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ABSTRACT 

 A new smoothing method for solving ε -support vector regression (ε-SVR), tolerating a small error in 

fitting a given data sets nonlinearly is proposed in this study. Which is a smooth unconstrained 

optimization reformulation of the traditional linear programming associated with a ε-insensitive support 

vector regression. We term this redeveloped problem as ε-smooth support vector regression (ε-SSVR). 

The performance and predictive ability of ε-SSVR are investigated and compared with other methods 

such as LIBSVM (ε-SVR) and       P-SVM methods. In the present study, two Oxazolines and Oxazoles  

molecular descriptor data sets were evaluated. We demonstrate the merits of our algorithm in a series of 

experiments.  Primary experimental results illustrate that our proposed approach improves the 

regression performance and the learning efficiency. In both studied cases, the predictive ability of the ε-

SSVR model is comparable or superior to those obtained by LIBSVM and P-SVM. The results indicate 

that ε-SSVR can be used as an alternative powerful modeling method for regression studies. The 

experimental results show that the presented algorithm ε-SSVR, , plays better precisely and effectively 

than LIBSVMand P-SVM in predicting antitubercular activity. 

KEYWORDS 
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 1.INTRODUCTION  

The aim of this paper is supervised learning of real-valued functions. We study a sequence 

S	 = 		 ��x�, y�
, . . . , �x�, y�
of descriptor-target pairs, where the descriptors are vectors in ℝ� 

and the targets are real-valued scalars, yi ∈ ℝ.Our aim is to learn a function f:	ℝ� → ℝ	which 

serves a good closeness of the target values from their corresponding descriptor vectors. Such a 

function is usually mentioned to as a regression function or a regressor for short.The main aimof 
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regression problems is to find a function f�x
that can rightly predict the target values,y of new 

input descriptor data points, x, by learning from the given training data set, S.Here, learning 

from a given training dataset means finding a linear surface that accepts a small error in fitting 

this training data set. Ignoring thevery smallerrors	 that	 fall	 within	 some acceptance, say εthat 

maylead to a improvedgeneralization ability is performed bymake use of an ε -insensitive loss 

function. As well as applying purpose of support vector machines (SVMs) [1-4], the function 

f�x
is made as flat as achievable, in fitting the training data. This issue is called ε -support vector 

regression (ε-SVR) and a descriptor data pointx ∈ R�is called a support vector if"f#x $ −	y " ≥
	ε.Generally, ε-SVR is developed as a constrained minimization problem [5-6], especially, a 

convex quadratic programming problem or a linear programming problem[7-9].Suchcreations 

presents 2m more nonnegative variablesand 2m inequality constraints that increase the problem 

sizeand could increase computational complexity for solvingthe problem. In our way, we change 

the model marginally and apply the smooth methods that have been widely used for solving 

important mathematical programming problems[10-14] and the support vector machine for 

classification[15]to deal with  the problem as an unconstrained minimizationproblemstraightly. 

We name this reformulated problem as ε – smooth support vector regression(ε-SSVR). Because 

ofthe limit less arrangement of distinguishability of the objectivefunction of our unconstrained 

minimization problem, weuse a fast Newton-Armijo technique to deal with this reformulation. 

It has been shown that the sequence achieved by the Newton-Armijo technique combines to the 

unique solutionglobally and quadratically[15]. Taking benefit of ε-SSVR generation, we only 

need to solve a system of linear equations iteratively instead of solving a convex quadratic 

program or a linear program, as is the case with a conventionalε-SVR. Thus, we do not need to 

use anysophisticated optimization package tosolve ε-SSVR. In order to deal with the case of 

linear regression with aOxazolines and Oxazoles molecular descriptor dataset. 

 The proposed ε-SSVR model has strong mathematical properties, such as strong convexity and 

infinitely often differentiability. To demonstrate the proposed ε-SSVR’s capability in solving 

regression problems, we employ ε-SSVR to predict ant tuberculosis activity for Oxazolines and 

Oxazoles agents. We also compared our ε-SSVR model with P-SVM[16-17] and LIBSVM [18] 

in the aspect of prediction accuracies. The proposed ε-SSVR algorithm is implemented in 

MATLAB. 

