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ABSRACT

Many of the robotic grasping researches have beeunding on stationary objects. And for dynamic mgvi
objects, researchers have been using real timeucagtimages to locate objects dynamically. However,
this approach of controlling the grasping processquite costly, implying a lot of resources and gma
processing.Therefore, it is indispensable to sebkramethod of simpler handling... In this paper, axe
going to detail the requirements to manipulate anauaoid robot arm with 7 degree-of-freedom to grasp
and handle any moving objects in the 3-D envirortnepresence or not of obstacles and without gisin
the cameras. We use the OpenRAVE simulation emvént) as well as, a robot arm instrumented with the
Barrett hand. We also describe a randomized plagpmilgorithm capable of planning. This algorithmais
extent of RRT-JT that combines exploration, usiri@apidly-exploring Random Tree, with exploitation,
using Jacobian-based gradient descent, to instaug¢tDoF WAM robotic arm, in order to grasp a moving
target, while avoiding possible encountered obsscl We present a simulation of a scenario thatsta
with tracking a moving mug then grasping it andafiy placing the mug in a determined position, asxy

a maximum rate of success in a reasonable time.
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1.INTRODUCTION

The problem of grasping a moving object in the enes of obstacles with a robotic manipulator
has been reported in different works. There hae lmeany studies on grasping motion planning
for a manipulator to avoid obstacles [1], [2], [8lne may want to apply a method used for
mobile robots, but it would cause a problem siricenly focuses on grasping motion of robot
hands and since the configuration space dimenssono® large. Motion planning for a
manipulator to avoid obstacles, however, which sakecount of the interference between
machine joints and obstacles, has been extensstatijed in recent years and now has reached a
practical level. Grasping operations in an envirenmwith obstacles are now commonly
conducted in industrial applications and by servatmts.

Many robotic applications have been designed totheeconcept of “Planning Using Visual

Information”, i.e. control a given robot manipulatea a “servo loop” that use real world images
to take decisions [4], [5], [6]. At this point, these of predictive algorithms, as the core of the
robot servo, tend to offer a better performancetha tracking and grasping process. [7]
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developed a system to grasp moving targets usistatic camera and precalibrated camera-
manipulator transform. [8] proposed a control te@pproach for grasping using visual
information. [9] presented a system to tramkd grasp an electric toy train moving im a
oval path using calibrated static stereo camer

The major challenges encountered within the visealoing are mainly, how to reduce the robot
grasp response, considering the delay introducathages processing, and who to resolve target
occlusion, when obstacles may obstruct the poleni@y to the object. Predictive algorithms
construct on of the best approaches to escape merébrmance limits, and ensuring a smart
tracking and grasping process. [10] use a priedictmodule which consists of a linear
predictor with the purpose of predicting thedtion that a moving object will have and
thus generate the control signal to move dyes of a humanoid robot, which is capable
of using behavior models similar to those hafman infants to track objects. [11] present a
tracking algorithm based on a linear predictiof second order solved by the Maximum
Entropy Method. It attempts to predict thentceid of the moving object in the next
frame, based on several past centroid measumtsnil2] represent the tracked object as a
constellation of spatially localized linear gictors which are trained on a single image
sequence. In a learning stage, sets of piwdlese intensities allow for optimal predicti

of the transformations are selected as a aupdor the linear predictor . [13]
Implementation of tracking and capturing a movilgeat using a mobile robot.

The researchers who use the visual servoing syatehthe cameras for grasping moving object
find many difficulties to record images, to trehemn, because of a lot computing and image
processing and also who use the predictive alguostlind a problem in the complexity of
algorithms witch based on many calculated and esiim[14]. In this research we want to grasp
a moving object with limited motion velocity. Thign be done by determining desired position
for the object, the robot moves and aligns the effettor with the object and reaches towards it.
This paper presents a motion planning and cdimgodn arm of a humanoid robot for grasping
and manipulating of a moving object without camel&® used an algorithm to control the end
effector pose (position and orientation) with exgto the pose of objects which can be moved in
the workspace of the robot. The proposed algorigiiiecessfully grasped a moving object in a
reasonable time.

