
������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

10.5121/ijsea.2010.1202 14

Optimized Test Sequence Generation
from Usage Models using Ant Colony

Optimization

Praveen Ranjan Srivastava1, Nitin Jose2, Saudagar Barade3, Debopriyo Ghosh4

1,2,3,4 Departments of Computer Science and Information Systems, BITS-Pilani

Pilani - 333031, Rajasthan, India
1, 2, 3, 4{praveenrsrivastava, jose.nitin, ssbarde, debopriyoghosh} @gmail.com

ABSTRACT
Software Testing is the process of testing the software in order to ensure that it is free of errors and
produces the desired outputs in any given situation. Model based testing is an approach in which
software is viewed as a set of states. A usage model describes software on the basis of its statistical usage
data. One of the major problems faced in such an approach is the generation of optimal sets of test
sequences. The model discussed in this paper is a Markov chain based usage model. The analytical
operations and results associated with Markov chains make them an appropriate choice for checking the
feasibility of test sequences while they are being generated. The statistical data about the estimated usage
has been used to build a stochastic model of the software under test. This paper proposes a technique to
generate optimized test sequences from a markov chain based usage model. The proposed technique uses
ant colony optimization as its basis and also incorporates factors like cost and criticality of various states
in the model. It further takes into consideration the average number of visits to any state and the trade-off
between cost considerations and optimality of the test coverage.

KEYWORDS
Model Based Testing, Software Testing, Markov Chain, Ant Colony Optimization, usage model, test
sequence generation, stochastic process

1. INTRODUCTION
Software Engineering [1] is the use of concrete engineering principles to create cost-efficient
and reliable softwares. A trivial definition of Software testing [1], [2] is that it is the process of
checking the software for any errors or bugs. A more detailed look into the software testing
process reveals that it uses a large number of techniques to ensure that the software accords with
the user requirements and that it is reliable. At a very primary level, software testing can be
divided into two broad categories namely whitebox testing [1] and blackbox testing [1]. The
whitebox approach involves the internal program structure of the software whereas the black
box approach [3], [4] views the software as a function which accept some input and produces
some desired output. The testing process checks whether any given input yields the expected
output. “Model based testing (MBT) is the automation of the design of black-box tests” [2]. It
essentially follows the principle of viewing the software as a set of states (S0, S1, … , Sn) where
each Si in (S0, S1, … , Sn) can be thought of as the state of the software after a series of inputs to
the software (say i0, i1, … , in) . Model based testing is basically a manifestation of the black
box testing [1]. The actual outputs are compared with the expected outputs and a report is
generated. To further enhance the capabilities of model based testing we use statistical data.
Statistical model based testing uses statistical data of one or more of the software’s attributes to
model the software under test (SUT). Markov chains [5] are an appropriate choice for statistical