A word about our representation and background material is given below. Entire vectors will be 

column vectors by way of this paper.For a vector		xin the n-dimensional real  descriptor space 

R�  , the plus functionx(  is denoted as �x(
 	= 	max�0, x 	, i	 = 1, … . . , n.	The scalar(inner) 

product of  two vectors x and y in the n-dimensional real  descriptor space R� will be reprsented 

by x,y and the p-norm of x will be represnted by ‖x‖.. For a matrix	A	 ∈ 	R�⨯�	, A   is the iTh 

row of A which is a row vector inR�?  A column vector of ones of arbitrary dimension will be 

reprsented by 1. For A	 ∈ 	R�⨯�	 and 	B	 ∈ 	R�⨯2	 , the kernel K�A, B
	 maps R�⨯�	 ⨯
R�⨯2	intoR�⨯2	.  In exact, if x	andy are column vectors in R� , then K�x,, y
	is a real number , 

K�A, x
 	=	K#x,, A,$,
 is a column vector in R�.  andK�A, A,
	is an m	 ⨯ 	m	matrix . If f	is a 

real valued function interpreted on the n-dimensional  real descriptor  spaceR� , the gradient of 

f	at x is represented by ∇f�x
	which is a row vector in R� and n	 ⨯ n	Hessian matrixof second 

partial derivatives of	f	 at x	is represented by∇5f�x
	.  The base of the natural logarithm will be 

represented bye. 
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2. MATERIALS AND ALGORITHAMS 

2.1 The Data Set 

The molecular descriptors of 100Oxazolines and Oxazoles derivatives [19-20] based H37Rv 

inhibitors analyzed. These molecular descriptors are generated using Padel-Descriptor tool [21]. 

The dataset covers a diverse set of molecular descriptors with a wide range of inhibitory 

activities against H37Rv. The pIC50 (observed biological activity) values range from -1 to 3. 

The dataset can be arranged in data matrix. This data matrix x	contains m samples (molecule 

structures) in rows and n descriptors in columns. Vector 	y  with order m × 1	denotes the 

measured activity of interest i.e. pIC50. Before modeling, the dataset is scaled. 

2.2 The Smooth ε –support vector regression(ε-SSVR) 

We allow a given dataset Swhich consists of m points in n-dimensional real descriptor space R� 

denoted by the matrix A ∈ R�⨯�	  and m observations of real value associated with each 

descriptor. That is,S	 = 	 ��A , y 
|	A ∈ R�, y ∈ R, for	i = 1, … … , m	we would like to search a 

nonlinear regression function,f�x
,	accepting a small error in fitting this given data set.  This 

can be performed by make use of the ε- insensitive loss  function that sets ε- insensitive “tube” 

around the data, within which errors are rejected.  Also, put into using the idea of support 

vector machines (SVMs) [1-4],thefunction f�x
	is made as 8lat	as possible in fitting thetraining 

data set. We start with the regression function f(x)	and it is expressed as	f(x) 	= 	 x,w + b. This 

problem can be formulated as an unconstrained minimization problem given as follows: 

min(;,<)∈=>?@
1
2 w,w + C1,|ξ|D																					(1)	

	
Where |ξ| 	 ∈ 	R�	, (|ξ|D) 	= 	max{0, |A w + b +	y | − ε	}	 that denotes the fitting errors and 

positive control parameter C here weights the agreement between the fitting errors and the 

flatnessof the regression functionf(x). To handle ε-insensitive loss function in the objective 

function of the above minimization problem,traditionallyit is reformulated as a constrained 

minimization problem expressed as follows:	
min(;,<,E,E∗)

1
2 w,w + C1,(ξ + ξ∗)Aw − 1b − y ≤ 1ε + ξ − Aw − 1b + y ≤ 1ε + ξ∗	ξ, ξ∗

≥ 0.																						(2)	
	
This equation (2), which is equivalent to the equation (1), is a convex quadratic minimization 

problem with n + 1	 free variables, 2m  nonnegative variables, and 2m	 imparity 

constraints.However, presenting morevariables (and constraints in the formulation increases 

theproblem size and could increase computational complexityfor dealing with the regression 

problem. 

	
In our smooth way, we change the model marginally and solve it as an unconstrained 

minimization problem preciselyapart from adding any new variable and constraint. 
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Figure1.  (a)  |x|D5and (b) pD5(x, α) with α = 5,ε=1. 