After introducing the grasp object problem, a diston is made to distinguish the actual solution
among the others published in the literature. Acdpgon of the Rapidly-Exploring Random
Trees (RRT) is detailed in section 2. Then, inisec8, we give a brief overview of the transpose
of the Jacobian. The next section contains a ghger of the WAM™ arm. In Section 5
contains the Robot Dynamics. In Section 6, someltesare given. Section 7  presents
conclusions drawn from this work.

2. RAPIDLY -EXPLORING RANDOM TREES (RRT)

In previous work [15],[16], approaching the motiplanning problem was based on placing the
end effector at pre-configured locations, compuisihg the inverse kinematics(IK) applied to
some initial samples taken from the goal regionesehlocations are then set as goals for a
randomized planner, such as an RRT or BiRRT [1I8].[ The solution presented by this
approach remain unfinished because of the missdmnes! probabilistic aspect. The issue is that
the planner is forced to use numbers priori chds®En the goal regions.

Another way to tackle the grasp planning, certgipe$ of workspace goals, is to explore the

configuration space of the robot with a heurisgarsh tree, and try to push the exploration

toward one goal region [19]. Nevertheless, the gegions and heuristics presented in [20] are
2
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highly problem specific to generalize and trickyadjust. Drumwright and Ng-Thow-Hing [21]
employ a similar strategy of extending toward admanly-generated IK solution for a workspace
point. In [22], Vande Weghe et al. present the RRTalgorithm, which uses a forward-searching
tree to explore the C-space and a gradient-desmantstic based on the Jacobian-transpose to
bias the tree toward a work-space goal point.

[23] present two probabilistically complete plarsiean extension of RRT-JT, and a new
algorithm called IKBIRRT. Both algorithms functidy interleaving exploration of the robot's C-
space with exploitation of WGRs(Workspace GoaliBeg). The extended RRT-JT (Figure 2) is
designed for robots that do not have such algostamd is able to combine the configuration
space exploration of RRTs with a workspace goa biaproduce direct paths through complex
environments extremely efficiently, without the dder any inverse kinematics.

Figurel. Configuration space(C-space)

3.USNG THE JACOBIAN

Given a robot arm configuration @ (the configuration space) and a desired endteifgoal

Xg X, where X is the space of end effector positior8 Re are interested in computing an
extension in configuration space from g to wargsAdthough the mapping from Q to X is often
nonlinear and hence expensive to deduct, its derevdhe Jacobian,is a linear map from the
tangent space of Q to that of X, that can be coetbeasily(Jy=x, where x X is the end
effector position (or pose) corresponding to gealty, to drive the end effector to a desired
configuration xj, (d xg /dt O: object moves slowly) we could compute the ee@®)=( xy x) and

run a controller of the forng=KJ e, where K is a positive gain. This simple congolis
capable to attain the target without considering possible barriers or articulation limits.
However this turn into a complex controller, whée inverse of the Jacobian must be done at
each time step. To escape this expensive appreachyse alternatively the transpose of the

Jacobian and the control law fall into the formqeffKJTe. The controller eliminates the large

overhead of computing the inverse by using thg-tasompute Jacobian instead. It is easy to
show that, under the same obstacle-free requiraresthe Jacobian inverse controller, the
Jacobian transpose(JT) controller is also guardrtieeeach the goal. The instantaneous motion

of the end effector is given by=Jq :J(KJTe). The inner product of this Instantaneous motion

with the error vector is given byTx = keldJe 0. As this is always positive, under our
assumptions with obstacles, we may ensure thatoméroller will be able to make onward
progress towards the target[24].
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RRT-IT

Figure 2. Depiction of the RRT-JT algorithm seanchin C-space: from the start configuration to (WSER
The forward-searching tree is shown with green sptlee blue regions are obstacles, [14].

4. THE WAM™ ARM

The WAM arm is a robotic back drivable manipulatbhas a stable joint-torque control with a
direct-drive capability. It offers a zero backslasghd near zero friction to enhance the
performance of today’s robots. It comes with thmain variants 4-DoF, 7- DoF, both with
human-like kinematics, and 4-DoF with 3-DoF Gimbdéis articulation ranges go beyond those
for conventional robotic arms [25].