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 15

model based testing as their inherent properties facilitate the checking of the feasibility of test
sequences as they are being generated. In mathematics, a Markov chain [5] is a random process
where all information about the future state can be deduced from the current state i.e. there is no
need to keep information about the past. The Markov chain based statistical MBT uses markov
chains to model the SUT. It was introduced by Whittaker, Thomason, Walton, Poore and others
(refer [6], [7], [8], [9]) and is a very effective way of modeling a software under test. It is based
on the distribution of operational frequencies among the states in the model. Every state of the
SUT will not be operated or used at the same frequency and hence this fact can be exploited in
building a model that is based on this operational frequency. This will give an effective way to
identify paths in the model which are of greater importance and hence in greater need of being
tested. The model which will be used in this paper is a usage model [10]. The usage model
consists of a set of states with transitions between them. The transitions are weighed by the
probability of the transition. Now, it would be a cost intensive and time consuming task to test
all the possible combinations of states and transitions (exhaustive testing [1]). It is necessary to
identify an optimal set of walks in the model (called test sequences) which will be sufficient to
test a SUT successfully, without resorting to exhaustive testing. SECTION 2, 3, 4, 5 will have
an elaborate discussion about the modeling technique discussed above and further discuss a
technique for generating optimal test sequences from such a model. A major constraint in any
software development process is cost. Cost can be described as a function of the effort which
needs be invested in any process. It is commonly expressed in terms of person-months [1]. In
order to generate an optimized set of test sequences it is essential to include cost-efficiency.
Namely, all states and transitions should be covered in the minimum cost possible. In the
technique proposed it has been ensured that cost considerations are being taken into account.
The cost_limit factor explained in SECTION 5 addresses this issue. Ant colony optimization
(ACO) fits quite well into the problem solution as it in itself is a stochastic process. Markov
chain based usage models have been used for the application of ACO because it is desirable to
bring some order into the stochastic process of ACO. The ants will make a more precise
decision if the operational frequency also acts as a guide during the walk, and hence we arrive to
a more effective result; converging quickly to them. Doerner and Gutjahr [11] have used ACO
for test sequence generation in markov chain based usage models, but the proposed technique
discussed in this paper, also takes into consideration the criticality of the states and the need to
cover the most critical states and their attached transitions, even if cost limitations are very
strict. The average number of visits to each state [12] have been further incorporated. It is yet
another important measure of usage of the software under test. Hence, the proposed technique
generates optimal test sequences, so that exhaustive testing can be avoided while incurring
minimum cost overheads. A layout of the following sections is as follows. Section 2 discusses
the basics of markov chain based usage model. Section 3 discusses the concept of average
number of visits to any state. Section 4 discusses Ant Colony Optimization. Section 5 discusses
a new stochastic technique for generating test sequence generation from markov usage models.
Section 6 analyses the results obtained. Section 7 compares the results obtained from the
discussed technique to the results of some existing and previously proposed techniques. Section
8 discusses the conclusions from our work.

2. MARKOV CHAIN BASED USAGE MODEL
Markov chain usage based models are built and used to model an SUT on the basis of its
expected usage once it has been released. It can be a powerful tool to analyze the usage of the
software and further generate test sequences and test cases, having a clear idea of the stopping
criteria [10], [6], [13], [14]. They can be essentially viewed as directed graphs with the weights
attached to the edges (or transitions). The weights are the probability of the corresponding
transition, which in this case, is the operational frequency or the probability of the transition
occurring. Consider a graph described by a tuple (V,E). Here V and E are the set vertices (or
states as in this case) and the set of edges (or transitions as in this case), respectively. The

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 16

weight attached to the edges is the probability pij = p(j / i) where i, j � ∈ V and {i,j} ∈ E. Before
such a model is built, certain assumptions have been made. Namely, (1) all states of the SUT are
known, (2) all the transitions are known, (3) the probability of the occurrence of each of the
transition is known. Talking about a state in the model doesn’t necessarily mean that it refers to
different components or modules of the software. State in a more generic way refers to a state
that one might encounter, once a series of inputs have been fed to the system. Each state will
have a set of inputs that lead to it from preceding states and a set of inputs that lead out to other
states. This is analogous to a finite state machine [15] in the automata theory. Now another
question that has been encountered is regarding the methods of estimating the transitional
probabilities. A software in use can be an easy subject as the usage patterns are already known.
But for a software that has not been released estimating the usage patterns becomes a tricky
task. The operational frequency of any given SUT can be estimated by interacting with the
target users. Another more reliable method could be estimating the usage by looking at previous
versions or prototypes [6] of the software, if any. If no such preceding versions are available for
study then similar softwares or systems which have already been released can be used to study
usage patterns. Once all this data has been collected one can move ahead to building a model.
An example has been given below in Figure 1.

