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ABSTRACT 
Software Testing is the process of testing the software in order to ensure that it is free of errors and 
produces the desired outputs in any given situation. Model based testing is an approach in which 
software is viewed as a set of states. A usage model describes software on the basis of its statistical usage 
data. One of the major problems faced in such an approach is the generation of optimal sets of test 
sequences. The model discussed in this paper is a Markov chain based usage model. The analytical 
operations and results associated with Markov chains make them an appropriate choice for checking the 
feasibility of test sequences while they are being generated. The statistical data about the estimated usage 
has been used to build a stochastic model of the software under test. This paper proposes a technique to 
generate optimized test sequences from a markov chain based usage model. The proposed technique uses 
ant colony optimization as its basis and also incorporates factors like cost and criticality of various states 
in the model. It further takes into consideration the average number of visits to any state and the trade-off 
between cost considerations and optimality of the test coverage.  

KEYWORDS 
Model Based Testing, Software Testing, Markov Chain, Ant Colony Optimization, usage model, test 
sequence generation, stochastic process   

1. INTRODUCTION 
Software Engineering [1] is the use of concrete engineering principles to create cost-efficient 
and reliable softwares. A trivial definition of Software testing [1], [2] is that it is the process of 
checking the software for any errors or bugs. A more detailed look into the software testing 
process reveals that it uses a large number of techniques to ensure that the software accords with 
the user requirements and that it is reliable. At a very primary level, software testing can be 
divided into two broad categories namely whitebox testing [1] and blackbox testing [1]. The 
whitebox approach involves the internal program structure of the software whereas the black 
box approach [3], [4] views the software as a function which accept some input and produces 
some desired output. The testing process checks whether any given input yields the expected 
output. “Model based testing (MBT) is the automation of the design of black-box tests” [2]. It 
essentially follows the principle of viewing the software as a set of states (S0, S1, … , Sn) where 
each Si in (S0, S1, … , Sn) can be thought of as the state of the software after a series of inputs to 
the software (say i0, i1, … , in ) . Model based testing is basically a manifestation of the black 
box testing [1]. The actual outputs are compared with the expected outputs and a report is 
generated. To further enhance the capabilities of model based testing we use statistical data.  
Statistical model based testing uses statistical data of one or more of the software’s attributes to 
model the software under test (SUT).  Markov chains [5] are an appropriate choice for statistical 
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model based testing as their inherent properties facilitate the checking of the feasibility of test 
sequences as they are being generated. In mathematics, a Markov chain [5] is a random process 
where all information about the future state can be deduced from the current state i.e. there is no 
need to keep information about the past. The Markov chain based statistical MBT uses markov 
chains to model the SUT. It was introduced by Whittaker, Thomason, Walton, Poore and others 
(refer [6], [7], [8], [9]) and is a very effective way of modeling a software under test. It is based 
on the distribution of operational frequencies among the states in the model. Every state of the 
SUT will not be operated or used at the same frequency and hence this fact can be exploited in 
building a model that is based on this operational frequency. This will give an effective way to 
identify paths in the model which are of greater importance and hence in greater need of being 
tested. The model which will be used in this paper is a usage model [10]. The usage model 
consists of a set of states with transitions between them. The transitions are weighed by the 
probability of the transition. Now, it would be a cost intensive and time consuming task to test 
all the possible combinations of states and transitions (exhaustive testing [1]). It is necessary to 
identify an optimal set of walks in the model (called test sequences) which will be sufficient to 
test a SUT successfully, without resorting to exhaustive testing. SECTION 2, 3, 4, 5 will have 
an elaborate discussion about the modeling technique discussed above and further discuss a 
technique for generating optimal test sequences from such a model. A major constraint in any 
software development process is cost. Cost can be described as a function of the effort which 
needs be invested in any process. It is commonly expressed in terms of person-months [1]. In 
order to generate an optimized set of test sequences it is essential to include cost-efficiency. 
Namely, all states and transitions should be covered in the minimum cost possible. In the 
technique proposed it has been ensured that cost considerations are being taken into account. 
The cost_limit factor explained in SECTION 5 addresses this issue. Ant colony optimization 
(ACO) fits quite well into the problem solution as it in itself is a stochastic process. Markov 
chain based usage models have been used for the application of ACO because it is desirable to 
bring some order into the stochastic process of ACO. The ants will make a more precise 
decision if the operational frequency also acts as a guide during the walk, and hence we arrive to 
a more effective result; converging quickly to them.  Doerner and Gutjahr [11] have used ACO 
for test sequence generation in markov chain based usage models, but the proposed technique 
discussed in this paper, also takes into consideration the criticality of the states and the need to 
cover the most critical states and their attached transitions, even if cost limitations are very 
strict. The average number of visits to each state [12] have been further incorporated. It is yet 
another important measure of usage of the software under test. Hence, the proposed technique 
generates optimal test sequences, so that exhaustive testing can be avoided while incurring 
minimum cost overheads. A layout of the following sections is as follows. Section 2 discusses 
the basics of markov chain based usage model. Section 3 discusses the concept of average 
number of visits to any state. Section 4 discusses Ant Colony Optimization. Section 5 discusses 
a new stochastic technique for generating test sequence generation from markov usage models. 
Section 6 analyses the results obtained. Section 7 compares the results obtained from the 
discussed technique to the results of some existing and previously proposed techniques. Section 
8 discusses the conclusions from our work. 