We use WAM 7-DoF Arm with attached Barrett Hand.
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Figure 3. WAM 7-DoF dimensions and D-H frames, [26]

Figure 3. presents the whole 7-DoF WAM systerthainitial position. A positive joint motion
is on the right hand rule, for each axis.The folloyvequation of homogeneous transformation in
Figure 4 is used to determine the transformatidwéen the axes K and K-1.
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Figure 4. D-H generalized transform matrix

eak 1=the distance fror@k 1 toZk measured alon¥k 1
«dk=the distance fronXk 1 to Xk measured alongk

e k 1 =angle betwee@k 1 to Zk was approximatel)Xk 1
e k=angle betweeXk 1 to Xk was approximatelyk

The Table 1 contains the parameters of the arm TviloF

Table 1. 7-DoF WAM frame parameters

K ak K dk

1 0 /2 0 1
2 0 /2 0 2
3 0.045 /2 0.55 3
4 0.045 /2 0 4
5 0 /2 0.3 5
6 0 /2 0 6
7 0 0 0.060 7
T 0 0 0

As with the previous example, we define the frame

for our specific end effector. By

multiplying all of the transforms up to and incladithe final frame , we determine the forward
kinematics for any frame on the robot. To detemrthe end tip location and orientation we use
the following equation:

5. RoBoT DYNAMICS

The dynamic simulation uses the Lagrange equatiorget the angular acceleration from the
torque of each joint.

First, | computed the body Jacobian of each joirdorresponding to , where is the ith

joint’s inertia matrix. So the manipulator inertratrix can be calculated as

Also calculate potential part,
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Second, | computed the torques of each joint usaggange equation, which is,

— " —  #

where represents the torque of the joint and,

$e'&'(_: E

After expanding the components of the equationetieation is as following:
)* +$ 98! gok #

where+$ ¢ Ris the Coriolis and centrifugal force term ¢, $ ¢ %is the gravity term and
- T I 239 2°3
T /01 = %) 5

6. RESULTS AND ANALYSIS

To demonstrate and illustrate the proposed praegdie present an example which the robot is
equipped with a 7-DoF arm (see Figure 3) and atfirgered Barrett hand(in fact in each time
there are three tests: testl, test2 and testBe).gbal is to follow a moving model mug, stably
holding it, pick it up and move it to the desirambspion while avoiding the existing obstacles. The
mug was moving in a straight line trajectory in gpgace with velocity range 8-32 mm/s. The
initial positions of the end effector were (-0.730r40m ,2.168m) and those of the moving
object were (-0.005m,-0.200m ,1.105m). In ordegrasp the moving object stably and move it,
the robot hand reaches the object than it closdiers.

6.1. Grasping object in the environment without obtacles
6.1.1. Object moves with velocity1= 8mm/s:

The transformation equations used to update thdpulaor's joints until the distance between
the end effector and the moving object almost etpualero. Once the position of the contact is
achieved, the Barret hand closes its fingers aaspgrthe object.

Figure 5: Successful grasping of a moving object
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As mentioned in Figure 5, the grasping of the dbigaone successfully. Figure 5.a show that
the hand of the robot keeps at a distamoen fthe object, the Barret hand and the objext ar
in the initial position, Figure 5.b the object meweith the velocityvl= 8mm/s and the robot
moves to the position of the centroid of the eohjopens the fingers, closes the fingers and

finally grasps the object. In Figure 5.c the ropmks up the object and moves it to the desired
position.

To capture the moving object safety and to lifujit stably without slippage, the end effector
needs to be as controlled as the relation betwkein position and the object'ones. So they
determine the actual position of the moving objaat] pick the closest distance between the end
effector and the target.

(a) ®)

Trajectory of the object )(c)

Figure 6: The trajectory of the object

Those tree figures represent the same trajectoaynodéving object with the same velocitit in a
different dimension. Figure 6.a illustrates thgettory based on the Z axis, while figure 6.b

illustrates the trajectory in the plane(Y,Z), andufe 6.c is in the space(X,Y,Z). The object
moves in a straight line.

