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ABSTRACT

Test case prioritization involves scheduling test cases so that performance of regression testing can be
improved. To re execute all test cases after every modification in the code is an inefficient process. A
technique is to execute the modified lines of code with minimum number of test cases. The proposed test
case prioritization technique organizes the test case in a test suite in an ordering such that fewer lines of
code need to be re executed thus faster code coverage is attained which would lead to early detection of
faults.
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1. INTRODUCTION

Research studies show that software maintenance activity takes two thirds of the cost of software
production. One of the expensive tasks, after maintenance is to establish confidence that changes
made in the system are correct and has not developed any side effects in the already checked
software. This assurance is achieved by performing regression testing. Regression testing is the
re-execution of test cases that have already been executed [1, 8]. In regression testing number of
regression tests increases and it is impractical and inefficient to re-execute all test cases after
every change made to software. Most of the times running an entire suite is not possible as it
takes significant amount of time to run all tests in a test suite. Software testing and retesting
occurs continuously during the software development life cycle to detect errors as early as
possible, So various techniques have been proposed for minimizing test suite. Test Suite
minimization techniques lower costs by reducing a test suite to a minimal subset that maintains
equivalent coverage of original set with respect to particular test adequacy criterion [6].

2. TEST CASE PRIORITIZATION

Rothermel at el. [3,4,5] defines the test case prioritization as:
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Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that (∀T′′) (T′′ ∈ PT) (T′′≠ T′) [f (T′) ≥ f (T′′)] Here, PT represents the set of
all possible prioritizations (orderings) of T, and f is a function which when applied to any such
ordering, yields an award value for that ordering. The definition assumes that higher award values
are preferred over the lower ones. There can be number of possible goals of test case
prioritization. The objective of this study is to develop a test case prioritization technique that
prioritizes test cases for regression testing on the basis of modified code coverage at the fastest
rate possible based on early detection of faults. The minimized test cases are based on modified
software which provides the confidence that changes are tested.

3. METHODOLOGIES

Some regression testing techniques are based on program specification and others select test cases
based on information about code of the program and modified version. The proposed algorithm is
based on code coverage techniques of modified version. Program components that have been
modified or affected by modifications are provided along with the test suite based on code
coverage, and the algorithm select tests in T that exercise those components and the minimization
techniques work like coverage techniques, which select minimal sets of tests through modified or
affected program components. There are four methodologies that are available for regression
testing. These
methods are [7,9]

3.1 Retest all
3.2 Regression Test Selection
3.3 Test Suite Reduction
3.4 Test Case Prioritization

3.1. Retest -all.

This technique discards the test cases which are not applicable to the modified version of
program and test all the remaining set of test cases used for testing of modified program.

3.2. Regression test selection.

This uses information about program, modified program and test cases are selected on some
basis. Retest all technique is expensive as it takes time and effort as all test cases are considered
for regression testing.

3.3. Test suite Reduction.

This technique uses information about program and test suite to remove the test cases, which have
become redundant with time, as new functionality is added. It is different from Regression test
selection as former does not permanently remove test cases but selects those that are required.
Advantage of this technique is that it reduces cost of validating, executing, managing  test suites
over future releases of software, but the downside of this is that it might reduce the fault detection
capability with the reduction of test suite size.
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3.4. Test Case Prioritization.

In this technique each test cases is prioritized according to some criterion and higher priority test
cases are executed first. Its advantage as compared to Test suite Reduction is that it doesn't
discard or permanently remove the test cases from test suite. Present approach considers test
selection and test cases are prioritizing based on early coverage of the code.

4. PROBLEM STATEMENT

Regression Test Selection algorithm based on code coverage [6] considers executing test cases
which covers modified lines of code. Let P be the previous source code and M be the modified
version of T. TH be a set of code coverage based test cases to test P. When P is modified to M the
objective is to find T', which is a subset of TH that covers all modified lines of code at the
earliest. If two or more test cases, have same number of modified lines and their values also
matches then consider test case that has few lines of codes other than modified lines.

Inputs

Previous source code
Modified source code
Test case history showing the list of test cases

Our algorithm performs the following operations:

a) For each test case, it checks the modified source code against the previous source code to
Identify only those test cases out of test case history which covers modified source code.

b) If a match is found, then it increments the number of matches found for that test case. It
records for each test case the total number of matches and the matched values that is the
line numbers. If for two or more test cases, the number of matched values is same, then it
checks whether the matched values are also same. If the matched values are also same,
then out of the test cases it keeps the test case that covers minimum number of lines of
code and if those test cases have equal number of lines of code then it considers any one
of them. If any test case has number of matches equals to zero, then discard that test case.

c) Now reduced set of test cases is arranged in decreasing order of number of matches and
numbered as 1,2,...,up to the number of test cases remaining.

d) The values of the 1st test case are kept in array A and T'={1st test case}
e) For the remaining test cases repeat steps (i) and (ii),
(i) compare the elements of next test case with the array A. If the test case has at least

one different value, add those different values in array A. Otherwise discard that test
case.

(ii) If not discarded then compare that test case with the elements of test cases in array T' and
store the matched values in different arrays . Add this new test case in array T'.

f) Finally, the resulting test cases in T' are checked for dependencies
that is if a particular test case's entries are found in other test cases then that test case is
removed.
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Output:

Reduced number of test cases.

4.1.Algorithm:-

Let the set of test cases be denoted by TH

Let the set of modified lines in the program be denoted by M
Let T' denote the set of test cases selected for execution.
Regression_based_function
T'=phi
For each test case t,
Compare the modified lines of code against the lines of
Code covered by the test case then calculate the number
of matches found and store the matched values

End for
For each test case t,
Check if the number of matches of t is equal to any other
test cases

if equal, then compare their matched values
if matches, then check which out of them have

the minimum number of lines of code. keep
that test case and discard the others
and if the number of elements are equal then keep any
one of them.

End if
End if

End if

If the number of matches of t is equal to zero then
discard that test case .

End if
End for

Arrange the reduced set of test cases of T in decreasing order and numbered as 1,2,...up to
the size of this list.
Put the 1st test case values in array A and T'={1st test case}
For each test case t, Compare the test case t with array A

If t has some different value then
Put in the array A the different value of t.
Record the matched values t has, with the
elements of array T' separately.
Put t in array T'

Else
Discard t. T'=T'-t

End if
End for
For each test cases t in T'

compare t with the remaining test cases.
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If all elements of t are found in other test cases then
Discard t. T'=T'-t

End if
End for

Output

Our final reduced set of test cases is T'.

4.2. Description of the algorithm:-

This algorithm returns minimum number of test cases in order to execute the modified
lines of code. Let us consider an example of a program that has 100 lines of code and
there are 9 code coverage based test cases. The execution history of each test case is
shown in table-1.

Table-1: execution history

Let the modified lines of code are 1, 2, 5, 10, 15, 20, 21, 22, 29, 30.The steps of our algorithm is
explained below with the help of example:

Step 1:-T'=phi

Step 2:
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Test case id No of matches Matched values

T1 4 1, 2, 22, 30
T2 3 1,5,10
T3 3 2, 10, 21
T4 3 5, 22, 29
T5 2 2, 5
T6 2 15, 30
T7 2 1, 20
T8 3 1,5,10
T9 0 -

Step 3: Since T2 and T8 have same no. of matches and the matched values are also same, T2 is
kept as it has fewer remaining number of lines of code then T8. T9 is also discarded as number of
matches equals to zero. So the reduced set of test cases are T1, T2, T3, T4, T5, T6, T7.

Step 4: Arrange the test cases in decreasing order of number of matches

T1 1
T2 2
T3 3
T4 4
T5 5
T6 6
T7 7

Step 5: Put T1's values in array A. A={1,2,22,30} and T'={1}

a) Compare A with T2.T2 has got different values which are 5 and 10.So put the values of T1 and
T2 in a common array

A= {1, 2, 5, 10, 22, 30}.Matched values of T1 and T2is T1,2={1}.
T'= {1, 2}

b) Compare T3 with A.T3 has a different value ie 21.Put this value into the array

A={1,2,5,10,21,22,30}.Matched values
T1,3={2} and T2,3={10}. T'= {1, 2, 3}.

c) Compare A with T4.It has a different value ie 29.so

A={1,2,5,10,21,22,29,30}
T1,4={22}
T2,4={5}
T3,4=null
T'={1,2,3,4}

d) Compare T5 with A. All values of T5 are covered so T5 is iscarded.
e) Compare T6 with A. Different value is 15.So
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A={1,2,5,10,15,21,22,29,30}

T1,6={30}
T2,6=null
T3,6=null
T4,6=null
T'={1,2,3,4,6}

f) Compare A with T7.Different value is 20.So

A={1,2,5,10,15,20,21,22,29,30}
T1,7={1}
T2,7={1}
T3,7=null
T4,7=null
T6,7=null
T'={1,2,3,4,6,7}

Step 6: a) Compare 1 with 2, 3,4,6,7.

T1,2={1}.
Now T1 - T1,2=T1'={2,22,30}.
Now T1,3={2}.so T1'-T1,3={22,30}
T1,4={22} so T1'-T1,4={30}
T1,6={30} so T1'-T1,6=phi
So discard T1 from T'
So T'={2,3,4,6,7}

b) Compare 2 with 3 ,4,6,7

T2,3={10}.so T2-T2,3=T2'={1,5}
T2,4={5} so T2'-T2,4={1}
T2,6=phi
T2,7={1} so T2'-T2,7=phi So
discard T2.
So T'={3,4,6,7}

d) Compare 3 with 4,6,7.

Now T3,4=phi
so T3-phi=T3'={2,10,21}
T3,6=phi and T3,7=phi.
So T3' not equal to phi so don't discard T3keep it
T'={3,4,6,7}

e) Compare 4 with 3,6,7

T4,3=phi so T4'=T4={5,22,29}
T4,6=phi and T4,7=phi



International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

36

so T4' not equal to phi. so keep T4
T'={3,4,6,7}

f) Compare 6 with 3,4,7.

T6,3=phi
T6,4=phi
T6,7= phi
So T6'=T6={15,30} not equal to phi so keep T6
T'={3,4,6,7}

g) Compare 7 with 3,4,6.

T7,3=phi
T7,4= phi
T7,6=phi
so T7'=T7={1,20} not equal to phi so keep T7
T'={3,4,6,7}

So final minimized set of test cases are {3, 4, 6, 7}, so only 4 out of 9 test cases executed, ie we
execute only 44.44% and a saving of 55.56%

5. CONCLUSION

Processes which combine regression test selection method and minimization along with
prioritization may be cost-effective.

his paper proposed an algorithm which improves regression testing for modified version of the
program considering modified lines of code and for prioritization it selects test cases which
execute fewer line of code thus fault detection is earlier.

Earlier fault detection during regression testing provides early feedback on a system under test
and thus debugging activities could start early.

In version-specific test case prioritization [2,6,3], given program P and test suite TH, we prioritize
the test cases in TH when P is modified to M, the intent is to find an ordering that will be
beneficial for specific version M of P. Version specific prioritization is performed after a set of
changes have been made to P and prior to regression testing on M, as this prioritization is
accomplished after M is available thus version specific test case prioritization may be less
effective on subsequent releases. Moreover, our investigation has been confined to prioritization
for regression testing, but it would be advantageous to order tests during requirement
specification, so that they can be used in the initial testing of software.
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