
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

DOI : 10.5121/ijsea.2012.3605 57

INTEGRATING SOFTWARE REPOSITORY MINING: A
DECISION SUPPORT CENTERED APPROACH

Luiz Dourado Dias Junior1 and Eloi Favero2

1Department of Electric Engineering, UFPA, Belem, PA
ldourado1980@globo.com

2 Department of Electric Engineering, UFPA, Belem, PA
favero@ufpa.br

ABSTRACT

Mining software repositories (MSR) research had significantly contributed to software engineering.
However, MSR results integration across repositories is a recent concern that is getting more attention
from researchers each day. Some noticeable research in this sense is related to the approximation between
MSR and semantic web, specially linked data approaches which makes it possible to integrate repositories
and mined results. Manifested that way, we believe that current research is not fully addressing the
practical integration of MSR results, specially, in software engineering due to not considering that these
results needs to be integrated to the tools as assistance to activity performers, as a kind of decision making
support. Based on this statement this research describes an approach, named Sambasore, which is
concerned with MSR results inter-repository integration and also to decision making support processes,
based on tool assistance modelling. To show its feasibility we describe the main concepts, some related
works and also a proof of concept experiment applied to a software process modelling tool named Spider
PM.

KEYWORDS

Network Protocols, Wireless Network, Mobile Network, Virus, Worms &Trojon

1. INTRODUCTION

Over the years, bug tracking, version control and project management systems (among others)
have produced valuable information for the understanding of various aspects related to software
engineering. Such information has been exploited by an area of research called mining software
repositories (MSR), which aims to turn these repositories into active sources of knowledge to
support decision making in software projects [1].

Past research have generated doubtless theoretical and practical contribution in several areas [2],
[3], [4]: a) Software Evolution; b) Project Management: pattern recognition techniques applied
for effort estimation activities, showing that smaller features tend to have low error between the
estimated and held effort; c) Prediction Failures: evaluating the relationship between refactoring
activities and failure occurrences, concluding that they are significant for reducing failures.

Although MSR has produced significant contributions to various software engineering activities,
we understand that an effort to integrate these multiple contributions is at an initial stage. In [5], a
framework has been proposed to facilitate the extraction and relationship among data in multiple
repositories. Moreover, in [6] an ontology based integration mechanism was proposed, which

mailto:ldourado1980@globo.com
mailto:favero@ufpa.br

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

58

focused on generating an integrated repository of facts about source code and also providing
SPARQL endpoints to query submition.

The concern about MSR integration and the perception of its benefits became evident in recent
research. Analysing [5] and [6], it’s possible to notice that both claims for inter-repository
integration, which is certainly relevant. However, we believe that MSR integration problem must
be understood in a wider scope that considers supporting decision making inside case tools, with
context based assistance using mined knowledge.

Understanding this integration comprehension as essential to the growth of practical MSR
applicability, as well as for favoring its use as a mechanism to support decision making in
software projects, this paper describes an approach (called Sambasore) that focuses on guiding
the execution and integration of MSR experiments among themselves, as previous research, and
also to case tools – which is our main contribution.

The remainder of this paper is organized as follows: Sambasore conceptual foundations
(including software process technology and ontologies), some related work, the overview of
Sambasore approach (emphasizing its main activities and integration components), a proof of
concept (focusing on an specific integration scenario) by defining and describing the main steps
to provide a set of assistances for Spider PM software process modeling tool and ultimately, a
critical analysis of the results, limitations and potential.

2. BACKGROUND

The following subsections address the key conceptual elements that underlie the development of
Sambasore approach, namely: a) data mining; b) software process technology; c) ontologies.

2.1. Data mining

Data mining is an activity that is part of a larger process of knowledge discovery (KDD), defined
as the identification of new, valid and potentially useful patterns for a user or task, from large
volumes of data [7].

Typically, KDD process involves activities such as selection, pre-processing, processing, mining,
interpretation and evaluation of results, described below: a) Selection: defining a subset of
variables or samples, from which knowledge discovery will be performed; b) Pre-processing:
operations like cleaning, removing noise and outliers, defining strategies to address missing data,
among others; c) Mining: selection and application of computational intelligence methods on
data to obtain / extract patterns; d) Interpretation and Evaluation: includes the interpretation of
obtained results and the possibility of returning to previous steps for refinement, disposal or
evaluation of new patterns.

MSR is an applied KDD process. By proposing to facilitate the integration of MSR results,
Sambasore is composed by typical data mining activities, focusing in some specific concerns
related to integration, as we describe in section 3.