T = T Teal
(" Trajectory of the object ) @  (Trajectory of the end-cffector )

Figure 7: The trajectory of the object and the efidctor

Figure 7.a illustrates the curves of the third: téee robot grasps the object in tifigrasp= 3.75

s, which moves according to the Z axis with velpdit, Figure 7.b represents the curves of the
first test: the robot grasps the object in tifiggasp= 3.99 s, which moves in the plane(Y,Z) with
velocity V1, and in Figure 7.c the curves of the second: testrobot grasps the object in time
Tgrasp= 2.81 s, which moves in the space(X,Y,Z) with egpV1.
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Table2. Object moves wittv1

according (Zaxis in(Y,2) in(X,Y,Z)

Tgras | Tends) | Tgrasd| Tends Tgrasd | Tends)
test| 2091 9.94 3.99 10.08 3.22 8.27
test2.40 6.55 2.55 6.28 2.81 6.49
testf 3.75| 6.8 3.21 8.15| 4.17-11.3 15.26

The table 2 provides the results in separately;tithe for grasping the moving object and, the
time to move the object to the desired positioa,dhject moves with velocityl Times are nigh

in the different test. In test3 where the objecvewmin the space, we note two times to grasping:
the first grasping attempt fails, the robot dosgeond grasp and it succeeds.

6.1.2. Object moves with velocityw2=4V1.

i
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Figure 8: The trajectory of the end effector arel abject

Figure 8.a the curves of the second test: the rgtasps the object in tiniBgrasp= 4.07 s, the
object moves according to the Z axis with velo&i® Figure 8.b the curves of the third test: the
robot grasps the object in tinfgrasp= 3.48 s, it moves in the plane (Y, Z) with velgcit2,
Figure 8.c the curves of the second test: thetrgtasps the object in timEgrasp= 3.02 s, the
latter moves in the space(X,Y,Z) with velocitg.

Table3. OBJECT moves withvV2
according (Zxxis in(Y,Z) in(X,Y,Z2)
TorasdS) TendS) [TorasdS) [TendS) [TorasdS) [TendS)
test| 3.89 8.57 2.9 7.54 3.75 8.73

test| 4.07 9.93 3.05 8.57| 3.02 8.18
tesg| 3.51 114 3.48 7.48 3.21 11.8

The table 3 presents results separately of thefomgrasping the moving object which moves
with velocity V2=4V1 and the time to move the object to the desiredipas
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If we increase the velocity of the object, we d& the results are nigh but slightly higher.
Therefore, increasing the speed affects on the dingeasping the moving object, even the
direction of movement of the object affects ontilve of grasping.

As shown in the tables, our algorithm successfpiltked it up 100% of the time, and our robot
successfully grasped the objects. We demonstratetta robot is able to grasp the moving object
in a reasonable time.

6.2 . Grasping object in the presence of one obsta in the environment:

6.2.1. Object moves with velocityV1= 8mm/s:

ey G

Figure 9. Grasps a moving object while avoidingtable with success.

As presented in Figure 9, the grasping of the aligedone successfully. In Figure 9.a, the Barret
hand and the object are in their initial locatiolbe object moves with a velocity of 8mm/s. In
Figure 9.b, the robot reach the centroid of theectjwhile keep avoiding any encountered
obstacles, and finally grasps the object and cltsedingers. In figure 9.c the robot pick up the
object while avoiding obstacle and in figure 9.d thbot moves the object to a desired position.

To capture a moving object safety without collisiand to lift up the object stably without
slippage, the end effectors needs to be controlleile considering the relation between the
position of the end effectors, the position of theving object and the position of the obstacle.
The end effectors determines the position of ttstacle (in the middle between the object and
the end effectors) and the moving object and &eldte shortest distance from its current
position to the moving object, while avoiding olzdtain the environment.
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()

Figure 10. The trajectory of the end effector greldbject

Figure 10.a illustrates the curves of the first:téhe robot grasps the object in tiffigrasp= 2.45

s, which moves according to the Z axis with velo#lt, figure 10.b illustrates the curves of the
third test: the robot grasps the object in tifiggasp= 3.03 s, which moves in the plane(Y,2)
with velocity V1, figure 10.c illustrates the curves of the secdest: the robot grasps the object
in time Tgrasp= 2.91 s, which moves in the space(X,Y,Z) with eépV1.