2. MARKOV CHAIN BASED USAGE MODEL 
Markov chain usage based models are built and used to model an SUT on the basis of its 
expected usage once it has been released. It can be a powerful tool to analyze the usage of the 
software and further generate test sequences and test cases, having a clear idea of the stopping 
criteria [10], [6], [13], [14].  They can be essentially viewed as directed graphs with the weights 
attached to the edges (or transitions). The weights are the probability of the corresponding 
transition, which in this case, is the operational frequency or the probability of the transition 
occurring. Consider a graph described by a tuple (V,E). Here V and E are the set vertices (or 
states as in this case) and the set of edges (or transitions as in this case), respectively. The 
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weight attached to the edges is the probability pij = p(j / i) where i, j � ∈ V and {i,j} ∈ E. Before 
such a model is built, certain assumptions have been made. Namely, (1) all states of the SUT are 
known, (2) all the transitions are known, (3) the probability of the occurrence of each of the 
transition is known. Talking about a state in the model doesn’t necessarily mean that it refers to 
different components or modules of the software. State in a more generic way refers to a state 
that one might encounter, once a series of inputs have been fed to the system. Each state will 
have a set of inputs that lead to it from preceding states and a set of inputs that lead out to other 
states. This is analogous to a finite state machine [15] in the automata theory. Now another 
question that has been encountered is regarding the methods of estimating the transitional 
probabilities. A software in use can be an easy subject as the usage patterns are already known. 
But for a software that has not been released estimating the usage patterns becomes a tricky 
task. The operational frequency of any given SUT can be estimated by interacting with the 
target users. Another more reliable method could be estimating the usage by looking at previous 
versions or prototypes [6] of the software, if any. If no such preceding versions are available for 
study then similar softwares or systems which have already been released can be used to study 
usage patterns. Once all this data has been collected one can move ahead to building a model. 
An example has been given below in Figure 1. 

 

Figure1. A sample model of a web based database interaction service 

Figure 1 shows an example a usage model. If we visualize this as a directed graph G (V,E), with 
the set of vertices V = {Entry, Login, Generate_Report, Change_Profile, Exit} and the set of 
edges{ { Entry, Login }, { Login, Generate_Report}, { Login, Change_Profile }, { Login, Exit 
}, { Generate_Report, Exit },{ Change_Profile, Exit } }. The transitional probabilities have been 
assigned to all the edges in the Figure 1. At any given node, the sum of all the probabilities 
attached to the outgoing transitions is 1. This is quite evident by the fact that probability of 
transition from any given state, which has only one outgoing transition, is 1 (except for Exit 
state which acts like a sink). Furthermore, it must be noted that the probability attached to any 
edge i,j where {i,j}� ∈ E and i, j ∈ V is essentially the conditional probability pij = p(j/i) i.e. the 
probability of j occurring given that current state is i.  