2.2. Ontologies

In computer science, ontologies are defined as a formal specification of a conceptualization [8].
Thus, ontologies have the status of representing conceptual models in a given domain, describing
it declaratively and separating it from procedural aspects [8]. For this, elements such as concepts,
relations, properties and data types are used.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

59

Ontologies have been used to represent knowledge mined from software repositories and to
integrate research results [6]. Sambasore uses ontologies on the same perspective, linking
software process concepts and relationships to MSR mined knowledge and also to assistance
definition. Adding this possibility makes it possible to define SPARQL queries using knowledge
obtained from MSR, in order to provide assistance to software engineering actors.

2.3. Software Process Technology (SPT)

SPT proposes the development and adoption of process centered software engineering
environments (PSEE), to automate the management of software processes [9]. Software process
can be understood as a set of activities performed in software projects [9].

Processes are described abstractly, by models that include various types of information: who,
when, where, how and why certain steps are taken. To facilitate this activity, several languages
were created to support process modeling. In this context, it is worth noting OMG's effort to
define a generic language for software development process modeling - called SPEM [10].

Besides the availability of a language for process modeling, some tools have been developed to
support the modeling activity, among them Spider PM. This tool uses a specific modeling
language (Spider PML), derived from some simplifications over SPEM [11].

Provided that assistance definition involves assisting software engineering actors when
performing activities, we believe that SPT would (and specifically Spider PML) help us in
specifying the context where assistance should be provided.

3. RELATED WORK

On the following subsections we briefly discuss recent work which is similar and relevant to our
research.

2.1. On Mining Data across Software Repositories

With the increase in the size of the data maintained by software repositories, automated extraction
of such data from individual repositories, as well as of linked information across repositories, has
become a necessity [6].

A framework that uses web scraping to automatically mine repositories and link information
across them has been proposed and implemented in two manners [6]: a) first: to automatically
identify and collect security problem reports from project repositories that deploy the Bugzilla
bug tracker; b) second: to collect security problem reports for projects that deploy the Launchpad
bug tracker along with related vulnerability information from the National Vulnerability
Database.

The main contribution of [6] in our research is to reinforce that linking information across
repositories is a strong necessity. For one side, the referred work states a promising alternative to
treat the problem, but this doesn’t reach MSR integration to case tools, like ours.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

60

2.2. A Linked Data platform for mining software repositories

Mining software repositories involves the extraction of basic and value-added information, to
support different stakeholders for various purposes [7]. To avoid unnecessary pre-processing and
analysis steps, sharing and integration of both basic and value-added facts are needed [7].

To surpass the problem stated, SeCold was introduced as an open and collaborative platform for
sharing software datasets. SeCold provides the first online software ecosystem Linked Data
platform that supports data extraction and on-the-fly inter-dataset integration from major version
control, issue tracking, and quality evaluation systems.

The approach is based on the same fundamental principle as Wikipedia [7]: researchers and tool
developers share analysis results obtained from their tools by publishing them as part of the
SeCold portal and therefore make them an integrated part of the global knowledge domain.
Although the research in [7] represents a great advance, we understand that their focus is
infrastructure related. In our research we propose the same linked data/ontology based approach,
but in addition to this we propose specific concepts to link MSR results to software process
execution, transforming them into assistance to software engineering tools.

4. SAMBASORE APPROACH

Consider a typical software development project scenario, in which functional size estimation is
needed to be done using function point analysis technique. Suppose further that the company in
which the project is being developed has expertise in similar projects, and that this expertise is
historically condensed in spreadsheets repository.

In this scenario, assume that an independent estimator will perform a size estimative activity for
a system (named X) using a vision document as input (named D) and supported by a tool
(named T). Considering that the company has a repository of previous estimates: how it could be
used to support the estimator, providing him/her with estimates based on vision documents
similar to “D”?

To address such scenarios Sambasore is proposed. In the illustrated scenario, an assistance project
would be designed to T by a team composed by software/knowledge engineers and developers.
The project would purpose to identify sources of knowledge (repositories that contain vision
documents and estimate spreadsheets), apply data mining techniques in order to relate the
artifacts to concepts in the ontology, and finally, build SPARQL queries whose results would be
integrated to T.

Sambasore approach aims to act in this type of scenario, using ontologies (to define assistance
SPARQL queries) and software process technology concepts (modeled as ontologies and used to
define when and to whom SPARQL queries would be exhibited), in order to encourage the
integration of MSR results and them to software engineering supporting tools. The following
subsections describe the Sambasore approach focusing on its integration aspects, addressing its
overview, planning and development activities.

4.1. Overview

To achieve the integration goal, we defined Sambasore comprised by: a) a software process; b) a
set of domain ontologies – an ontology for multi-repository MSR integration, another to
software process knowledge and one to define assistances (based on MSR results and software
process knowledge); c) a reference model for developing knowledge extractors for software

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

61

repositories; d) a reference architecture for developing extractors; e) a framework for
developing these extractors, and f) a set of tools to support the defined process, among which are
included the integration components. Figure 1 illustrates how some of these elements are
interrelated.