Figure1. A sample model of a web based database interaction service

Figure 1 shows an example a usage model. If we visualize this as a directed graph G (V,E), with
the set of vertices V = {Entry, Login, Generate_Report, Change_Profile, Exit} and the set of
edges{ { Entry, Login }, { Login, Generate_Report}, { Login, Change_Profile }, { Login, Exit
}, { Generate_Report, Exit },{ Change_Profile, Exit } }. The transitional probabilities have been
assigned to all the edges in the Figure 1. At any given node, the sum of all the probabilities
attached to the outgoing transitions is 1. This is quite evident by the fact that probability of
transition from any given state, which has only one outgoing transition, is 1 (except for Exit
state which acts like a sink). Furthermore, it must be noted that the probability attached to any
edge i,j where {i,j}� ∈ E and i, j ∈ V is essentially the conditional probability pij = p(j/i) i.e. the
probability of j occurring given that current state is i.

2.1. Criticality of the state
Testing is the most cost intensive phases of software development. It has been estimated that
testing consumes 40 to 50 percent of the development effort [1]. Hence it is obvious that cost

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 17

consideration will come into play. Although, work has been done on maintaining a trade-off
between cost considerations and coverage [11], it is necessary to ensure that even if full
coverage may not be possible at a given strict cost limitation; it must be ensured that all the
critical states must be covered and consequently their attached transitions be covered. Hence,
one more aspect which needs to be taken into consideration is the criticality of any given state.
Now estimation of the criticality of any state and measuring it by a quantifiable metric is a task
which must involve both the user and the developer. They will have a differing perspective
about the importance of any part of the software. One more important source could perhaps be
the project manager. So in order to maintain a fair view about the criticality, we are assuming
that these values have been taken for each state from the project manager, developer and user.
These values are on a scale of 1 to 100 and each value is the average of all three values i.e. from
the project manager, developer and the user. In the following sections criticality of any given
state i will be denoted by CRi.

3. AVERAGE NUMBER OF VISITS
The average number of visits [12] to any state is yet another measure of operational frequency.
It is a measure of how many times a state will be visited. Calculation of this metric is based on
the values of average number of visits of the preceding states and the transitional probability
between the current state and its preceding states. Similar work has been in done on average
visit length at any given state by Prowell [10], [13], [16]. Once again the model is visualized as
a graph G (V,E). For any given node i ∈ V the value of average visits is given by AVi. The
following formula gives this value.

 AVi = Σ AVk x pik (1)

For all k = 0 to n. where n is the total number of nodes. And i,k ∈ V. pik is the transitional
probability of {i,k}∈ E. Hence this value can be calculated using the above formula. It must be
noted that when i = k this formula becomes recursive. AV1 = 1 and AVn = 0 where n is the exit
state. This has been taken so because the exit state will obviously have a large number of visits
but in the case of test sequence generation exit state is an eventuality in all test sequences
(except for infinite loops which would be of no use in any case). Hence giving the exit state a
higher value will not yield anything.

4. ANT COLONY OPTIMIZATION
The idea of ant colony optimization is as its name suggests, inspired from the ant colonies. Each
ant moves along some unknown path in search of food and while it goes it leaves behind a trail
of what is known as pheromone. The special feature of this pheromone is that it evaporates with
time such that as time proceeds, the concentration of the pheromone decreases on any given
path. Now it’s obvious that the path with maximum pheromone is the one that has been
traversed the most recently or in fact by most number of ants and hence the most desirable for
following ant. The idea of ant colony optimization was first given by Colorni, Dorigo and
Maniezzo [17] [18]. This work was further taken ahead by Dorigo and Di Caro [19]. The choice
of a heuristic technique is quite justified, as the use of any classic greedy approach shows very
poor results [11]. The use of ant colony optimization is further justified by the graph structure
that is being used for the type of model discussed. A brief description about how the ant colony
optimization works is as follows. For a directed graph G (V,E) the pheromone levels on any
edge {i,j}∈ Ε is denoted by τij. An ant traverses the graph, moving from one node to the next
bases its choice of next node, on the probability which is calculated by the following formula.
When the ant is at any node i, the probability that it will move to next node j is Pij is given by

Pij = {(τij)α x (ηij)β } / Σ (τij)α x (ηij)β (2)

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 18

The summation is for all {i,j} ∈ E and i, j ∈ V. Here α and β are two constants. τij is the
pheromone level on edge {i,j}. ηij is the desirability of edge {i,j}. This factor will be discussed
later. Now once you have the values of Pij for all j such that {i,j} ∈ Ε the ant will move to node j
such the value of Pij is maximum. The pheromone level denoted by τij for any edge {i,j}
∈ Ε will be updated as times passes. The update is as follows

τij = (1 − r) τij + ∆τij (3)

where r is the rate of evaporation of pheromone and ∆τij is the amount of pheromone deposited
by ant when it traverses {i,j} edge.