That is, the squares of 2-norm ε- insensitive loss, ‖|Aw − 1b + y|D‖55 is minimized with weight  
J
5  in place of the 1-norm of ε- insensitive loss as in Eqn (1).  Additional, we add the term 

�
5 b5  

in the objective function to induce strong convexity and to certainty that the problem has a only 

global optimal solution. These produce the following unconstrained minimization problem:                                                                                  
min(;,<)∈=>?@

12(w,w + b5) + C2 K|A w + b − y |D5                                                 �
�L�

(3) 

This formulation has been projected in active set support vector regression [22] and determined 

in its dual form. Motivated by smooth support vector machine for classification (SSVM) [15]   

the squares of ε- insensitive loss function in the above formulation can be correctly  

approximated by a smooth function which is extremely differentiable and described below. 

Thus, we are admitted to use a fast Newton-Armijo algorithm to determine the approximation 

problem. Before we make out the smooth approximation function, we exhibit some interesting 

observations: 

|x|D   =     max {0, |x| − ε } 

=  max{0, x − ε } + max{0, −x − ε }          (4)     =      (x − ε)( +  (−x − ε)(. 
In addition, (x − ε)(  . (−x − ε)(  =  0  for all  x ∈ R and ε >  0 . Thus, we have 

 

|x|D5 =  (x − ε)(5 + (−x − ε)(5 .                                                                         (5)  
In SSVM [15], the plus function x(   approximated by a smooth p-function,p(x, α) =  x +�Q log(1 + eSQT), α > 0.  It is straightforward to put in place of |x|D5  by a very correct smooth 

approximation is given by:  pD5(x, α) = #p(x − ε, α)$5 + #p(−x − ε, α)$5.                                           (6) 
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Figure1.exemplifies the square of ε- insensitive loss function and its smooth approximation in 

the case of  α  = 5 and ε  = 1.  We call this approximation pD5 -function with smoothing 

parameterα. This pD5-function is used hereto put in place of  the squares of  ε- insensitive loss 

function of Eqn. (3) to get our smooth support vector regression(ε-SSVR): 

min(;,<)∈=>?@ ΦD,Q(w, b) 

				∶= min(;,<)∈=>?@
1
2 #w,w + b5$ 

+ C
2 KpD5

�

 L�
(A w + b − y , α)																(7)					 

						= min(;,<)∈=>?@
1
2 #w,w + b5$ 

+C
2 1,pD5(A w + b − y, α)	, 

	
Where pD5(A w + b − y, α) ∈ R�  is expressed by  pD5(A w + b − y, α) = pD5(A w + b − y , α). 
	
This problem is a powerfully convex minimization problem without any restriction. It is not 

difficult to show that it has a one and only solution. Additionally, the objective function in Eqn. 

(7)is extremelydifferentiable, thus we can use a fast Newton-Armijo technique to deal with the 

problem. 

	
Before we deal with the problem in Eqn. (7) we have to show that the result of the equation (3) 

can be got by analyzing Eqn. (7) with α nearing infinity. 

 

We begin with a simple heading thatlimits the difference betweenthe squares of ε- insensitive 

loss function,|x|D5 and its smooth approximation pD5(x, α). 
	
Heading 2.2.1.For x ∈ Rand |x| < 	Z + [: 

 

pD5(x, α) 	−	 |x|D5 ≤ 2 \log 2
α ]

5
+	2σ

α log 2,																																														�8
 

where	pD5�x, α
is expressed in Eqn. (6). 

				
Proof.  We allow for three cases. For −ε	 ≤ x	 ≤ 	ε, |x|D = 0  and p(x, α)5  are a continuity 

increasing function, so we have 

pD5(x, α)	–	|x|D5 = p(x − ε, α)5 + p(−x − ε, α)5 

																																																																								≤ 2p(0, α)5 = 2 \log 2
α ]

5
, 

sincex − ε ≤ 0	and  – x − ε ≤ 0. 

 

For ε < a < [ + Z , using the result in SSVM[15] that p�x, α
5 −	�x(
5 ≤ b2cd 5
Q e5 + 5f

Q log 2 

for |x| < 	Z , we have 

pD5(x, α)	–	(|x|D)5 

																																												= 	 (p(x − ε, α))5 + (p(−x − ε, α))5 −	(x − ε)(5  
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																																	≤ #p(x − ε, α)$5 − (x − ε)(	5 +	(p(0, α))5 

≤		 2 \log 2
α ]

5
+ 2σ

α log 2. 
Likewise, for the case of  – ε − σ < a <	– [ , we have 

pD5�x, α
	–	�|x|D)5 ≤ 2 \log 2
α ]

5
+ 2σ

α log 2. 
 