Figure 1. Sambasore approach overview.

In Figure 1, assistance and integration development activities are noteworthy. Assistance
development activities addresses aspects related to inter-repository integration, and are influenced
by the: model and reference architecture; Sambasore’s framework; domain models provided
(represented by Sambasore’s ontologies). Model and reference architecture guides the
development of miners/extractors and their integration through domain ontologies; Sambasore’s
framework guides the implementation of miners/extractors using Java language; domain
ontologies provides MSR inter-results integration and assistance definition. The other activities
focuses on the coupling of MSR results to case tools, using Sambasore tools and its integration
components.

The remaining activities represent a simplified view of existing activities in standard software
process. This is justified by the fact that integration is materialized by a maintenance effort to
evolve the source code of to be assisted case tools. Understood this way, activities like definition
validation, product build generation and deployment are expected. In the following sections, we
describe planning and development activities, and also the integration components. For the scope
of this paper we won’t describe the ontologies used by Sambasore, but we will exemplify how
they are used when describing the proof of concept.

4.2. Planning Phase

At this phase, the goal is to clearly define the project scope. In this context, the objective is to
prioritize the assistance needs that must be met by the project and, in addition, to define

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

62

knowledge extracting strategies for the software repositories available. Figure 2 illustrates the
activities of this phase, followed by detailed description:

Figura 2.Planning phase.

• A1 - Identify Assistance Requirements: identifying assistance requirements and also
other functional and non-functional ones (project scope);

• A2 - Evaluate Available Knowledge: identifying key concepts and relationships needed
to meet assistance requirements and their availability on knowledge base;

• A3 - Evaluate Integration Requirementes: evaluating / identifying requirements for
assistance integration to case tools (defined at project scope);

• A4 - Evaluate Base Ontology Evolution Requirements: identifying concepts and
relations not covered by the knowledge base, in order to meet assistance requirements;

• A5 - Definition Extraction Strategy: defining required concepts and relations for each
specified assistance, as well as data sources, strategies for selection, integration and pre-
processing and also mining techniques;

• A6 - Elaborate Deployment Model: defining the project deployment model;

• A7 - Elaborate Acceptance Term: elaborating and getting an approved project
acceptance term;

• A8 - Validate Definitions: interacting with project stakeholders for project definition
validation and startup.

4.3. Development Phase

In the Development phase, the goal is to develop the set of specified assistances, the set of
extractors that will extract the knowledge needed to assistance definition and finally to integrate
such assistances to case tools, defined on project scope. To achieve these goals, the development
phase is divided into iterations shown in Figure 3 and described below:

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

63

Figure 3.Development Phase

• I1 – Assistance Development: developing the specified assistances;

• I2 - Integration of Assistance - Tool: integrating the developed assistances to case tools;

• I3 - Extractor Development: developing knowledge extractors, if some assistance
requires knowledge not provided by pre-existent facts on domain ontologies.

It is noteworthy that I3 activity is optional. At planning phase, specified assistances are verified to
check if they require some knowledge not previously collected. If this is the case, a knowledge
extraction strategy must have been defined. In the development phase, the planned extraction
strategies must then be developed, which includes MSR conduction (if not previously done).

4.3.1 Assistance development iteration

The Assistance development iteration consists of the following set of activities:

• A1 - Develop Information Resource To Assistance: mapping data sources for each
specified assistance;

• A2 - Map Tool Integration Parameters: defining parameters that need to be informed
by the case tool (which will have assistances integrated to), so that the assistance engine
can provide the content of knowledge sources;

• A3 - Verify Queries and Tool Integration Parameters: ensuring the quality of the
source of knowledge defined, as well as the integration parameters.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

64

4.3.2 Extractor development iteration

The Extractor Development iteration consists of the following set of tasks (T) and activities
(A):

• T1 - Evolve Base Ontology: adding / modifying concepts, relationships and properties at
integration ontologies for MSR results integration;

• T2 - Develop Data Sources: developing classes to recover data from defined daya
sources, according to assistance requirements and knowledge extraction strategies;

• T3 - Develop Selectors: developing a set of classes for selection over previously
collected data;

• A1 - Develop Collectors: developing classes to provide data transformation, selection,
pre-processing and mining;

• T4 - Develop Knowledge Extractor: developing classes to concept, relationship and
property extraction from data previously mined, as well as their integration into the
knowledge base;

• T5 - Configure Sambasore Project: generating a project definition file containing
properties to guide execution of developed extractors;

• T6 - Execute Sambasore Project: programs execution, integration ontology population
and knowledge base evaluation (after populated by Sambasore project).