5. PROPOSED TECHNIQUE FOR GENERATING TEST SEQUNECES
Now before the technique for generating test sequences is discussed it should be assumed that
model has been built and that criticality values (CRi for all i ∈ V) have been estimated as
described in SECTION 2.1. All the transitional probabilities are assumed to be known and
estimated as described in SECTION 2. Figure 2.describes the architecture of the proposed
technique. The input is taken in the form of the markov usage model of the SUT. First the
average number of visits is calculated; then the ant colony optimization algorithm is applied to
generate test sequences. The generation of test sequences continue till the cost limit is not
exceeded or till a set of optimized test sequences is not achieved.

Figure 2. Architecture of the proposed technique

As described in Figure 2 the technique starts with calculating the average visit number of visits
of all states (AVi for all i ∈ V) as described in SECTION 3. The telephone model [16] described
in Figure 3 will be used henceforth for describing this technique. It is a model for telephone.
The model consists of set of nodes V which consists of {ON HOOK}, {RINGING}, {OFF
HOOK}, {BUSY TONE}, {ERROR TONE}, {RING TONE}, {CONNECTED}, {EXIT} The
exit state is essentially a sink i.e. there are no outgoing transitions from it. The set of transitions
or edges as in this case are as follows

{{ON HOOK},{RINGING}}, {{ON HOOK},{OFF HOOK}},
{{RINGING},{ON HOOK}}, {{RINGING},{RINGING}},
{{OFF HOOK},{BUSY TONE}}, {{OFF HOOK},{ERROR TONE}},
{{OFF HOOK},{RING TONE}}, {{RING TONE},{CONNECTED}},
{{CONNECTED},{OFF HOOK}}, {{RINGING},{CONNECTED}},
{{OFF HOOK},{EXIT}}, {{BUSY TONE},{EXIT}}, {{ERROR TONE},{EXIT}},
{{RING TONE},{EXIT}}, {{CONNECTED},{EXIT}}

Now for convenience sake, state names will be substituted with aliases as described in Table 1.
The transitional probabilities along the transitional stimuli have been tabulated in Table 2. In
order to implement this model a matrix M (n x n) is used, where n is number of nodes. Each Mij
in the matrix, is the value of the probability of the transition from node i to j. If no such
transition exists, the value is 0. Now we start implementing ant colony optimization to the graph
to obtain test sequences. The pheromone levels on all edges are initialised to a value of 1.

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 19

Figure 3. A model for a telephone

Table 1. Alias names for nodes

State Name Alias
On hook 0
Ringing 1
Off hook 2
Busy tone 3
Error tone 4
Ring tone 5
Connected 6
Exit 7

τij = 1, ∀ {i,j} ∈ Ε (4)

Now put α= 1 and β=1 (refer SECTION 4). Before starting with the traversal certain more
factors that will be used in this technique must be defined. The desirability factor ηij describes
the desirability of any node j when the ant is at node i. It must be noted that ηij = Mij; as in the
case of a usage model it will be feasible to use the operational frequency (probability in our
model) as a measure of desirability of any target node. Further more, rather than using only the
probability derived from equation (2) as the sole factor responsible for the ant’s decision to
move ahead, some more factors that will influence this decision have been incorporated.
Thereby, this heuristic process has been influenced to some extent in order to bring about some
order in the decision making. This not only expedites the process to the optimal solution but
also ensures that more important paths and nodes are covered early. The next sections will
discuss this in more detail. The two factors that will be used are the criticality factor CR and
average number of visits (as discussed in SECTION 2.1 and 3). A new factor introduced is P-
factor. P-factor for any state j when the ant is at node i which is given by