2.1. Criticality of the state 
Testing is the most cost intensive phases of software development. It has been estimated that 
testing consumes 40 to 50 percent of the development effort [1]. Hence it is obvious that cost 
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consideration will come into play. Although, work has been done on maintaining a trade-off 
between cost considerations and coverage [11], it is necessary to ensure that even if full 
coverage may not be possible at a given strict cost limitation; it must be ensured that all the 
critical states must be covered and consequently their attached transitions be covered. Hence, 
one more aspect which needs to be taken into consideration is the criticality of any given state. 
Now estimation of the criticality of any state and measuring it by a quantifiable metric is a task 
which must involve both the user and the developer. They will have a differing perspective 
about the importance of any part of the software. One more important source could perhaps be 
the project manager. So in order to maintain a fair view about the criticality, we are assuming 
that these values have been taken for each state from the project manager, developer and user. 
These values are on a scale of 1 to 100 and each value is the average of all three values i.e. from 
the project manager, developer and the user. In the following sections criticality of any given 
state i will be denoted by CRi. 

3. AVERAGE NUMBER OF VISITS 
The average number of visits [12] to any state is yet another measure of operational frequency. 
It is a measure of how many times a state will be visited. Calculation of this metric is based on 
the values of average number of visits of the preceding states and the transitional probability 
between the current state and its preceding states. Similar work has been in done on average 
visit length at any given state by Prowell [10], [13], [16]. Once again the model is visualized as 
a graph G (V,E). For any given node i ∈ V the value of average visits is given by AVi. The 
following formula gives this value. 

  AVi = Σ AVk x pik  (1) 

For all k = 0 to n. where n is the total number of nodes. And i,k ∈ V. pik is the transitional 
probability of {i,k}∈ E. Hence this value can be calculated using the above formula. It must be 
noted that when i = k this formula becomes recursive. AV1 = 1 and AVn = 0 where n is the exit 
state. This has been taken so because the exit state will obviously have a large number of visits 
but in the case of test sequence generation exit state is an eventuality in all test sequences 
(except for infinite loops which would be of no use in any case). Hence giving the exit state a 
higher value will not yield anything. 

4. ANT COLONY OPTIMIZATION 
The idea of ant colony optimization is as its name suggests, inspired from the ant colonies. Each 
ant moves along some unknown path in search of food and while it goes it leaves behind a trail 
of what is known as pheromone. The special feature of this pheromone is that it evaporates with 
time such that as time proceeds, the concentration of the pheromone decreases on any given 
path. Now it’s obvious that the path with maximum pheromone is the one that has been 
traversed the most recently or in fact by most number of ants and hence the most desirable for 
following ant. The idea of ant colony optimization was first given by Colorni, Dorigo and 
Maniezzo [17] [18]. This work was further taken ahead by Dorigo and Di Caro [19]. The choice 
of a heuristic technique is quite justified, as the use of any classic greedy approach shows very 
poor results [11]. The use of ant colony optimization is further justified by the graph structure 
that is being used for the type of model discussed. A brief description about how the ant colony 
optimization works is as follows. For a directed graph G (V,E) the pheromone levels on any 
edge {i,j}∈ Ε is denoted by τij. An ant traverses the graph, moving from one node to the next 
bases its choice of next node, on the probability which is calculated by the following formula. 
When the ant is at any node i, the probability that it will move to next node j is Pij is given by  

Pij     =  {(τij)α x (ηij)β } / Σ (τij)α x (ηij)β   (2)  
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The summation is for all {i,j} ∈ E and i, j ∈ V. Here α and β are two constants. τij is the 
pheromone level on edge {i,j}. ηij is the desirability of edge {i,j}. This factor will be discussed 
later. Now once you have the values of Pij for all j such that {i,j} ∈ Ε the ant will move to node j 
such the value of Pij is maximum. The pheromone level denoted by τij for any edge {i,j} 
∈ Ε will be updated as times passes. The update is as follows 

τij  =  (1 − r) τij + ∆τij  (3) 

where r is the rate of evaporation of pheromone and ∆τij is the amount of pheromone deposited 
by ant when it traverses {i,j} edge. 

