 1 and 2, contourlet-based methods perform better than wavelet and
curvelet based methods, both spectrally and spatially. Moreover, if we take a closer look at two
different contourlet based methods, we can see that NSCT outperforms CT. The possible reason
is because NSCT has many advantages; such as, multi-scalability, localization, multi-
directionality; hence, NSCT effectively captures the geometric information of images. Therefore,
NSCT is adopted in image fusion in order to better utilize the characteristics of the original
images and obtain fusion results with more abundant information. In addition, NSCT is shift-
invariant and the size between sub-band images and original image is the same. As a result, the
misregistration on the fusion results is effectively reduced.

Table 3.  A performance comparison of NSCT results using different decomposition levels (Dataset 1).

Decomposition
Level

Spectral Analysis Spatial Analysis

CC RASE SAM SID E UIQI SNR AG

Level 2 0.826 44.545 0.267 0.224 5.263 0.528 68.128 5.813

Level 3 0.879 44.527 0.245 0.205 5.582 0.699 68.757 5.924

Level 4 0.867 44.532 0.259 0.218 5.324 0.642 68.721 5.910

Level 5 0.858 44.549 0.269 0.231 5.295 0.624 68.710 5.886

Table 4.  A performance comparison of NSCT results using different decomposition levels (Dataset 2).

Decomposition
Level

Spectral Analysis Spatial Analysis

CC RASE SAM SID E UIQI SNR AG

Level 2 0.642 46.831 0.263 0.172 6.679 0.612 67.764 5.713

Level 3 0.719 46.628 0.228 0.153 6.836 0.684 68.833 5.847

Level 4 0.654 47.749 0.257 0.181 6.632 0.641 67.721 5.745

Level 5 0.641 47.762 0.266 0.189 6.548 0.623 67.673 5.637

Tables 3 and 4 show a comparative analysis of the fusion results of NSCT based on different
decomposition levels for datasets 1 and 2 respectively. Each column shows the fusion results with
different decomposition levels for each of the eight quality assessment metrics. It is noticeable
that the decomposition levels beyond level-3 do not necessarily enhance the fusion results. As we
can see from the tables, in terms of the spectral quality metrics, the fusion results with
decomposition levels beyond 3 are worse than the results with level 3. It is possible to say that the
correlation between the spectral bands gets worse as the decomposition level increases; hence, all
four spectral quality metrics give bad results. This also means that the spectral information is not
preserved well during both decomposition and fusion processes. Similarly, in terms of the spatial
quality metrics, decomposition levels beyond 3 provide worse fusion results. In other words,
spatial resolution decreases as the decomposition level increases beyond level 3, and the fusion
results are affected because the spatial details of the source images are not preserved in
decomposition process. Therefore, we can conclude that the decomposition level 3 is enough to
obtain satisfying fusion results

5. CONCLUSIONS
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In this paper, we performed experiments to compare and analyze the fusion results of four
different fusion methods in transform domain. We evaluated and analyzed our experimental
results using eight different performance quality metrics to ensure a correct comparison. CC,
RASE, SAM and SID were adopted to analyze the fusion results spectrally, and E, UIQI, SNR
and AGwere adopted for spatial analysis. The quality metrics are necessary in measuring the
performance of fusion results because qualitative (visual) analysis is not as precise as quantitative
analysis, i.e.,qualitative analysis can be inaccurate due to observer’s personal capabilities and
preferences. Our quantitative analyses show that NSCT performs better than the other three
fusion methods in transform domain. This result is convincing since NSCT has been developed
lately to be a true 2-D transform which offers a more suitable way of constructing
multiresolution, multiscale and multidirectional framework for fusion of discrete images. Last but
not least, we performed additional experiments in order to analyze how the number of
decomposition level affects the fusion performance.As a result,we observed that level-3 was
enough to obtain satisfying fusion results. In other words, decomposition levels beyond level-3
did not significantly improve the fusion results.
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