Table 4.object moves witiW1 in the presence of obstacle

according in(Y,Z) in(X,Y,2)

Tgras [TendsTgrasplendsTgrasplends
wlce) N (<) N ()
testt 2.45 8.91 3.11| 7.63 5.16| 11.38

tesp 2.95 9.08 2.83) 9.33] 291 7.07
tesB 3.18 9.74 3.037.6 4.24) 8.77

The table 4 presents results separately of the fimgrasping the moving object which moves
with velocity V1 while avoiding obstacle, and the time to movedhgect to the desired position.
Times are nigh in the different test. The directtdrmovement of the object affects on the time
grasping Tgrasp and on the time to move the object to desiredtipagTend.

6.2.2.0bject moves with velocityV2=4V1.:

=1

v
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= S

i L S ¥
Do 4 b bbb

Figure 11. The trajectory of the end effector greldbject
10
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Figure 11.a illustrates the curves of the secestl the robot grasps the object in tifrgrasp=
2.43 s, which moves according to the Z axis witloeigy , figure 11.b illustrates the curves of
the second test: the robot grasps the object ia Tignasp= 2.74 s, which moves in the plane (Y,
Z) with velocity V2, figure 11.c illustrates the curves of the secomrdt: the robot grasps the
object in timeTgrasp= 2.42 s, which moves in the space(X,Y,Z) withoedly V2.

Tableb. object moves witlv2 in the presence of obstacle

according (Zaxis in(Y,Z2) in(X,Y,Z2)

TorasdS) | Tend®  Toras® TendS) Toras(S) Tendd)
test 2.96 9.47 3.58 9.57 3 9.51
test 2.4% 8.1¢ 2.74 7.€ 2.4z 7.1€
test 2.37 6.87 2.63 8.13 2.54 7.35

The table 5 presents results separately of the fiimgrasping the moving object which moves
with velocity V2=4V1 while avoiding obstacle andettime to move the object to the desired
position.

If we increase the velocity of the object, we skeat tthe results are nigh but slightly higher.
Therefore, increasing the speed affects on the timgrasping the moving object, even the
direction of movement of the object affects on tihee of grasping, we note that in the presence
of obstacles the times are slightly higher thathn@absence of obstacles.

As shown in the tables, our algorithm successfpitked it up 100% of the time, and our robot
successfully grasped the objects. We demonstratetth robot is able to grasp the moving object
in a reasonable time. The times recorded in thegmee of the obstacle are slightly higher than
recorded in the absence of the obstacle.

6.3. Grasping object in the presence of two obstad in the environment:

In the presence of obstacles, we plan a path iroF-EBonfiguration space that takes the end
effector from the starting position to a goal posit avoiding obstacles. For computing the goal
orientation of the end effector and the configuratof the fingers, we used a criterion that
attempts to minimize the opening of the hand withouching the object being grasped or other
nearby obstacles. Finally finds a shortest patimfithe starting position to possible target
positions.

11
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6.3.1. Two obstacles between the object and the tted position(see Figure 12):

Figure 12. Two obstacles between the object andekeed position

The presence of two obstacles between the objedh&ndesired position affects on the time to
move the object to the desired position.

Figure 13. The trajectory of the end effector éml dbject while avoiding two obstacles betweerotiject
and the desired position

Figure 13.a illustrates the curves of the secest the robot grasps the object in tifrgrasp=
3.67 s andTend= 8.99 s, which moves according to the Z axis wigtocity V2, figure 13.b
illustrates the curves of the second test: thetrgbasps the object in timegrasp= 2.93 s and
Tend= 8.83 s, which moves in the plane (Y, Z) with ity V2, figure 13.c illustrates the
curves of the second test: the robot grasps tfeeoin timeTgrasp= 3.12 s and’end= 10.62 s,
which moves in the space(X,Y,Z) with velocif.