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 20

 Table 2. Transitional probabilities and stimuli

State name
(from)

State name
(to)

Transitional stimuli Probability of
transition

0 1 INCOMING 0.6
1 0 DISCONNECT 0.2
0 2 LIFT RECIEVER 0.4
2 7 HANG UP 0.25
2 3 DIAL BUSY 0.25
2 4 DIAL BAD 0.25
2 5 DIAL GOOD 0.25
5 6 CONNECT 0.5
1 6 LIFT RECIEVER 0.7
1 1 RINGING 0.1
6 2 DISCONNECT 0.5
3 7 HANG UP 1.0
4 7 HANG UP 1.0
5 7 HANG UP 0.5
6 7 HANG UP 0.5

P-factorj = Pij + CRj + AVj (5)

∀ j ∈ V where {i,j} ∈ Ε where Pij is the probability from equation (2),
CRj is criticality factor described in SECTION 2.1.
AVij is average number of visits from equation (1).

Addition operator has been used because principally we are trying to find out the node with the
maximum value overall (consider P, CR and AV). The use of say, multiplicative operator would
not be of much use as the value of P lies in between 0 and 1, hence it would cause value to
decrease. Once the P-factor has been calculated the ant will proceed to a node j which will have
the maximum value. Now it is also essential to take into account cost considerations (refer
SECTION 1). There will be a limitation on the cost that can be incurred in the testing process
denoted by cost_limit. This value can be in person months or any other metric. The essence here
is that given a cost limitation, the technique described should generate the optimal set of test
sequences, covering all possible sequences within the cost limits and ensuring that most critical
nodes (if not all) are covered. It has been assumed that the cost of testing each transition (edge)
is known and is denoted by Cij, where {i,j} ∈ Ε. Now for any test sequence A � B � C �……
�X�Y where A,B,C,….,X,Y ∈ V the cost of testing is

Cost = Σ Cij (6)
for i,j = A,B then B,C ….. X,Y

for a set of test sequences 1,2,3,…,n the cumulative cost is given by

Cumulative Cost = Σ Costi (7)
for i = 1,2,3,…,n. In order to ensure that cost limitation is observed it must be checked that the
value of Cumulative Cost is in the vicinity of cost_limit.

6. EXPERIMENTAL RESULTS AND ANALYSIS
The criticality values given to the nodes are tabulated in Table 3.
The average number of visits values using equation (1), are given in Table 4. For example the
calculation of average number of visits for state 1 is as follows

AV0 = 1.0
AV1 = (AV0 x P01) = 1.0 x 0.6 = 0.6 and so on.

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 21

Table 3. Criticality values

Node (state) Criticality
0 9.0
1 8.0
2 10.0
3 30.0
4 26.0
5 27.0
6 45.0
7 0.0

Table 4. Average number of visits

Node (state) Average visits
0 1.0
1 0.6
2 0.635
3 0.1
4 0.1
5 0.1
6 0.47
7 0.0

Now as the ant approaches from node to make the first decision i.e. either {0,1} or {0,2}, it is
assumed that this decision is random. Ant colony optimization has been avoided at this stage in
order to avoid bias towards any branch of the graph emanating from this start state. Any branch
emanating from this point carrying a very critical state could force the ants to move over this
same path over and over again leaving other less critical paths unvisited for a long time
(eventually they will be covered in any case). Once the ant makes this first decision it makes
calculations of the P-factors of all nodes immediately reachable from the current node and as
described above makes the traversal to the node with the maximum P-factor. Now many such
ants are consequently made to traverse the graph. Each leaves its own pheromone trail and
hence guides the subsequent ants to the optimal paths. The pheromone levels are updated
periodically according to equation (3). Figure 4 shows three paths obtained by three ants in their
traversals. Each path is essentially a test sequence. As the test sequences are being generated the
Cumulative Cost (equation (7)) is simultaneously calculated. The moment it approaches or
exceeds the cost_limit the process is stopped. Once it has been ensured that all the critical nodes
and their attached transitions have been covered in the test sequences, the subsequent traversals
focus on covering the unvisited nodes and edges giving them a priority over visited, yet more
critical nodes (with a higher P-factor). This has been done to ensure complete coverage as long
as the cost limitations allow it. In this example it is clear the most critical states (refer Table 3)
are 3, 4, 5 and 6. A sample traversal (see test sequence-1 Figure 4) of the model using proposed
technique is given below.