5. PROPOSED TECHNIQUE FOR GENERATING TEST SEQUNECES  
Now before the technique for generating test sequences is discussed it should be assumed that 
model has been built and that criticality values (CRi for all i ∈ V) have been estimated as 
described in SECTION 2.1. All the transitional probabilities are assumed to be known and 
estimated as described in SECTION 2. Figure 2.describes the architecture of the proposed 
technique. The input is taken in the form of the markov usage model of the SUT. First the 
average number of visits is calculated; then the ant colony optimization algorithm is applied to 
generate test sequences. The generation of test sequences continue till the cost limit is not 
exceeded or till a set of optimized test sequences is not achieved.   

 
Figure 2. Architecture of the proposed technique 

As described in Figure 2 the technique starts with calculating the average visit number of visits 
of all states (AVi for all i ∈ V) as described in SECTION 3. The telephone model [16] described 
in Figure 3 will be used henceforth for describing this technique. It is a model for telephone. 
The model consists of set of nodes V which consists of {ON HOOK}, {RINGING}, {OFF 
HOOK}, {BUSY TONE}, {ERROR TONE}, {RING TONE}, {CONNECTED}, {EXIT} The 
exit state is essentially a sink i.e. there are no outgoing transitions from it. The set of transitions 
or edges as in this case are as follows 

{{ON HOOK},{RINGING}}, {{ON HOOK},{OFF HOOK}},  
{{RINGING},{ON HOOK}}, {{RINGING},{RINGING}}, 
{{OFF HOOK},{BUSY TONE}}, {{OFF HOOK},{ERROR TONE}}, 
{{OFF HOOK},{RING TONE}}, {{RING TONE},{CONNECTED}}, 
{{CONNECTED},{OFF HOOK}}, {{RINGING},{CONNECTED}}, 
{{OFF HOOK},{EXIT}}, {{BUSY TONE},{EXIT}}, {{ERROR TONE},{EXIT}}, 
{{RING TONE},{EXIT}}, {{CONNECTED},{EXIT}} 

Now for convenience sake, state names will be substituted with aliases as described in Table 1. 
The transitional probabilities along the transitional stimuli have been tabulated in Table 2. In 
order to implement this model a matrix M (n x n) is used, where n is number of nodes. Each Mij 
in the matrix, is the value of the probability of the transition from node i to j. If no such 
transition exists, the value is 0. Now we start implementing ant colony optimization to the graph 
to obtain test sequences. The pheromone levels on all edges are initialised to a value of 1. 
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Figure 3. A model for a telephone 

Table 1.  Alias names for nodes 

State Name Alias 
On hook 0 
Ringing 1 
Off hook 2 
Busy tone 3 
Error tone 4 
Ring tone 5 
Connected 6 
Exit 7 

τij = 1, ∀ {i,j} ∈ Ε  (4) 

Now put α= 1 and β=1 (refer SECTION 4). Before starting with the traversal certain more 
factors that will be used in this technique must be defined. The desirability factor ηij describes 
the desirability of any node j when the ant is at node i. It must be noted that ηij  = Mij; as  in the 
case of a usage model it will be feasible to use the operational frequency (probability in our 
model) as a measure of desirability of any target node. Further more, rather than using only the 
probability derived from equation (2) as the sole factor responsible for the ant’s decision to 
move ahead, some more factors that will influence this decision have been incorporated. 
Thereby, this heuristic process has been influenced to some extent in order to bring about some 
order in the decision making. This not only expedites the process to the optimal solution but 
also ensures that more important paths and nodes are covered early. The next sections will 
discuss this in more detail. The two factors that will be used are the criticality factor CR and 
average number of visits (as discussed in SECTION 2.1 and 3). A new factor introduced is P-
factor. P-factor for any state j when the ant is at node i which is given by 
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 Table 2.  Transitional probabilities and stimuli 

State name 
(from) 

State name 
(to) 

Transitional stimuli Probability of 
transition 

0 1 INCOMING 0.6 
1 0 DISCONNECT 0.2 
0 2 LIFT RECIEVER 0.4 
2 7 HANG UP 0.25 
2 3 DIAL BUSY 0.25 
2 4 DIAL BAD 0.25 
2 5 DIAL GOOD 0.25 
5 6 CONNECT 0.5 
1 6 LIFT RECIEVER 0.7 
1 1 RINGING 0.1 
6 2 DISCONNECT 0.5 
3 7 HANG UP 1.0 
4 7 HANG UP 1.0 
5 7 HANG UP 0.5 
6 7 HANG UP 0.5 

P-factorj  = Pij + CRj + AVj  (5) 

∀ j ∈ V where {i,j} ∈ Ε where Pij is the probability from equation (2), 
CRj is criticality factor described in SECTION 2.1. 
AVij is average number of visits from equation (1). 