The tasks and activities of extractor development iteration are performed by knowledge engineers
and developers. The former are responsible for T1, using the Protége editor [13]. The other tasks
and activities are carried out by developers which should use Java IDE to support them (since T2,
T3, A1, T4 requires extensions over Sambasore’s framework - Java library). Later, developers
should use Sambasore tools to execute the project - which will use the developed classes to
effectively incorporate MSR results to the knowledge base, making them available to be
consumed by previously developed assistances, which will be integrated to case tools using
integration components.

4.3.3 Integration of Assistances Tool iteration

The Integration of Assistance – Tools iteration, as shown in Figure 6, consists of the
following set of tasks (T) and activity (A):

• T1 - Integrate Assistance to Tools: creating or modifying the source code of case tools,
as specified by assistance requirements and their integration parameters, so that the case
tool can provide the integration parameter values and get assisted;

• A1 - Build Generation: generating a product build (modified tool) at verification
environment;

• T2 - Evaluate Results: intends to realize some verification activities to check if the
agreed the results were obtained.

The tasks and activities of this iteration are performed by knowledge engineers and developers.
The former get involved in T2 together with developers, because the task aims to evaluate project
results prior to client/stakeholders validation. The other tasks and activities are performed by
developers, which should preferably use the canonical integration component (file-based),
especially when the target tools have not been developed in Java. These components and
integration scenarios are discussed in the following section.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

65

4.4. Integration Components

MSR results integration to case tools is the final goal of Sambasore’s approach. In this scenario,
besides the activities that lead to this, we believe that some software components should allow, in
theory, MSR results integration to any existent and to be developed case tool.

The integration solution core is based on two software components. The first (C1) is a web
application, whereas the second (C2) is a file system monitor application. The first offers an
integration service with a public method - designed to obtain a list of assistance with their
corresponding content (text, URL or SPARQL query). The second component monitors a set of
folder in the file system - when a file request (JSON formated and named with “req” extension) is
added to the monitored folder, the component (C2) extracts the file information and turns it into a
request to the web service (offered by C1). The web service response is saved to a new file (JSON
formated and named with “res” extension) which is then read by the original application (case
tool) and displayed as a set of resulting assistance. Figure 5 illustrates an example of an assistance
request in JSON format - this structure can be used by any case tool that someone needs to
provide assistance for.

Figure 5. Sample JSON format request.

JSON is a lightweight standard for information exchange between systems, considered readable
for humans and easier for interpretation and generation by machines [14]. The standard was
developed as a subset of the JavaScript language in 1999 and is language independent. [14] For
these characteristics and the need to allow any tool integration to MSR results, we understood that
this pattern could be easily adopted by any programming language that manipulates files.

It is important to describe some of the elements in Figure 5. The first is entityName, which is the
type of entity manipulated at a particular case tool. The second is actionName, and corresponds to
the action being performed over some entity. The third is toolName, and corresponds to the name
of the case tool in which the entity is being manipulated. The fourth is contextItemFilePath which
is the file path to entity manipulated content - such content is transferred to assistance engine
whose extracts its content and inserts it into knowledge base. The fifth element is outputFilePath
which is the file path where the assisted tool expects to get the response from assistance engine.
The sixth element is serviceUrl which indicates the URL for web service component C1, and
finally, parameters element represents a set of contextual parameter - in this case the name of the
class we are interested to evaluate the similarity of.

To define integration solution we outlined three integration scenario bellow, which will be better
discussed in subsequent paragraphs:

• SCE1 – Java based applications developed with aspect orientation support;
• SCE2 – Applications that support SOAP protocol;
• SCE3 – Other Application that do not support SOAP.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

66

For SCE1 we developed an integration component C3 which provides a set of class and
annotation. The annotations are used to identify integration methods (at case tool source code),
indicating that before or after method execution, a method will be called to pass integration
parameter values to a façade that will be accessed by an aspect that, finally, will interact with C1.
Such a scenario requires importing C3 Java library at case tool source code project and in this
case, accordingly to scenario description it will covers only tools that have been developed in
Java language.

In scenario SCE2 we considered applications (Java or not) having components that deals with
SOAP protocol, or allow the use of this type of protocol. In this case, the case tool has the
responsibility to prepare a SOAP request, submit it to the web service in C1, process and display
the results. We believe that this scenario allows broader integration, due to the existence of tools
developed in programming languages that supports SOAP (such as Java, PHP, Python and
others).

Finally, SCE3 fit applications that actually are not developed in Java and have no possibility to
use SOAP protocol. In these cases, we chose an integration solution based on shared files in a file
system. Files with specific naming (to indicate request and response) are saved by the tool
(request), read and written (reply) by component C2 and subsequently read by the tool. The basic
principle of this mechanism is that, in theory, any tool (in software engineering context) can read
and write files, and can thus be adapted to allow integration proposed in this paper. It is
considered that this is the broader integration component.