The ant starts at start state 0. Say the random decision taken is to go ahead to state 2. So the
status of current sequence is 0 � 2. At state 2 the ant has to calculate the P-factor values of all
the states that can be reached from 2 in one transition. Namely, these states are 3, 4, 5and 7. The
P-factor values calculated is as follow. Using equation (5) for P-factor

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 22

Figure 4. Illustration of some of the test sequences covered

P-factor3 = P23 + CR3 + AV3 = 30.138

Where,
P23 = {(τij)α x (ηij)β } / Σ (τij)α x (ηij)β
 = {(1.0)1 x (0.25)2} /6.5 = 0.3824

Putting these values in equation (2)

CR3 = 30.0 from Table 2

AV3 = 0.1 from Table 3

Similarly,
P-factor4 = P24 + CR4 + AV4 = 26.138
P-factor5 = P25 + CR5 + AV5 = 27.138
P-factor7 = P27 + CR7 + AV7 = 0.0384
Hence the ant selects state 3 for next transition. The test sequence till now is 0 � 2 � 3. At
state 3 the only transition possible is {3,7}. Final test sequence generated is 0 � 2 � 3 � 7.

Following are some of the outputs obtained at various cost_limit values. In each of the following
obtained outputs, the number of critical states covered will be checked. This is done in order to
verify whether the critical states are being covered even under very strict cost limitations. The
following test sequences were obtained when cost_limit was 20.0.

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7
0 � 1 � 1 � 0 � 2 � 5 � 7

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 23

Figure 5. Plot of cost limit Vs number of test sequences generated

0 � 2 � 4 � 7
0 � 2 � 7
0 � 1 � 6 � 7

As it can be seen, the number of test sequences is 6 and there is no redundancy in the set of test
sequences. Moreover this set of test sequences is providing a full coverage (state and transition).
All the critical states have been covered here (as can be inferred from a full state coverage).
When the cost_limit was 15.0 the following set of test sequences was obtained.

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7
0 � 1 � 1 � 0 � 2 � 5 � 7
0 � 2 � 4 � 7
0 � 2 � 7

Here the number of test sequences has reduced to 5. It is still providing full state coverage and
all critical states have been covered. Although all transition coverage has not been achieved it is
trade-off between cost considerations and coverage. In any case coverage of all critical states
has been achieved. As the cost_limit is further decreased it can be observed that the number of
test sequences will quite obviously decrease.

When the cost_limit was set to 10.0 the following output was obtained.

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7
0 � 1 � 1 � 0 � 2 � 5 � 7

Here it can be seen that the number of test sequences is 3 and that although complete state and
transitions coverage has not been achieved, the most critical nodes have been covered (all
except state 4, namely states 3, 5 and 6). When cost_limit was set to 25.0 the following output
was obtained.

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 24

Figure 6. Plot of cost limit Vs number of critical nodes covered

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7
0 � 1 � 1 � 0 � 2 � 5 � 7
0 � 2 � 4 � 7
0 � 2 � 7
0 � 1 � 6 � 7

It is evident that this is same result as when the limit was 20.0. Similar results were obtained
when the cost_limit was set to values above 25.0. So it can be inferred that after a certain
threshold value of cost_limit the there is no change in the output and that further cost investment
is not required. The optimal test sequence set (giving full coverage) is obtained at a certain
threshold value. A similar trend is seen in case of number of critical nodes covered. In Figure 4
and 5 the cost_limit has been plotted versus the number of test sequences and the number of
critical nodes covered. It is clearly visible that after the threshold value of 20.0 the curve is a
constant.