Addition operator has been used because principally we are trying to find out the node with the 
maximum value overall (consider P, CR and AV). The use of say, multiplicative operator would 
not be of much use as the value of P lies in between 0 and 1, hence it would cause value to 
decrease. Once the P-factor has been calculated the ant will proceed to a node j which will have 
the maximum value. Now it is also essential to take into account cost considerations (refer 
SECTION 1). There will be a limitation on the cost that can be incurred in the testing process 
denoted by cost_limit. This value can be in person months or any other metric. The essence here 
is that given a cost limitation, the technique described should generate the optimal set of test 
sequences, covering all possible sequences within the cost limits and ensuring that most critical 
nodes (if not all) are covered. It has been assumed that the cost of testing each transition (edge) 
is known and is denoted by Cij, where {i,j} ∈ Ε. Now for any test sequence A � B � C �…… 
�X�Y where A,B,C,….,X,Y ∈ V the cost of testing is  

Cost  = Σ Cij           (6) 
for i,j = A,B then B,C ….. X,Y    

for a set of test sequences 1,2,3,…,n the cumulative cost is given by  

Cumulative Cost = Σ Costi    (7) 
for i = 1,2,3,…,n. In order to ensure that cost limitation is observed it must be checked that the 
value of Cumulative Cost is in the vicinity of cost_limit. 

6. EXPERIMENTAL RESULTS AND ANALYSIS  
The criticality values given to the nodes are tabulated in Table 3. 
The average number of visits values using equation (1), are given in Table 4.  For example the 
calculation of average number of visits for state 1 is as follows 

AV0 = 1.0  
AV1 = (AV0 x P01) = 1.0 x 0.6 = 0.6 and so on. 
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Table 3.  Criticality values 

Node (state) Criticality 
0 9.0 
1 8.0  
2 10.0 
3 30.0 
4 26.0 
5 27.0 
6 45.0 
7 0.0 

Table 4.  Average number of visits 

Node (state) Average visits 
0 1.0 
1 0.6  
2 0.635 
3 0.1 
4 0.1 
5 0.1 
6 0.47 
7 0.0 

Now as the ant approaches from node to make the first decision i.e. either {0,1} or {0,2}, it is 
assumed that this decision is random. Ant colony optimization has been avoided at this stage in 
order to avoid bias towards any branch of the graph emanating from this start state. Any branch 
emanating from this point carrying a very critical state could force the ants to move over this 
same path over and over again leaving other less critical paths unvisited for a long time 
(eventually they will be covered in any case). Once the ant makes this first decision it makes 
calculations of the P-factors of all nodes immediately reachable from the current node and as 
described above makes the traversal to the node with the maximum P-factor. Now many such 
ants are consequently made to traverse the graph. Each leaves its own pheromone trail and 
hence guides the subsequent ants to the optimal paths. The pheromone levels are updated 
periodically according to equation (3). Figure 4 shows three paths obtained by three ants in their 
traversals. Each path is essentially a test sequence. As the test sequences are being generated the 
Cumulative Cost (equation (7)) is simultaneously calculated. The moment it approaches or 
exceeds the cost_limit the process is stopped. Once it has been ensured that all the critical nodes 
and their attached transitions have been covered in the test sequences, the subsequent traversals 
focus on covering the unvisited nodes and edges giving them a priority over visited, yet more 
critical nodes (with a higher P-factor). This has been done to ensure complete coverage as long 
as the cost limitations allow it. In this example it is clear the most critical states (refer Table 3) 
are 3, 4, 5 and 6. A sample traversal (see test sequence-1 Figure 4) of the model using proposed 
technique is given below. 

The ant starts at start state 0. Say the random decision taken is to go ahead to state 2. So the 
status of current sequence is 0 � 2. At state 2 the ant has to calculate the P-factor values of all 
the states that can be reached from 2 in one transition. Namely, these states are 3, 4, 5and 7. The 
P-factor values calculated is as follow. Using equation (5) for P-factor 
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Figure 4. Illustration of some of the test sequences covered 

P-factor3 = P23 + CR3 + AV3 = 30.138 
 
Where, 
P23 = {(τij)α x (ηij)β } / Σ (τij)α x (ηij)β   
      = {(1.0)1 x (0.25)2} /6.5 = 0.3824 

Putting these values in equation (2)  

CR3 = 30.0  from Table 2 

AV3 = 0.1  from Table 3 

Similarly, 
P-factor4 = P24 + CR4 + AV4 = 26.138 
P-factor5 = P25 + CR5 + AV5 = 27.138 
P-factor7 = P27 + CR7 + AV7 = 0.0384 
Hence the ant selects state 3 for next transition. The test sequence till now is 0 � 2 � 3. At 
state 3 the only transition possible is {3,7}. Final test sequence generated is 0 � 2 � 3 � 7.  

Following are some of the outputs obtained at various cost_limit values. In each of the following 
obtained outputs, the number of critical states covered will be checked. This is done in order to 
verify whether the critical states are being covered even under very strict cost limitations. The 
following test sequences were obtained when cost_limit was 20.0. 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 
0 � 1 � 1 � 0 � 2 � 5 � 7 



������������	
������	
�

��
�����
�����������
�
���	��������
��������
��	���
�����
����	
����


 23 

 
Figure 5. Plot of cost limit Vs number of test sequences generated 

0 � 2 � 4 � 7 
0 � 2 � 7 
0 � 1 � 6 � 7 

As it can be seen, the number of test sequences is 6 and there is no redundancy in the set of test 
sequences. Moreover this set of test sequences is providing a full coverage (state and transition). 
All the critical states have been covered here (as can be inferred from a full state coverage). 
When the cost_limit was 15.0 the following set of test sequences was obtained. 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 
0 � 1 � 1 � 0 � 2 � 5 � 7 
0 � 2 � 4 � 7 
0 � 2 � 7 

Here the number of test sequences has reduced to 5. It is still providing full state coverage and 
all critical states have been covered. Although all transition coverage has not been achieved it is 
trade-off between cost considerations and coverage. In any case coverage of all critical states 
has been achieved. As the cost_limit is further decreased it can be observed that the number of 
test sequences will quite obviously decrease.  

When the cost_limit was set to 10.0 the following output was obtained. 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 
0 � 1 � 1 � 0 � 2 � 5 � 7 

Here it can be seen that the number of test sequences is 3 and that although complete state and 
transitions coverage has not been achieved, the most critical nodes have been covered (all 
except state 4, namely states 3, 5 and 6). When cost_limit was set to 25.0 the following output 
was obtained. 
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Figure 6. Plot of cost limit Vs number of critical nodes covered 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 
0 � 1 � 1 � 0 � 2 � 5 � 7 
0 � 2 � 4 � 7 
0 � 2 � 7 
0 � 1 � 6 � 7 

It is evident that this is same result as when the limit was 20.0. Similar results were obtained 
when the cost_limit was set to values above 25.0. So it can be inferred that after a certain 
threshold value of cost_limit the there is no change in the output and that further cost investment 
is not required. The optimal test sequence set (giving full coverage) is obtained at a certain 
threshold value. A similar trend is seen in case of number of critical nodes covered. In Figure 4 
and 5 the cost_limit has been plotted versus the number of test sequences and the number of 
critical nodes covered. It is clearly visible that after the threshold value of 20.0 the curve is a 
constant. 