Hence,	pD5�x, α
	– |x|D5 ≤ 2 b2cd 5
Q e5 + 5f

Q log 2. 
 

By Heading 2.1, we have that as the smoothing parameter α reaches infinity, the one and only 

solution of Equation (7) reaches, the one and only solution of Equation (3). We shall do this for 

a function fD(x) given in Eqn. (9) below that includes the objective function of Eqn. (3) and for 

a function gD(x, α) given in Eqn. (10) below which includes the SSVR function of Eqn. (7).  
Axiom 2.2.2. Let  A ∈  R�⨯� andb ∈  R�⨯� .  Explain the real valued functions  fD(x) and gD(x, α)  in the n-dimensional real molecular descriptor spaceR�: 

 

 

 

fD(x) = 12 K"Agx − b"D5
�

 L�
+ 12 ‖x‖55                                                                        (9) 

 

And 

                         gD(x, α) =  �5 ∑  pD5(� L� Agx − b, α) + �5 ‖x‖5 5  ,  (10)       

 

Withε,α > 0. 
 

1. There exists a one and only solution  x  of  minT∈=>fD(x) and one and only solution xQof  minT∈=>gD(x, α). 
 

2.  For all  α > 0 , we have the following inequality: 

 

‖xQ − x‖55  ≤ m j\log 2α ]5 + ξ log 2α k ,                                                                       (11) 

 

Whereξ is expressed as follows: 

 ξ =  max�l l�|(Ax − b) |.                                                                                        (12) 

 

Thus  xQ gathers to xas α goes to endlessness with an upper limit given by Eqn. (11). 

 

The proof can be adapted from the results in SSVM [15] and, thus, excluded here. We now 

express a Newton-Armijo algorithm for solving the smooth equation (7). 
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2.2.1A NEWTON-ARMIJO ALGORITHM FOR 	m-SSVR 

By utilizing the results of the preceding section and taking benefitof the twice differentiability 

of the objectivefunction in Eqn. (7), we determine a globally and quadratically convergent 

Newton-Armijo algorithm for solving Eqn. (7). 

	
Algorithm 2.3.1 Newton-ArmijoAlgorithm  For	n-SSVR 

Start with any choice of initial point (wo, bo) ∈ R�(�. Having (w , b ), terminate if the gradient 

of the objective function of Eqn. (7) is zero, that is, 	∇ΦD,Q(w , b )=0.  Else calculate 

(w (�,b (�)  as follows: 

 

1.       Newton Direction:Decide the directiond ∈ R�(� by allocatingequal to zero the    

Linearization of∇ΦD,Q(w, b) all over(w , b ), which results inn + 1 

Linear equations with n + 1 variables: 

 

∇5ΦD,Q(w , b )d   = −∇ΦD,Q(w , b ),.																																																																(13) 

 

2.     Armijo Step  size [1]:   Choose a stepsize λ ∈ R  such that:  

 

#w (�, b (�$ = (w , b )+λ d  ,                                      (14)      

 

whereλ   =   max{1, �5,
�
r , … … }such that: 

 

																								ΦD,Q#w , b $ − ΦD,Q((w , b ) +λ d ≥ −δλ ΦD,Q(w , b )d ,  (15) 

 

where δ ∈ b0, �5e . 

Note that animportant difference between our smoothingapproach and that of the traditional 

SVR [7-9] is that we are solving a linear system of equations (13) here, rather solving a 

quadratic program, as is the case with the conventional SVR. 