7. COMPARISON WITH EXISTING TECHNIQUES
Li and Lam [20] have worked on the use of Ant colony optimization in test sequence generation
in a state based approach to testing. But the work does not factor in criticality of the states or
give conclusively optimized test sequences. A comparative study has been made using results
obtained by applying the above mention technique [20] and the proposed technique. This work
has been chosen for a comparative study because as per our research this is the only work that
incorporates ACO in model based testing, and the purpose of this comparative study is to prove
that a markov chain usage model is better than a simple state based model for the application of
ACO. An equal number of test sequences are generated by both the techniques. These are test
sequences generated by traversals by equal number of ants. The comparative study has been
made on the basis of the number of nodes and edges covered in the same number of traversals.
The n test sequences considered here are derived from the first n traversals of the model. This

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 25

has been done because higher coverage within lesser number of test sequences strongly implies
more the cost efficiency and hence a more optimal solution. The model used for this study is
given in Figure 3. We consider the states 3, 4, 5 and 6 as most critical (refer Table 3). There are
15 edges (transitions) in all and 8 nodes (states). When the number of test sequences is 4 the set
of test sequences obtained is as follows
Existing technique

0 � 2 � 7
0 � 2 � 3 � 7
0 � 2 � 4 � 7
0 � 2 � 5 � 7

Number of nodes covered = 6 (3 out of 4 most critical)
Number of edges covered = 8
Percentage of node coverage = (6/8) x 100 = 75
Percentage of edge coverage = (8/15) x 100 = 53.33

Proposed technique

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7
0 � 1 � 1 � 0 � 2 � 5 � 7
0 � 2 � 4 � 7

Number of nodes covered = 8 (all the 4 most critical)
Number of edges covered = 12
Percentage of node coverage = (8/8) x 100 = 100
Percentage of edge coverage = (12/15) x 100 = 80

Figure 7. Number of nodes covered with 4 test sequences

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 26

Figure 8. Number of edges covered with 4 test sequences

Figure 7 and Figure 8 show a graph describing the results obtained above. When the number of
test sequences is 4 the set of test sequences obtained is as follows

Existing technique

0 � 2 � 7
0 � 2 � 3 � 7

Number of nodes covered = 4 (1 out of 4 most critical)
Number of edges covered = 3
Percentage of node coverage = (4/8) x 100 = 50
Percentage of edge coverage = (3/15) x 100 = 20

Proposed technique

0 � 2 � 3 � 7
0 � 1 � 6 � 2 � 3 � 7

Number of nodes covered = 6 (2 out of 4 most critical)
Number of edges covered = 6
Percentage of node coverage = (6/8) x 100 = 75
Percentage of edge coverage = (6/15) x 100 = 40

Figure 9. Number of nodes covered with 2 test sequences

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 27

Figure 10. Number of edges covered with 2 test sequences

Figure 9 and Figure 10 show a graph describing the results obtained above. It is quite evident
that the proposed technique not only ensures a better coverage but also ensures that the more
critical states are covered too. Doerner and Gutjahr [11] have used Ant colony optimization to
generate test sequences from markov chain based models. But the technique described [11] does
not take the criticality of the states into account. The technique proposed in this paper uses
criticality of state explicitly as well computes its own measure (average number of visits) to
gauge the criticality of any state. It gives better coverage of critical nodes, especially when there
are strict cost limitations. Under such conditions although a lesser number of test sequences are
generated, the set is optimal for that given cost. This is a very desirable result.

8. CONCLUSIONS
The above discussed technique has proven to be effective in generating optimal set of test cases
from a markov chain based usage model. Especially with the growth in software with extensive
graphical interfaces, usage modelling will prove to be very fruitful. The technique takes into
account the average number of visits to any state; this is a very important factor when testing
graphical interfaces. The discussed technique has also proved to be capable of deriving test
cases with priority given to the most critical states and transitions. Even with strict cost
limitations it has been observed that the most critical states have been covered. Future works
upon this technique could involve the presence of multiple transitional probabilities between
states [6]. The use of ant colony optimization has proven to be effective and provides an
efficient means to generate test sequences especially in graph based models. The complexity of
algorithm used in this technique is O (n2) for a traversal and hence proves to be efficient and
less computation intensive.