Figure 6. Architectural Overview of Integration Solution

Figure 6 shows an architectural view that contains C1, C2 and C3, respectively called
WebServiceIntegrator, FileSystemIntegrator and AnnonationBasedIntegrator. It can be noticed
that, as illustrated previously by scenarios, the central component is C1. One can also note that
C1 interacts directly with assistance engine by HTTP requests, while others only reach the engine

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

67

through C1 via ItfAssistanceIntegration interface. The integration scenarios described can also be
identified in Figure 6 by a set of notes with specific corresponding labels.

5. SPIDER-PM ASSISTED

To illustrate the use of Sambasore, we applied the approach to provide some assistance to a
software process modeling tool (Spider PM). This tool belongs to Spider project, institutionalized
in 2009 at the Institute of Exact and Natural Sciences in Federal University of Para (UFPA -
Brazil) and has the following main objectives, according to [15]:

• Identify free software tools that allows the creation of work products derived from the
expected results described in the specific practices and goals in the areas of process
model "MPS. BR "and CMMI;

• Specify and develop a suite of tools to provide a more integrated use in order to support
the deployment of processes / areas of process models "MPS. BR "and CMMI.

Spider PM presents features related to software process elements breakdown as well as the
relationships between these elements [16]. For this, it uses a language called Spider ML, which is
a simplification of SPEM – a process modeling language defined by the OMG [16].

This tool was choose due to the following main reasons: a) source code access: by the
partnership with Spider team we got access to Spider PM source code, what lot us develop some
peace of code to evaluate the feasibility of the approach; b) Java source code: we have been
working with Java for many years, so this factor would ease significantly the integration process,
and consequently the proof of concept; c) simplicity of Spider ML: as we needed to define an
ontology in software process domain (to allow assistances to be defined and integrated to
software process), the simplicity eases our integration job.

5.1. Planning

As presented in section 4.2, the main objective of the planning phase is to identify and document
the scope of an assistance project. Below, we describe the main results in each phase of activities
cited:

• A1 - Identify Assistance Requirements: to perform proof of concept we proposed two
assistances. The first (ASS1) intended to submit a process phase name and get phases that
already composed process models together with phases with names similar to submitted
one (SPARQL content). The second (ASS2) should present a set of results got from
Google search on modeling phases in software processes (URL content);

• A2 - Evaluate Knowledge Available: as the software process domain ontology was not
set, none of the concepts was available. Thus, it was necessary to build ontology
altogether, based on SPIDER ML specification;

• A3 - Evaluate Integration Requirements: desired assistances relied only on phase
names and the similarity between them. Thus, we realized that this would be applied to
any of modeling entities used by Spider PM. Considering this, we defined two integration
parameters - the first is the name of the entity being modeled by the process modeler,
while the second is the type of entity (phase, activity, status, among others);

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

68

• A4 - Evaluate Ontology Evolution Base Requirements: besides SPIDER ML concepts
and relationships, we noticed that to provide desired assistance we also needed some
extra relationships and concepts - isStronglySimilarTo (R1), isFairlySimilarTo (R2), and
isWeaklySimilarTo (R3) and a concept seeAlso (C1) (to indicate the co-occurrence
strength of entities in software process models);

• A5 - Extraction Strategy Definition: we decided that R1, R2 and R3 would be obtained
by JaroWinkler distance calculated between entity names. For this, each relation is
associated with a range of possible JaroWinkler values (0 to 0.3 defines
isWeaklySimilarTo, 0.4 to 0.7 defines isFairlySimilarTo, 0.7 to 1 defines
isStronglySimilarTo). Moreover, for seeAlso we defined that the strength of association
between entities would be addressed by calculating support and confidence as defined in
[17];

• A6 - Elaborate Deployment Model: not performed;

• A7 - Elaborate Acceptance Term: not performed;

• A8 - Validate Definitions: not performed.

It’s important to state some remarks about A5, A6, A7 and A8. About A5, we must say that
relationship definitions are hard assigned (some fuzzy strategy can be used), but, as long as the
intention was just to validate the idea, we understood that it would suffice. A6, A7 and A8 were
not performed because the goal not focused the end users, but the proof that the proposed
approach would provide MSR results integration to a software engineering tool.

5.2. Development

The development phase is responsible for transforming assistance requirements in
integrated software assistance applied to a tool. In the context of proof of concept, this
step comprised iterations whose tasks involved SPARQL queries design for ASS1
assistance and source code evolvements in Spider PM for effective integration of ASS1.
The iterations and its main activities are described in the following subsections.

5.2.1 Assistance Development iteration

5.2.1.1 Develop Information Resource to Assistance

This activity was carried out with the Sambasore Assistance Modeling tool, and the result was
documented in artifact Map Resources for Assistance, and presented in Table 3 for review and
discussion.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

69

Table 3 - Map of resources for assistance.