	
2.3LIBSVM  

LIBSVM [18] is a library for support vector machines. LIBSVM is currentlyone of the most 

widely used SVM software. This software contains C-support vector classification (C-SVC), 	v-

support vector classification (v-SVC), ε-support vector regression (ε-SVR), 		v-support vector 

regression (v-SVR).  All SVM formulations supported in LIBSVM are quadratic minimization 

problems 

	
2.4Potential-Support Vector Machines(P-SVM) 

P-SVM [16-17] is a supervised learning method used for classification and regression. As well 

as standard Support Vector Machines, it is based on kernels. Kernel Methods approach the 

problem by mapping the data into a high dimensional feature space, where each coordinate 

corresponds to one feature of the data items, transforming the data into a set of points in a 

Euclidean space. In that space, a variety of methods can be used to find relations between the 

data. 
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2.5Experimental Evaluation 

In order to evaluate how well each method generalizedto unseen data, we split the entire data 

set into two parts,the training set and testing set. The training data was usedto generate the 

regression function that is learning fromtraining data; the testing set, which is not involved in 

thetraining procedure, was used to evaluate the predictionability of the resulting regression 

function.We also used a tabular structure scheme in splitting the entire data set to keep the 

“similarity” between training and testing data sets [23]. That is, we tried to make the training 

set and the testing set have the similar observation distributions. A smaller testing error 

indicates better prediction ability. We performed tenfold cross-validation on each data set [24] 

and reported the average testing error in our numerical results. Table 1 gives features of two 

descriptor datasets. 

 

 Table 1: Features of two descriptor datasets 

   
 

 

   
In all experiments, 2-norm relative error was chosen to evaluate the tolerance between the 

predicted values and the observations. For an observation vector y and the predicted vector yv , 

the 2-norm relative error (SRE) of two vectors y and yv was defined as follows. 

 

SRE =  ‖y − yv‖5‖y‖5                                                 (16) 

 

In statistics, the mean absolute error is a quantity used to measure how close predictions are to 

the eventual outcomes. The mean absolute error (MAE) is given by 

MAE =  1n K|yv − y |
�

 L�
  =  1n K|e |

�
 L�

                   (17) 

As the name suggests, the mean absolute error is an average of the absolute errors  e =yv − y , 
where  yv  is the prediction and y  the observed value.  

 

In statistics, the coefficient of determination, denoted R5 and pronounced R squared, is used in 

the context of statistical models whose main purpose is the prediction of future outcomes on the 

basis of other related information.  R5is most often seen as a number between 0 and 1, used to 

describe how well a regression line fits a set of data. A R5  near 1 indicates that a regression 

line fits the data well, while a R5 close to 0 indicates a regression line does not fit the data very 

well. It is the proportion of variability in a data set that is accounted for by the statistical 

model. It provides a measure of how well future outcomes are likely to be predicted by the 

model. 

  Data set(Molecular 

Descriptors of  

Oxazolines and 

Oxazoles Derivatives) 

Train 

Size 

Test Size  

Attributes 

 Full 75 X 254 25 X 254 254  

 Reduced 75 X 71 25 X 71 71 
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R5 = 1 −  ∑ (y − yv )5� L�∑ (y − y)5� L�                     (18) 

 
The predictive power of the models developed on the calculated statistical parameters standard 

error of prediction (SEP) and relative error of prediction (REP)% as follows: 

 

SEP = z∑ (yv − y )5� L� n {o.|                   (19)  
 

REP(%) =  100y ~1n K(yv − y )5�
 L�

�o.| (20) 

 
The performancesof models were evaluated in terms of root mean square error (RMSE), which 

was defined as below: 

���� =  �∑ #�� − ���$5��L� �                      (21) 
Whereyv  ,y and  y are the predicted, observed and mean activity property, respectively. 

 

3.RESULTS AND DISCUSSION 

In this section, we demonstrate the effectiveness of our proposed approachε-SSVR by 

comparing it to LIBSVM (ε-SVR) and P-SVM. In the following experiments, training is done 

with Gaussian kernel function k(x1, x2) = 	exp			 b−ϒ�x − xg�5e , where ϒis the is the width 

of the Gaussian kernel,	i, j = 1,… . . , l. We perform tenfold cross-validation on each dataset and 

record the average testing error in our numerical results. The performances of ε-SSVR for 

regression depend on the combination of several parameters They are capacity parameter	�, ε 

of ε- insensitive loss function and ϒparameter.  �	is a regularization parameter that controls the 

tradeoff between maximizing the margin and minimizing the training error. In practice the 

parameter � is varied through a wide range of values and the optimal performance assessed 

using a separate test set.  Regularization parameter �, whose effect on the RMSE is shown in 

Figure 1a for full descriptor datasetandFigure 1b for reduced descriptor dataset. 
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Figure 1a.The selection of the optimal capacity factor� (8350) for ε-SSVR(ε=0.1,	ϒ=0.0217) 

For the Full descriptordataset, The RMSE valuefor ε-SSVRmodel 0.3563 is small for selected 

optimal parameter C, compared to RMSE values for other two models i.e. LIBSVM (ε-SVR) 

and P-SVM are 0.3665 and 0.5237.Similarly,for the reduced descriptor dataset,The RMSE 

value for ε-SSVR model 0.3339 is small for selected optimal parameter C, compared to RMSE 

values for other two models i.e. LIBSVM (ε-SVR) and P-SVM are 0.3791 and 0.5237.  The 

optimal value for ε depends on the type of noise present in the data, which is usually unknown. 

Even if enough knowledge of the noise is available to select an optimal value for ε, there is the 

practical consideration of the number of resulting support vectors. Ε insensitivity prevents the 

entire training set meeting boundary conditions and so allows for the possibility of sparsely in 

the dual formulations solution. 
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Figure 1b. The selection of the optimal capacity factor�(1000000) for ε-SSVR(ε=0.1,	ϒ=0.02)  
So, choosing the appropriate value of ε is critical from theory. To find an optimal ε, the root 

mean squares error (RMSE) on LOO cross-validation on different ε was calculated. The curves 

of RMSE versus the epsilon (ε) is shown in Figure 2a and Figure 2b. 

 
Figure 2a. The selection of the optimal epsilon (0.1) for  ε-SSVR(�  = 1000, ϒ=0.02) 

For the Full descriptor dataset , The RMSE  value for ε-SSVR model 0.3605  is small for 

selected optimal  epsilon(ε), compared to RMSE value for LIBSVM(ε-SVR) model is closer i.e. 

0.3665 but comparable to the proposed model and bigRMSE value  for P-SVM model is 

0.5237. 
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Figure 2b.The selection of the optimal epsilon (0.1) for  ε-SSVR(�= 10000000, ϒ=0.01) 

Similarly , for the Reduced descriptor dataset , The RMSE  value for ε-SSVR model  0.3216 is 

small for selected optimal epsilon(ε) , compared to RMSE values for other two models i.e. 

LIBSVM(ε-SVR) and P-SVM are 0.3386 and 0.4579. 

 
Figure  3a. The selection of the optimal ϒ(0.02) for  ε-SSVR(C  =1000, ε=0.1) 

Parameter tuning was conducted in ε-SSVR, where the ϒparameter in the Gaussian kernel  

function was varied from 0.01 to 0.09 in steps 0.01 to select optimal parameter. The value of ϒ 

is updated based on the minimization LOO tuning error rather than directly minimizing the 

training error. The curves of RMSE versus the gamma(ϒ) is shown in Figure 3a and Figure 3b. 



International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.2, April 2013 

61 

 

 

 

 
Figure  3b. The selection of the optimal ϒ(0.01) for  ε-SSVR(C  =1000000, ε=0.1) 

For the Full descriptordataset , The RMSE  value for ε-SSVR model  0.3607 is small for 

selected optimal parameter ϒ   , compared to RMSE values for other two models i.e. 

LIBSVM(ε-SVR) and P-SVM are 0.3675 and 0.5224. Similarly , for the Reduced descriptor 

dataset , The RMSE  value for ε-SSVR model  0.3161 is small for selected optimal parameterϒ, 

compared to RMSE values for other two models i.e.LIBSVM(ε-SVR) and P-SVM are 0.3386 

and 0.4579. 

 
The statistical parameters calculated for the ε-SSVR, LIBSVM(ε-SVR) and P-SVM models are 

represented in Table 2 and Table 3.   
Table 2. Performance Comparison between ε-SSVR,ε-SVR and P-SVM for Full descriptor  

dataset 

Algorithm (ε, C,ϒ) Train 

Error(��) 

Test 

Error(��) 

MAE SRE SEP REP(%) 

ε-SSVR 

ε-SVR 

P-SVM  

 

(0.1,1000,0.0217) 

0.9790 

0.9825 

0.8248 

0.8183 

0.8122 

0.6166 

0.0994 

0.0918 

0.2510 

0.1071 

0.0979 

0.3093 

0.3679 

0.3741 

0.5345 

53.7758 

54.6693 

78.1207 

ε-SSVR 

ε-SVR 

P-SVM 

 

(0.1,8350,0.0217) 

0.9839 

0.9825 

0.8248 

0.8226 

0.8122 

0.6166 

0.0900 

0.0918 

0.2510 

0.0939 

0.0979 

0.3093 

0.3636 

0.3741 

0.5345 

53.1465 

54.6693 

78.1207 

ε-SSVR 

ε-SVR 

P-SVM  

 

(0.1,1000,0.02) 

0.9778 

0.9823 

0.8248 

0.8181 

0.8113 

0.6186 

0.1019 

0.0922 

0.2506 

 

0.1100 

0.0984 

0.3093 

0.3681 

0.3750 

0.5332 

53.8052 

54.8121 

77.9205  
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In these tables, statistical parameters R-square 	(R5)  ,Mean absolute error (MAE),2-N 

Normalization(SRE), standard error of prediction (SEP) and relative error of prediction 

(REP%) obtained by applying the ε-SSVR, ε-SVR  and P-SVM methods to the test set indicate 

a good external predictability of the  models. 

 
Table 3. Performance Comparison between ε-SSVR,ε-SVR and P-SVM for Reduced descriptor  

dataset 

Algorithm ( ε, C,ϒ) Train 

Error(��) 

Test 

Error(��) 

 MAE  SRE SEP REP(%) 

ε-SSVR 

ε-SVR 

P-SVM  

 

(0.1,1000000,0.02) 

0.9841 

0.9847 

0.8001 

0.8441 

0.7991 

0.7053 

0.0881 

0.0827 

0.2612 

0.0931 

0.0914 

0.3304 

0.3408 

0.3870 

0.4687 

49.8084 

56.5533 

68.4937  

ε-SSVR 

ε-SVR 

P-SVM 

 

(0.1,10000000,0.01) 

0.9849 

0.9829 

0.8002 

0.8555 

0.8397 

0.7069 

0.0851 

0.0892 

0.2611 

0.0908 

0.0967 

0.3303 

0.3282 

0.3456 

0.4673 

47.9642 

50.5103 

68.3036 

ε-SSVR 

ε-SVR 

P-SVM 

 

(0.1,1000000,0.01) 

0.9796 

0.9829 

0.8002 

0.8603 

0.8397 

0.7069 

0.0964 

0.0892 

0.2611 

 

0.1056 

0.0967  

0.3303 

 

0.3226 

0.3456 

0.4673 

47.1515 

50.5103 

68.3036  

 
An experimental results show that experiments carried out from reduced descriptor datasets 

shows good results rather than full descriptor dataset. As from can be seen from table 4 , the 

results of ε-SSVR models are better than those obtainedby ε-SVR  and P-SVM models for 

Reduced descriptor data set.  

 
Figure 4. Correlation between observed and predicted values for training set and test set 

generated by ε-SSVR  

Figure4, 5and 6 are the scatter plot of the three models, which shows a correlation between 

observed value and ant tuberculosisactivity prediction in the training and test set. 
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Figure 5. Correlation between observed and predicted values for training set and test set 

generated by ε-SVR  

 

 

 

Figure 6. Correlation between observed and predicted values for training set and test set 

generated by P-SVM algorithm 

 

Our numerical results have demonstrated that ε-SSVR is a powerful tool for solving   

regressionProblems handle the massive data sets without scarifying any prediction accuracy. In 

the tuning process of these experiments, we found out that LIBSVM and P-SVM become very 

slow when the control parameter � becomes bigger, while ε-SSVR is quite robust to the control 

parameter	�.  Although we solved the ε-insensitive regression problem is an unconstrained 

minimization problem. 
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4CONCLUSION 

In the present work, ε-SSVR, which is a smooth unconstrained optimization reformulation of 

the traditional quadratic program associated with a ε-insensitive support vector regression.We 

have compared the performance of, ε-SSVR, LIBSVM and P-SVM models with two datasets. 

The obtained results show that ε-SSVR can be used to derive statistical model with better 

qualities and better generalization capabilities than linear regression methods. Ε-

SSVRalgorithm exhibits the better overall performance and a better predictive ability than the 

LIBSVM and P-SVM models. The experimental results indicate ε-SSVR has high precision and 

good generalization ability. 
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