REFERENCES
[1] R. Pressman (2001) Software Engineering – A Practitioner’s Approach. 5th edition. New York,

NY: McGraw Hill.

[2] M. Utting and B. Legeard (2007) Practical Model Based Testing – A tools approach. San
Francisco, CA: Morgan Kaufmann.

[3] G. J. Myers (1979) The Art of Software Testing. New York: Wiley

[4] D. M. Woit, (1992) “Realistic expectations of random testing”, CRL Rep. 246, McMaster Univ.,
Hamilton, ON, Canada.

[5] J. Keilson (1979) Markov Chain Models; Rarity and Exponentiality. New York, NY: Springer-
Verlag.

������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����

 28

[6] J. A. Whittaker and M. G. Thomason, (1994) “A markov chain model for statistical software
testing”, IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 812-824.

[7] J.A. Whittaker and J. H. Poore, (1993) “Markov analysis of software specifications”, ACM Tran.
Software Eng. Methodology, vol. 2, no. 1, pp. 93-106.

[8] G. Walton, J. Poore, C. Trammell, (1995) “Statistical testing of software based on a usage
model”, Software: Practice and Experience, vol. 25, no. 1, pp. 97-108.

[9] J. A. Whittaker, (1992) “Markov chain techniques for software testing and reliability analysis”,
Ph.D. dissertation, Dept. of Comput. Sci., Univ. of Tennessee, Knoxville, USA.

[10] S. J. Prowell, (2005) “Using markov chain usage models to test complex systems”, Proceedings
of the 38th Annual Hawaii International Conference on System Sciences (HICSS'05), vol. 9,
pp.318c, track 9.

[11] K. Doerner and W. J. Gutjahr, (2003) “Extracting test sequences from a markov software usage
model by ACO”, GECCO 2003, LNCS, vol. 2724, pp. 2465-2476.

[12] K. Mark and L. Csaba, (2007) “Analysing customer behaviour model graph (CBMG) using
markov chains”, 11th International Conference on Intelligent Engineering Systems, 2007. INES
2007, pp. 71-76.

[13] S. J. Prowell, (2003) Computations for Markov Chain Usage Models, Computer Science
Technical Report UT-CS-03- 505, The University of Tennessee, Knoxville, TN, USA.

[14] K. D. Sayre, (1999) “Improved Techniques for Software Testing Based on Markov Chain Usage
Models”, PhD thesis, The University of Tennessee, Knoxville, TN, USA.

[15] J. E. Hopcroft and J. D. Ullman (1979) Introduction to Automata Theory, Languages, and
Computation, Reading, MA: Addison-Wesley.

[16] S. J. Prowell, (2003) “JUMBL: A Tool for Model-Based Statistical Testing”, at 36th Annual
Hawaii International Conference on System Sciences (HICSS'03), HICSS, vol. 9, pp.337c, Track
9.

[17] M. Dorigo, V. Maniezzo, and A. Colorni (1991) The Ant System: An Autocatalytic Optimizing
Process, Technical Report TR91-016, Politecnico di Milano.

[18] A. Colorni, M. Dorigo, and V. Maniezzo, (1991) “Distributed optimization by ant colonies”,
Proceedings of ECAL'91, European Conference on Artificial Life, Elsevier Publishing,
Amsterdam.

[19] M. Dorigo and G. Di Caro, (1999) “The Ant colony optimization meta-heuristic”, in D. Corne,
M. Dorigo and F. Glover, editors, New Ideas in Optimization, McGraw-Hill, pp. 11-32.

[20] H. Li and C. P. Lam, (2004) “Software Test Data Generation using Ant Colony Optimization”,
International Conference of Computational Intelligence, pp. 1-4.