Code Type of
Assistance

Source of Knowledge

ASS1 SPARQL PREFIX //www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX //www.semanticweb.org/ontologies/2011/10/software-
assistance.owl#
PREFIX //www.semanticweb.org/ontologies/2011/10/core-
process-definition.owl#
SELECT ?entityType2 ?name2
WHERE {
{
?entity type #FOCUS_ENTITY_TYPE#.
?entity name \#ENTITY_NAME#\.
?entity hasSeeAlso ?seeAlso.
?seeAlso seeAlso ?entity2.
?entity2 name ?name2.
?entity2 type ?entityType2.}
UNION
{?entity type #FOCUS_ENTITY_TYPE#.
?entity name \#ENTITY_NAME#\.
?entity isStronglySimilarTo ?entity2.
?entity2 hasSeeAlso ?seeAlso.
?seeAlso seeAlso ?entity3.
?entity3 name ?name2.
?entity3 type ?entityType2.
}
UNION
{?entity type #FOCUS_ENTITY_TYPE#.
?entity name \#ENTITY_NAME#\.
?entity isFairlySimilarTo ?entity2.
?entity2 hasSeeAlso ?seeAlso.
?seeAlso seeAlso ?entity3.
?entity3 name ?name2.
?entity3 type ?entityType2.}
}

ASS2 URL http://www.google.com.br/
#hl=pt-BR&sclient=psy-ab
&q=fases+do+processo+de+
software
&oq=fases+do+processo+de+software
&gs_l=hp.3..0j0i8i30j0i5i30.7970.
12300.1.12801.29.24.0.3.3.1.557.
9050.3-8j10j3.21.0...0.0.
ReI6sQ99f2o&pbx=1
&bav=on.2,or.r_gc.
r_pw.r_cp.r_qf.,cf.osb
&fp=c96f3b0a734469e9&biw=1600&bih=796

From Table 3 it is possible to realize that the source of ASS1 was a SPARQL query, while ASS2
source is a URL, or the path to an information resource that represents the knowledge to be
provided.

www.w3.org/1999/02/22-rdf-syntax-ns#
www.semanticweb.org/ontologies/2011/10/software-
www.semanticweb.org/ontologies/2011/10/core-
http://www.google.com.br/

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

70

It should be noted also that in Table 3 the query which is designed to ASS1 is generic about the
entity type. This is possible due to the use of integration parameters #FOCUS_ENTITY_TYPE#
and #ENTITY_NAME#.

5.2.1.2 Map Tool Integration Parameters

This activity was carried out based on the contents of the Map Resources for Assistance,
produced in Develop Information Resource to Assistance. The result is shown in Table 4, and
discussed below.

Table 4 - Specification of integration requirements to Tools.

Code Description of
assistance

Action Implementatio
n Units Integration Parameters

ASS1 Present phases that
have been modeled
in conjunction with
phases similar to
the last one
modeled

Name
Change of
Phase

spider.pm.gui.P
hasePropertiesP
anel

#FOCUS_ENTITY_TYPE
= entity type

#ENTITY_NAME# =
entity name

From Table 4 is possible to note that the implementation unit PhasePropertiesPanel needed to be
evolved in Spider PM. This unit is responsible for controlling user interaction with the panel
properties existing in a phase diagram, dealing among other events with name change, directly
related to ASS1. The mapping on Table 4 is essential to support the coding phase.

5.2.2 Extractor development iteration

5.2.2.1 Data source development

This activity was developed in Eclipse IDE. We extended the Sambasore framework and
developed the code for data source classes, which would allow the derivation of knowledge
needed to provide ASS1.

We considered that providing ASS1 would involve knowledge about process models and
software entities that comprise these models. In this sense, we defined two data sources. The data
sources classes developed are: a) SpiderProcessModelInformationSource: representing data
about the relationship between two entities in a process model diagram; b)
ProcessModelInformationSource: representing a process model produced in Spider PM (e.g.,
file name and "serialized" model).

It is noteworthy that in both data sources we extended BaseInformationSource from SambaSore
Miner, which inherits from BasicDbObject database MongoDB - attributes were not defined
because this superclass owns a HashMap to implement the behaviors needed - creating extensions
was only done to conceptually separate data sources. The next subsection describes the
implementation of data collectors that uses the classes described in this subsection to persist data
from software repositories in MongoDB.

5.2.2.2 Data Collector Development

Considering the possibility of defining an assistant to any entity in a process model, we decided to
develop two collectors: a) SpiderProcessModelCollector: responsible for persisting software

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

71

process model dataset; b) SeeAlsoCollector: responsible for the persistence of a dataset
consisting of data defining the origin, the destination, the support and confidence of an
association between two entities in a model. Figure 7 illustrates a stretch of implementing
SpiderProcessModelCollector.

Figure 7.Portions of the implementation process model collector.