12
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6.3.2. Two obstacles between the arm and the objésse Figure 14):

Figure 14. Two obstacles between the arm and tfeziob

The presence of two obstacles between the armhanabject affects on the time to grasp the
moving object.

Figure 15. The trajectory of the end effector dreldbject while avoiding two obstacles betweeratime
and the object

Figure 15.a illustrates the curves of the secest the robot grasps the object in tifrgrasp=
3.21 s andlend= 7.93 s, which moves according to the Z axis wittocity V2, figure 15.b
illustrates the curves of the second test: thetrgbasps the object in timegrasp= 3.37 s and
Tend= 8.98 s, which moves in the plane (Y, Z) with oy V2, figure 15.c illustrates the curves
of the second test: the robot grasps the objetitria Tgrasp= 3.47 s andlend= 7.50 s, which
moves in the space(X,Y,Z) with veloci42.

13
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6.4. Grasping object in the presence of three olatles in the environment:

Figure 16. WAM Arm avoids three obstacles

In figure 16, the robot successfully grasping iteen. Figure 16.a shows that the hand of the
robot keeps a distance from the object, therdd hand and the object are in the initial
position, in figure 16.b the object moves with tletocity V1= 8mm/s and the robot moves to the
position of the centroid of the object, it chaosiee shortest way to the object between the two
obstacles, opens the fingers, closes them anliifigaasps it inTgrasp=2.46s. In figure 16.c the
robot picks it up while avoiding obstacle and iguiie 16.d the robot moves it to the desired
position inTend:= 6.68s.

Table6. Object moves witl/1in the presence of three obstacles

according (Z axis in(Y,2) in(X,Y,Z2)

TorasdS)  TendS)  TorasdS) TendS) [TorasdS) [TendS)
test 2.38 7.14 3.20 8.43 | 2.8¢ 9.08
test 2.56 7.€8 250 | 7.30 2.46 6.68
test 2.13 7.20 2.50 8.20 2.67 7.04

The table 6 presents results of the time for gregsgiie moving object which moves with velocity
V1while avoiding three obstacles and the time to enoto the desired position.

If we increase the number of the obstacles, the tifhgrasping the object was reduced. The

choice of the trajectory by the robot is reducelde Tobot chooses the shortest trajectory to the
object.

14
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Figure 17. WAM Arm avoids three obstacles

As shown in the image sequence of figure 17, th®trguccessfully grasping the item. Figure
17.a shows that the hand of the robot keepslistance from the object, the Barret hand and
the object are in the initial position, in figuré.th the object moves with the velocijl= 8mm/s
and the robot moves to the position of the ceémtwdthe object, opens the fingers, closes them
and finally grasps it ifgrasp=2.78s. In figure 17.c the robot picks it up whileiding obstacle

, it chooses the shortest way to the object betwleernwo obstacles and in figure 17.d the robot
moves it to the desired positionTend= 6.90s.

7.CONCLUSIONS

So far, we have presented a simulation of graspimgoving object with different velocities in
terme to deplace it to a desired position whilei@gwg obstacles using the 7-DoF robotic arm
with the Barret hand in which we involve the RRgaithm. In fact, this algorithm allows us
overcome the problem of the inverse kinematics Xplaiting the nature of the Jacobian as a
transformation from a configuration space to woddsp

We set forth separately the time of graspingntioging object shifting with different velocity in
the presence and the absence of obstacles andniéot put this object in a desired position.
Firstly, it moves with velocityV1l Second it moves with velocity2=4 V1. The proposed
algorithm successfully holding the moving objethirational time putting it in the aim station.

Times are nigh in the different test. The preseasfagbstacles increases the speed of grasping the
object. The direction of movement affects on theetof holding the item and on the time to put

it in the desired position. The times recordedha presence of the obstacle are slightly higher
than recorded in the absence of them.

In this article, we have studied an algorithm datéid for grasping a moving target while
trying to escape a fixed obstacle. A future workl wénd to enhance the present
algorithm, with introduction of movable obstacles.

15
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