7. COMPARISON WITH EXISTING TECHNIQUES  
Li and Lam [20] have worked on the use of Ant colony optimization in test sequence generation 
in a state based approach to testing. But the work does not factor in criticality of the states or 
give conclusively optimized test sequences. A comparative study has been made using results 
obtained by applying the above mention technique [20] and the proposed technique. This work 
has been chosen for a comparative study because as per our research this is the only work that 
incorporates ACO in model based testing, and the purpose of this comparative study is to prove 
that a markov chain usage model is better than a simple state based model for the application of 
ACO.  An equal number of test sequences are generated by both the techniques. These are test 
sequences generated by traversals by equal number of ants. The comparative study has been 
made on the basis of the number of nodes and edges covered in the same number of traversals. 
The n test sequences considered here are derived from the first n traversals of the model. This 
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has been done because higher coverage within lesser number of test sequences strongly implies 
more the cost efficiency and hence a more optimal solution. The model used for this study is 
given in Figure 3. We consider the states 3, 4, 5 and 6 as most critical (refer Table 3). There are 
15 edges (transitions) in all and 8 nodes (states). When the number of test sequences is 4 the set 
of test sequences obtained is as follows 
Existing technique  

0 � 2 � 7 
0 � 2 � 3 � 7 
0 � 2 � 4 � 7 
0 � 2 � 5 � 7 

Number of nodes covered = 6 (3 out of 4 most critical) 
Number of edges covered = 8 
Percentage of node coverage = (6/8) x 100 = 75 
Percentage of edge coverage = (8/15) x 100 = 53.33  

Proposed technique 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 
0 � 1 � 1 � 0 � 2 � 5 � 7 
0 � 2 � 4 � 7 

Number of nodes covered = 8 (all the 4 most critical) 
Number of edges covered = 12 
Percentage of node coverage = (8/8) x 100 = 100 
Percentage of edge coverage = (12/15) x 100 = 80 

 

Figure 7. Number of nodes covered with 4 test sequences 
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Figure 8. Number of edges covered with 4 test sequences 

Figure 7 and Figure 8 show a graph describing the results obtained above. When the number of 
test sequences is 4 the set of test sequences obtained is as follows 

Existing technique  

0 � 2 � 7 
0 � 2 � 3 � 7 

Number of nodes covered = 4 (1 out of 4 most critical) 
Number of edges covered = 3 
Percentage of node coverage = (4/8) x 100 = 50 
Percentage of edge coverage = (3/15) x 100 = 20  

Proposed technique 

0 � 2 � 3 � 7 
0 � 1 � 6 � 2 � 3 � 7 

Number of nodes covered = 6 (2 out of 4 most critical) 
Number of edges covered = 6 
Percentage of node coverage = (6/8) x 100 = 75 
Percentage of edge coverage = (6/15) x 100 = 40 

 

Figure 9. Number of nodes covered with 2 test sequences 
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Figure 10. Number of edges covered with 2 test sequences 

Figure 9 and Figure 10 show a graph describing the results obtained above. It is quite evident 
that the proposed technique not only ensures a better coverage but also ensures that the more 
critical states are covered too. Doerner and Gutjahr [11] have used Ant colony optimization to 
generate test sequences from markov chain based models. But the technique described [11] does 
not take the criticality of the states into account. The technique proposed in this paper uses 
criticality of state explicitly as well computes its own measure (average number of visits) to 
gauge the criticality of any state. It gives better coverage of critical nodes, especially when there 
are strict cost limitations. Under such conditions although a lesser number of test sequences are 
generated, the set is optimal for that given cost. This is a very desirable result. 

8. CONCLUSIONS 
The above discussed technique has proven to be effective in generating optimal set of test cases 
from a markov chain based usage model. Especially with the growth in software with extensive 
graphical interfaces, usage modelling will prove to be very fruitful. The technique takes into 
account the average number of visits to any state; this is a very important factor when testing 
graphical interfaces. The discussed technique has also proved to be capable of deriving test 
cases with priority given to the most critical states and transitions. Even with strict cost 
limitations it has been observed that the most critical states have been covered. Future works 
upon this technique could involve the presence of multiple transitional probabilities between 
states [6]. The use of ant colony optimization has proven to be effective and provides an 
efficient means to generate test sequences especially in graph based models. The complexity of 
algorithm used in this technique is O (n2) for a traversal and hence proves to be efficient and 
less computation intensive. 
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