With respect to Figure 7 is worth noting, first, the inheritance of the
BaseSambaSoreDataSetCollector Sambasore class, because it implements a persistence
mechanism based in MongoDB database (choose due to scalability). Moreover, it is important to
cite the use of generics feature to typify ProcessModelInformationSource information entity
which composes the dataset. Another important point is that as it was not necessary to perform
classical mining activities such as integration, pre-processing and transformation. Finally, there is
a method which overrides “extract” from BaseSambaSoreDataSetCollector and defines a logic
which search files in a folder; check if the extensions are within a pre-defined set, and does the
final dataset extraction.

5.2.3 Tool Assistance Integration Iteration

The integration iteration activities involve the integration itself, as well as build generation and,
finally, an evaluation of it by the client. This section describes the main aspects of activities
related to assistance integration to software engineering tools.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

72

First, it is important to situate the exact usage scenario in which the ASS1 assistance was
proposed. Throughout the modeling of a software process typically phases are defined. Part of
this process involves the definition of the phase name which in Spider PM occurs at the GUI
shown in Figure 8.

Figure 8.Creation / nomination phase in Spider PM.

Assistance ASS1 was thought to be applied after the modification of the field "Nome" in Figure
8. Once modified, the file name and the model are subjected to AnnotationBasedIntegrator
component (shown in Figure 6 of Section 4.4) that ultimately drives the web service integration.
This service turns a set of extractors that acts over the submitted file, and include the knowledge
in the knowledge base. Finally, the requested assistance contents are recovered and returned to
the application (in this case Spider PM).

In this context, the first step of integration involved importing Spider PM Source code in Eclipse
IDE. Later, AnnotationBasedIntegrator component was added to the project. After that, some
modifications were performed on "spider.pm.gui.PhasePropertiesPanel" which is the controller
class of GUI illustrated in Figure 8. Figure 9 illustrates the method which responds to the change
in phase name (previously illustrated in Figure 8).

Figure 9.Method that accounts for the phase name change.

From Figure 9 it is possible to see some details regarding integration component used. First, it can
be seen the use of AssistanceAfterAction annotation which indicates that an attempt to assistance
recovery will be made after execution of this method, ie, after the name of the phase is modified.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

73

Then we should mention the useGenericIntegrationFacade attribute indicating that the facade
based component integration pattern is used. Later, there is the attribute idFieldForActionId
which indicates the class attribute name of the assistance request identifier. Finally,
configMethodForActionAssistance indicates which method is responsible for interacting with
component façade and set values to integration parameters (Ex: the controller interacts with
GenericIntegrationFacade to set RoleUseName). Figure 10 illustrates the implementation of the
method configUpdateComponentAction.

Figure 10.Configuration method for interacting with assistance façade.

In Figure 10 it is important to highlight the points 1 and 2 in red. The first point illustrates the
software process model file name setting, defined when process modeler saves the model. Then in
the second section, an interaction between configUpdateComponentAction method (implemented
in action controller) and the integration façade of AnnotationBasedIntegration is highlighted.

In particular, the second section in Figure 10 illustrates basic integration parameters value setting.
It is worth noting, in this context, the last line where an array of String is passed as parameter to
GenericIntegrationFacade containing #ENTITY_NAME# and #FOCUS_ENTITY_TYPE#
parameters. The first is one refers to the name of the entity (a phase in the example), while the
second is the type of entity that is in focus. It is noteworthy that, at last, there is a reference to a
concept of the domain ontology that was produced at the activity named as evolution of ontology
base (not detailed in this paper). In the example, as envisioned that integration could be done with
any entity modeled on Spider PM, it was considered valid to define a parameter that represents
the type of entity modeled (thus allowing a single parameterized assistance to be defined).
However, this decision creates a stronger coupling between Spider PM Integration
implementation and the assistance engine, because the tool developer team needs to understand
some specific ontologies details used by assistance engine. Another way to implement the same
behavior could have been the setting of many assists (one for each entity type).

It’s also important to notice the viewerClass integration parameter. This is responsible to point
out a class that will get assistance results provided by AnnotationBasedIntegration, according to
the designed user interaction pattern. A portion of code of this implementation is showed in
Figure 11.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

74

Figure 11.Assistance presentation implementation.

6. CONCLUSIONS

This paper presented the Sambasore approach which is based on ontologies and software process
technologies, and aims to foment the integration of software repositories mining results and also
between them and tools that support software engineering.

To illustrate the approach, a proof of concept was developed in partnership with Spider project. In
this partnership, the Spider PM tool was experimentally modified to be endowed with two types
of assistance: a) the first aimed to present the results of a Google search about modeling phases in
software processes, and the other which is more contextual b) intended to show a list of phases
(modelled before) that had already been used in conjunction with other similar to the one included
in the model.

We believe that this proof of concept was satisfactory. Firstly because it made possible to
evaluate most of Sambasore proposed activities, work products and tools. Secondly because it
was possible to evaluate the most specific integration component, which implies that we could
check integration concepts by using the most difficult to develop integration scenario, and finally,
because the proof of concept supported the definition of a software process ontology, which will
facilitate assistance integration into software engineering tools and processes.

This viability implies that any Java tool (that supports software engineering), developed with
aspect orientation support, can be assisted using this kind of knowledge-based approach.
Considering that the other integration scenarios are simpler to implement, we believe that this
proof of concept helps in envision broader possibilities to MSR results integration into software
engineering practice; it also can help to shift the current scenario where engineers are still taking
much of the decisions based on experience to a new scenario, where decision making is based on
collective and historical background.

Certainly, however, it is important to note some limitations and restrictions in this research.
Although virtually any tool of this nature can be integrated, there are infrastructure requirements
to let these tools actually be assisted by assistance engine. In particular, it is worth mentioning the
availability of network access - considering that the integration component evaluated in proof of

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

75

concept interacts with a web service, there is a prerogative that the workstation should have
intranet or internet access.

In a future work, part of a doctoral thesis study, we intend to evaluate some existent software
engineering tools and the programming language used to develop them. If we can prove that all of
them are made over languages that can read and write files in JSON format, we believe that this
can strongly state the canonical integration component, and consequently to state that every
software engineering tool can be assisted the way we described.

ACKNOWLEDGEMENTS

The authors would like to thank Spider project team by providing the context where the proof of
concept should be performed and analysed.

REFERENCES

[1] Hassan, A.E., (2008) "The road ahead for Mining Software Repositories," Frontiers of Software
Maintenance, pp.48-57.

[2] Holmes, R. & Begel, A., (2008) “Deep intellisense: a tool for rehydrating evaporated information”, In
Proceedings of the 2008 international working conference on Mining software repositories (MSR '08).
ACM, New York, NY, USA, 23-26.

[3] Layman, L. & Nagappan, N. & Guckenheimer, S. & Beehler, J. && Begel, A., (2008) “Mining
software effort data: preliminary analysis of visual studio team system data”, In Proceedings of the
2008 international working conference on Mining software repositories (MSR '08). ACM, New York,
NY, USA, 23-26.

[4] Ratzinger, J. & Sigmund, T. & Gall, C. H., (2008) “On the relation of refactorings and software defect
prediction”, In Proceedings of the 2008 international working conference on Mining software
repositories (MSR '08). ACM, New York, NY, USA, 35-38.

[5] Anbalagan, P. & Vouk, M., (2009) “On mining data across software repositories”, In Proceedings of
the 2009 6th IEEE International Working Conference on Mining Software Repositories (MSR '09).
IEEE Computer Society, Washington, DC, USA, 171-174.

[6] Keivanloo, I. & Forbes, C. & Hmood, A. & Erfani, M. & Neal, C. & Peristerakis, G. & Rilling, J.,
(2012) "A Linked Data platform for mining software repositories", Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on , vol., no., pp.32-35, 2-3 June 2012.

[7] Fayyad, U. & Piatetsky-Shapiro, G. & Smyth, P., (1996) “The KDD process for extracting useful
knowledge from volumes of data”, Commun. ACM 39, 11 (November 1996), 27-34.

[8] Cimiano, P. (2010) “Ontology Learning and population from text”, Springer, 2010.
[9] Reis, C. L. (2003) “Uma Abordagem Flexível para Execução de Processos de Software Evolutivos”,

Tese de Doutorado - PPGC - UFRGS, Março 2003.
[10] “Spem 2.0 Specification”, http://www.omg.org/spec/SPEM/2.0/.Last visited Aug, 2012.
[11] “Spider PM specification”, http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf. Last visited

Aug, 2012.
[12] “RUP 2002”, http://www.wthreex.com/rup/portugues/index.htm .Last visited Aug, 2012.
[13] “Protége Editor”, http://protege.stanford.edu/ .Last visited Aug, 2012.
[14] “Json Format”, http://www.json.org. Last visited Aug, 2012.
[15] “Spider Project”, http://www.spider.ufpa.br/index.php?id=sobre.Last visited Aug, 2012.
[16] “Spider PM specification”, http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf. Last visited

Aug, 2012.
[17] Agrawal, R. & Imieli, T. & Swami, A., (1993) “Mining association rules between sets of items in

large databases”, In Proceedings of the 1993 ACM SIGMOD international conference on
Management of data (SIGMOD '93), Peter Buneman and Sushil Jajodia (Eds.). ACM, New York,
NY, USA, 207-216.

http://www.omg.org/spec/SPEM/2.0/
http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf
http://www.wthreex.com/rup/portugues/index.htm
http://protege.stanford.edu/
http://www.json.org
http://www.spider.ufpa.br/index.php
http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf

