
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

DOI : 10.5121/ijsea.2012.3608 101

PREDICTION OF SOFTWARE REQUIREMENTS
STABILITY BASED ON COMPLEXITY POINT
MEASUREMENT USINGMULTI-CRITERIA

FUZZY APPROACH
D. Francis Xavier Christopher1 and E.Chandra2

1Director, School of Computer Studies, RVS College of Arts and Science
Coimbatore, Tamil Nadu 641402, India

christopher@rvsgroup.com
2Director, School of Computer Studies, SNS Rajalakshmi College of Arts and Science

Coimbatore, Tamil Nadu 641402, India
crcspeech@gmail.com

ABSTRACT

Many software projects fail due to instable requirements and lack of managing the requirements changes
efficiently. Software Requirements Stability Index Metric (RSI) helps to evaluate the overall stability of
requirements and also keep track of the project status. Higher the stability, less changes tends to
propagate. The existing system use Function Point modeling for measuring the Requirements Stability.
However, the main drawback of the existing modeling is that the complexity of non-functional requirements
has not been measured for Requirements Stability. The Non-Functional Factors plays a vital role in
assessing the Requirements Stability. Numerous Measurement methods have been proposed for measuring
the software complexity. This paper proposes Multi-criteria Fuzzy Based approach for finding out the
complexity weight based on Requirement Complexity Attributes such as Functional Requirement
Complexity, Non-Functional Requirement Complexity, Input Output Complexity, Interface and File
Complexity. Based on the complexity weight, this paper computes the software complexity point. And then
predict the Software Requirements Stability based on Software Complexity Point changes. The advantage
of this model is that it is able to estimate the software complexity early which in turn predicts the Software
Requirement Stability during the software development life cycle.

KEYWORDS:

Multi-Criteria Fuzzy Based Approach, Functional Requirement Complexity, Non-Functional Requirement
Complexity, Input Output Complexity, Interface Complexity, File Complexity, Software Complexity Point
Measurement, Requirements Stability Index.

1.0 INTRODUCTION

Requirements Elicitation is the most important stage in the Software Development Life Cycle
Process. If the requirements have not been captured correctly during the Elicitation process, then
the whole development process will fail which results in time and monetary costs [18]. Software
developers often start with unclear, ambiguous, and incomplete requirements with inaccurate
understanding of the user needs or insufficient requirements. Therefore, requirements
development and management are the start point of the software development process. Software
system needs to evolve. In particular, changes in the requirements may be related to the addition
of new functionalities, modification to the existing ones, deleting the functionalities which are

mailto:christopher@rvsgroup.com
mailto:crcspeech@gmail.com

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

102

obsolete or to the improvement in the quality of service offered [10]. Requirements changes not
only cause software defects but also cause in delay of delivery of the software project.
Requirements changes at the later stage can cause uncertainty in the software development.
Sometimes, these requirement changes will affect the quality of the software. For requirements
engineering, the challenging issue is not the requirements change. It is how to deal with the
change and how to measure them. For measuring the change, measure the software complexity.
IEEE defines software complexity as “the degree to which a system or component has a design or
implementation that is difficult to understand or verify” [1].

Software Complexity Measurement can be classified into three categories: Size, Structure and
Quality Measurement [17]. In present, there are many algorithmic models and non-algorithmic
models have been developed to measure the complexity of the software [20]. Some of the famous
algorithmic models are Function Point Modeling, Constructive Cost Model (COCOMO),
Software Life Cycle Management model (SLIM). Non-algorithmic techniques include Price-to-
Win, Expert Judgment and Machine learning approaches. Machine Learning is used to group
together a set of techniques that embody some of the facets of human mind. For example, fuzzy
systems, analogy, regression tress, rule induction and neural networks. Among the machine
learning approaches, fuzzy systems and neural networks are considered to belong to the soft
computing groups [7].

This paper attempts to find the complexity weight for Requirement Complexity Attributes using
Multi-Criteria Fuzzy Based Approach and compute the Complexity point of developing process.
Finally predicting the Requirements Stability Index based on complexity point changes during the
software development life cycle. Maximizing the requirements stability will obviously reduce the
change impact. This paper is organized as follows: Section II discusses on brief introduction of
fuzzy sets, algebraic operations, linguistic variables, triangular membership function and Multi-
Criteria Fuzzy Based Approach. Section III discusses on developing the Complexity Point
Measurement Model based on Multi-Criteria Fuzzy Based Approach. Section IV discusses on
predicting the Requirements Stability based on Complexity Point Changes.

2.0 BACKGROUND ON MULTI-CRITERIA FUZZY BASED APPROACH

Multi-criteria Decision Method deals with the process of making decisions in the presence of
multiple criteria or objectives [8] [14] [19]. A decision maker (DM) is required to make decisions
among multiple criteria which can be qualitative or quantitative. The DM’s evaluations on
qualitative criteria are often subjective and imprecise. The weights of the criteria are usually
expressed in linguistic terms. Instead of single crisp value for linguistic terms, the multi-criteria
fuzzy will use a range of values to incorporate decision maker’s uncertainty. In order to deal with
uncertainty, the Multi-Criteria fuzzy based approach is used in this research paper.

Fuzzy Logic is a powerful problem-solving methodology to deal with imprecision and
information granularity [12] [16]. A fuzzy model is used when the system is not suitable for
analysis by conventional approach or when the available data is uncertain, inaccurate or vague.
Fuzzy Logic brings us close to human decision making, enabling one to analyze approximate data
to precise solutions [11]. The concept of Fuzzy Logic was first developed by Lofti Zadeh in 1965.
Fuzzy Logic starts with the concept of fuzzy set theory. It is a theory of classes with un-sharp
boundaries and considered as an extension of the classical set theory. Classical theory requires
high understanding of the system, whereas Fuzzy logic is completely empirical and relies on
experience and knowledge rather than the technical understanding of the subject for modeling the
complex system [5] [11].Fuzzy Logic incorporates a simple, rule-based approach for solving the
problem rather than solving it mathematically. The popular fuzzy logic systems can be
categorized into three types: pure fuzzy logic systems, Takagi and Sugeno’s fuzzy system and

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

103

fuzzy logic system with fuzzifier and defuzzifier [13]. Most widely used fuzzy logic system with
fuzzifier and defuzzifier was Mamdani Fuzzy system. It has been successfully applied to a variety
of industrial processes and consumer products. Fuzzy reasoning consists of three main
components: Fuzzification process, Fuzzy Inference and Defuzzification process [3] [15].

Step#1: Fuzzification Process

Fuzzification process is where the objective term is transformed into a fuzzy concept i.e., it
converts a crisp input to a fuzzy set.

Step#2: Inference from Fuzzy rules

Fuzzy logic system use fuzzy IF-THEN rules. A sample fuzzy rule can be written as:

IF X1 is good AND X2 is very good THEN output is good.

Once all crisp input values are fuzzified into their respective linguistic values, the inference
engine accesses the fuzzy rule base to derive the linguistic values for the intermediate and the
output linguistic variables. From the sample fuzzy rule stated above, good, very good are the
linguistic values.

Step#3: Defuzzification Process

Defuzzification process refers to the translation of fuzzy output into objective terms i.e.,
converting fuzzy output into crisp output.

A system based on fuzzy logic has a direct relationship with fuzzy concepts (such as fuzzy sets,
linguistic variables etc.) [6]. A Fuzzy set is a class of objects with continuous membership grades,
where the membership grade can be taken as an intermediate value between 0 and 1. A fuzzy
subset A of a universal set X is defined by a membership function µA(X) which maps each
element x in X to a real number [0, 1]. When the grade of membership for an element is 1, it
means that the element is absolutely in that set. When the grade of membership is 0, it means that
the element is absolutely not in that set. Ambiguous cases are assigned values between 0 and 1.
This can be represented as below:

{
{ A xif0

Axif1)(

∉
∈=xA (1)

The degree or extent to which the elements are the members of the interval is known as
membership function [13]. A membership function is a curve that defines how each point in the
input space is mapped to a membership value between 0 and 1. The input space is also called as
the universe of discourse. In this paper, triangular fuzzy numbers are used as membership
function. The idea of using fuzzy triangular number is to give the decision maker an opportunity
to decide in better way if there is little uncertainty in deciding the dominance of one alternative
over the other. Triangular fuzzy number [13] is a three point function defined by minimum (l),
maximum (u) and modal (m) values which can be represented as

Aij = (lij, mij, uij), (2)

Where lij represents the lower limit
mij represents the median limit
uij represents the upper limit

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

104

A fuzzy number is a triangular fuzzy number if its membership function can be denoted as
follows:

{ otherwise0

)(

uxmfor
mu

xu

mxlfor
lm

lx
xA

≤≤




−
−

≤≤




−
−=

(3)

The following fuzzy membership function represents the triangular fuzzy set (0.3 0.5 0.7)
graphically as in Fig 1.

Fig. 1. Triangular Membership function

The following are the fuzzy arithmetic operations [5]:

Defining two triangular fuzzy sets A and B as A = (a1, a2, a3) and B= (b1, b2, b3) then

• Generalized Fuzzy Number Addition:

)33,22,11(bababaBA +++=⊕

• Generalized Fuzzy Number Multiplication:

)3*3,2*2,1*1(bababaBA =⊗

• Generalized Fuzzy Number Subtraction:

)33,22,11(bababaBA −−−=Θ

• Generalized Fuzzy Number Division:

)3/3,2/2,1/1(bababaBA =

In this paper, fuzzy number addition and fuzzy number multiplication operations are used.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

105

3.0 PROPOSED MEASUREMENT MODEL

This paper proposes Complexity Point Measurement model for measuring the software
complexity based on the Software Requirements Complexity Attributes which is derived on the
basis of software requirements written as per the recommendations of IEEE: 830: 1998 for
Software Requirements Specification (SRS) document [1][2][4]. The following are the Software
Requirement complexity attributes:

• Functional Requirement Complexity
• Non-Functional Requirement Complexity
• Input/output Attribute Complexity
• File Complexity
• Interface Complexity

This can be depicted in Fig. 2 as follows:

Fig. 2. Requirement Complexity Attributes

Functional Requirement Complexity

Functional Requirement defines the functionalities/services that need to be delivered to
stakeholders. Functionality refers to what the system supposed to do. Every stated functional
requirement can be partitioned into sub-functions or sub-processes. Also the sub-functions may
compose of other sub-functions too [9] [21].

Non-Functional Requirement Complexity

Non-Functional Requirements are the constraints upon the behavior of the system and also refers
to the system qualitative requirements. Non-Functional requirements are indirectly related to the
functionality of the system. Non-functional requirements are associated with the factors like
Security, Performance, Flexibility, Usability, Reliability, Scalability and Efficiency and so on
also known as quality factors [9].

Input Output Complexity Attribute

This complexity refers to the input and output of the software system. A software system input is
an elementary process that processes data or controls the information. Input complexity refers to
number of input entering into the system. Output complexity refers to number of output leaving
the system [1] [4].

Requirement Complexity Attributes

Functional
Requirement
Complexity

Non-
Functional
Requirement
Complexity

Interface
Complexity

Input Output
Complexity

File
Complex
ity

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

106

Interface Complexity Attribute

This complexity attribute is used to define the number of external interfaces integrated to the
proposed system. The external interface can be user, hardware, software, and communication
external interfaces [21].

File Complexity Attribute

This complexity attribute is a user identifiable group of logically related data or control
information maintained within the application boundary. File complexity refers to the number of
files required for the data storage required during transformation [1] [4].

The steps to be performed for calculating the complexity point measurement:

Step# A: Apply Multi-Criteria Fuzzy Based Approach for finding the Complexity Weight for the
Requirement Complexity Attributes

Step# B: Map each requirement to each complexity attribute based on weighting scale factors
such as Very Low, Low, Average, High and Very High. Multiply the complexity weight and the
total number of requirements in each scale which results in unadjusted Complexity Point.

Step# C: Compute the Adjusted Complexity based on the adjustment factors. Each factor is
weighted based on a scale from 0-5 where 0- Not present, 1-Minor Influence to 5-Major
Influence.

Step# D: Compute the Complexity Point by summing up Unadjusted Complexity computed in
step#2 and Adjusted Complexity computed in step#3.

The following sub-section explains briefly about each step mentioned above.

3.1 Apply Multi-Criteria Fuzzy based Approach

3.1.1 Fuzzification Process

Fuzzification is the process of converting crisp input into fuzzy sets. The linguistic terms can be
represented based on approximate reasoning of fuzzy sets. A linguistic term can be defined as a
variable and the importance weight can be evaluated by linguistic terms such as very low, low,
average, high and very high. For every complexity attribute, there is a corresponding importance
weight and rating [5] [8]. The linguistic terms can be expressed as a triangular fuzzy numbers for
ratings and weight as in Table1 and Table2.

Table 1: Linguistic Terms for Fuzzy Ratings

Linguistic Term Fuzzy Ratings
Very Low (VL) (0.0, 0.1, 0.3)
Low (L) (0.1, 0.3, 0.5)
Average (M) (0.3, 0.5, 0.7)
High (H) (0.5, 0.7, 0.9)
Very High (VH) (0.7, 0.9, 1)

The following Fig. 3 depicts the triangular membership function for the importance weight of
criteria based on Table1. Linguistic Terms for Fuzzy Ratings

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

107

Fig. 3. Membership function for Fuzzy Ratings

Table2: Linguistic terms for Fuzzy Weight

Linguistic Term Fuzzy Weight
Very Low (0.0, 0.12, 0.25)
Low (0.12, 0.25, 0.5)
Average (0.25, 0.5, 0.75)
High (0.5, 0.75, 1)
Very High (0.75, 1, 1)

The following Fig. 4 depicts the triangular membership function for fuzzy ratings based on Table2.

Fig. 4: Membership Function for Fuzzy Weight

3.1.2 Defuzzification Process:

Defuzzification process converts fuzzy output into crisp output using centroid method [8]. The
centroid formula is as follows:

∫
∫=

dzz

dzzz
zFormulaCentroid

.)(

.).(
*




(4)

Where z* - denotes defuzzified crisp output,
z denotes the value on the x-axis and
µ (z) denotes the membership function.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

108

Procedure

The following is the procedure for computing the complexity weight for each weighting scale
factors such as Very Low, Low, Average, High, and Very High for the requirement complexity
attributes.

Step#1: Assign fuzzy weight and fuzzy ratings for each requirement complexity attributes and for
each criteria.

Step#2: Take the average weight and average ratings based on multi-criteria decisions under each
requirement complexity attribute

Step#3: Take the average weight as fuzzy Input and average ratings as fuzzy output

Step#4: Create the Fuzzy rules based on IF-THEN rules.

Step#5: Apply Defuzzification process using centroid formula given in equation 3 in order to get
the crisp output or crisp weighting factor for different weighting scales.

Functional Requirement Complexity Weight

Functional Requirement Complexity weight is based on the number of sub processes and its size
[1].

If Size increases then software complexity increases. The sub process size in terms of KLOC can
be fuzzified ratings in the range of Very Low (VL) to Very High (VH) as [< 0.3 (VL); 0.3 to 0.5
(L); 0.5 to 1 (M); 1 to 3 (H); >3 (VH)]. Apply the procedure steps from 1 to 3mentioned above
for finding the fuzzy weighted average for each weighting scale factors.

Table 3: Weighted average for Functional Requirement Complexity

Size Criteria D1 D2 D3 Avg. Weight Avg. Rating
Size <0.3 VL VL L (0.04,0.16,0.33) (0,0.1,0.3)
0.3 – 0.5 L L L (0.12,0.25,0.5) (0.1,0.3,0.5)
0.5 -1 M L M (0.21,0.42,0.67) (0.33,0.55,0.75)
1-3 H M H (0.42,0.67,0.92) (0.5,0.7,0.9)
>3 VH VH VH (0.75,1,1) (0.7,0.9,1)

Fig. 5. Defuzzification Process for Very Low Complexity using MATLAB Tool.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

109

Now apply the step3 to 5 in procedure using MATLAB Tool:

The fuzzy input value as Very Low average weight (0.04,0.16, 0.33) and fuzzy output value as
Very Low (0, 0.1,0.3) which gives the defuzzified value or crisp output as 0.133.
The fuzzy rule is,

IF Sub Process size is very Low, THEN Output Complexity is Very Low.
Hence the Very Low Complexity weight for Functional Requirement Complexity Attribute is
0.13 which is depicted in Fig. 5.Similarly by applying the same procedure from steps 3 to 5 for
other weighting factors, the result will be following crisp output.

Low Complexity Weight – 0.3
Average Complexity Weight – 0.53
High Complexity Weight – 0.72
Very High Complexity Weight – 0.87

Non-Functional Requirement Complexity

Non-Functional Requirement Complexity weight is based on the importance of quality
characteristics [8].

If Quality Characteristics importance increases then software complexity increases. The fuzzified
ratings will be in the range of Very Low (VL) to Very High (VH) as [< 0.3 (VL); 0.3 to 0.5 (L);
0.5 to 0.7 (M); 0.7 to 0.85 (H); >0.85 (VH)]. Apply the procedure steps from 1 to 5 mentioned
above for finding the Complexity weight for each weighting scale factors.

Very Low Complexity Weight – 0.21
Low Complexity Weight – 0.3
Average Complexity Weight – 0.5
High Complexity Weight – 0.75
Very High Complexity Weight – 0.9

Input Output Complexity

Input Output complexity weight depends on the number of Input and output for sub process
functionality [1]. If number of input/output increases then software complexity increases. The
fuzzified ratings will be in the range of Very Low (VL) to Very High (VH) as [<5 (VL); 5 to 10
(L), 10 to 20 (M); 20-50(H); >50(VH)]. Applying the procedure steps, the below result will be
obtained.

Very Low Complexity Weight – 0.21
Low Complexity Weight – 0.3
Average Complexity Weight – 0.57
High Complexity Weight – 0.8
Very High Complexity Weight – 1

File Complexity

File Complexity Attribute depends on the number of data storage files used in sub process
functionality [1]. If number of files increases then software complexity increases. The fuzzified
ratings will be in the range of Very Low (VL) to Very High (VH) as [< 10 (VL); 11 to 20 (L); 20
to 50 (M); 50 to 90 (H); >90 (VH)]. Apply the procedure steps from 1 to 5 mentioned above for
finding the Complexity weight for each weighting scale factors.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

110

Very Low Complexity Weight – 0.27
Low Complexity Weight – 0.4
Average Complexity Weight – 0.67
High Complexity Weight – 0.8
Very High Complexity Weight – 1

Interface Complexity

Interface Complexity Attribute depends on the number of external interfaces namely user,
hardware, software and communication used [21]. If number of interfaces increases then the
software complexity increases. The fuzzified ratings will be in the range of Very Low (VL) to
Very High (VH) as [1(VL); 1 to 2 (L); 2 to 5 (M); 5 to 8 (H); >8 (VH)]. Apply the procedure
steps from 1 to 5 mentioned above for finding the Complexity weight for each weighting scale
factors.

Very Low Complexity Weight - 0.1
Low Complexity Weight – 0.3
Average Complexity Weight – 0.6
High Complexity Weight – 0.9
Very High Complexity Weight – 1

Summarizing the complexity weight factors for each requirement complexity attribute as in below
Table 4:

Table 4: Complexity Weight Table

Attribute Very
Low

Low Average High Very
High

Functional 0.13 0.3 0.53 0.72 0.87
Non-Functional 0.21 0.3 0.5 0.75 0.9
Input Output 0.21 0.3 0.57 0.8 1
File 0.27 0.4 0.67 0.8 1
Interface 0.1 0.3 0.6 0.9 1

3.2 Unadjusted Complexity Point (UCP)

Once the requirements are baseline, map each requirement and its sub processes under each
requirement complexity attribute based on weighting scale factors such as Very Low, Low,
Average, High and Very High. Multiply the complexity weight and the total number of
requirements in each weighting scale which results in unadjusted Complexity Point. Unadjusted
Complexity Point (UCP) can be computed as follows:

∑ ∑
= =

=
5

1

5

1i j
ijij CWUCP (5)

Where, Wij - Weight of each complexity attribute for row j and column j.
Cij - Number of each function feature with complexity weight.

3.3 Adjusted Complexity Point (ACP)

The Adjusted Complexity Factors needs to be evaluated for finding the Adjusted Complexity
Point. The adjustment factors are 1.Communication and Clarification, 2.Understanding

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

111

Requirements Document Review 3.Test Case Document Review. The values of each factor are
weighted on a scale of 0-5 where 0 – Not Present, 1 – Minor Influence to 5 – Strong Influence.
The Adjustment Complexity Point can be computed as below:

ACP =∑ (Fi) (6)

Where, Fi - denotes the weighted scale of the adjustment factor.

3.4 Complexity Point (CP)

From Equation 4 and 5, the total complexity point can be computed as follows:

Total CP = UCP + ACP (7)

4.0PREDICTING SOFTWARE REQUIREMENTS STABILITY
BASED ON COMPLEXITY POINT MEASUREMENT

This paper proposes the Complexity Point Measurement Model to measure the software
requirement changes during the software development life cycle (SDLC). Based on this
measurement, Software Requirement Stability Index can be predicted. This metric gives the
stability factor of the requirements over a period of time, after the requirements have been
mutually agreed and baselined.

The requirement change can be classified as

1. Add a new Functionality
2. Modify the Existing Functionality
3. Delete the obsolete Functionality

The Complexity Point Change can be represented as follows:

∫
+

−+→=∆
1

)()1(
i

i

CHANGE iCPiCPCPdxCP
(8)

The related complexity point changes for add, update, delete functionality can be ADDCP∆ ,

UPDATECP∆ and DELETECP∆ respectively. Compute the Complexity point change (Add, Update

and Delete) as follows:

ADDCP∆ = Number of Complexity Point Added / Total Number of Initial Complexity
Points) at that timestamp (9)

UPDATECP∆ = (Number of Complexity Point Modified/Total Number of Complexity Point)

at that timestamp (10)

DELETECP∆ = (Number of Complexity Point Deleted/ Total Number of Initial Complexity
Point) at that timestamp (11)

The Total Number of complexity point changes during the particular timestamp is given by

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

112

DELETEUPDATEADDCHANGE CPCPCPCP ∆+∆+∆=∆ (12)

The Cumulative Number of Complexity Point Changes during the SDLC is given by

iCPCPCumulative
ni

i
CHANGECHANGE ∑

=

=

∆=∆
1 (13)

Hence the Requirements Stability Index (RSI) based on Cumulative Complexity Point Changes is
given by

CPCPCumulativeCPCPCumulativeonbasedRSI CHANGECHANGE /)(∆+=∆ (14)

Where CP - denotes the total number of Initial Complexity Points
Cumulative ∆CPCHANGE denotes the Cumulative number of Complexity Point changes

during SDLC.

5.0 EXPERIMENTAL RESULTS AND DISCUSSION

Software Requirements Stability Tracker (RST) Tool was developed to track the stability of
requirements and to find the overall stability of the project. The requirements gathered during the
elicitation phase will be the basic input to the RST Tool. The RSI gives developers a means of
continuing to document the requirements as they change throughout the development process and
to monitor deviations from those originally specified.

The sample set of baseline requirements and requirements modification are gathered from sample
customer module and given as input to RST tool. The results are depicted in Fig. 6 and Fig. 7.The
following Fig. 6 depicts the Total Number of Requirement changes during the SDLC. Here, the
X-axis values represent the timestamp (month) and Y-Axis value represents the Total number of
Requirements and Requirements Add, update, delete in that particular timestamp (month).

Fig. 6: Total Number of Requirements and Changes in Customer Module

The following Fig. 7 depicts the Requirements Stability Index based on the Software Complexity
Point Measurement. Initially the Requirements Stability Index value will be one as the value of

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

113

cumulative change will be zero initially. This is represented as “RSI” in Fig. 7. When changes
come into the project, the Requirements Stability Index value will be changed. This is represented
as “Change” in Fig 7.

Fig 7. Requirements Stability Index Graph

From the sample data of software project “Customer Module”, the following inference has been
obtained during the period Jul’2012 to September’2012 as in Table 5 for customer module.

Table 5: Percentage of Requirements Stability for customer Module

Month RSI % of Requirement
Stability= (100/RSI)%

July 1.000 100%

August 1.146 87.2%

September 2.191 45.6%

6.0 CONCLUSION

This research paper discusses the importance of measuring the requirements changes for the lack
of instability in the Requirements. The prediction model for Requirements Stability approach
provides the solution for measuring the requirements changes based on the Complexity Point
Measurement Model. The scope of this research paper concentrates only on ongoing developing
software projects. fIn future, the Measurement model can be developed for maintenance and
transition projects based on different complexity attributes and different adjustment factors.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

114

REFERENCES

[1] Ashish Sharma, D.S. Kushwaha, “A Complexity Measure Based on Requirements Engineering
Document”, Journal of Computer Science and Engineering, Volume 1, Issue 1, May 2010.

[2] Ashish Sharma and Dharmender Singh Kushwaha, “Applying Requirement Based Complexity for the
Estimation of Software Development and Testing Effort”, ACM SIGSOFT Software Engineering
Notes, Volume 37, Issue 1, January 2012.

[3] Er. Kailash Aseri, “A Mathematical Study of Fuzzy Logic Techniques in Software Engineering
Measurements”, International Journal of Computer Science & Engineering Technology (IJCSET),
Volume 3, Number 4, April 2012.

[4] Ghazal Keshavarz, Dr. Nasser Modiri, Dr. Mirmohsen Pedram, “Metric for Early Measurement of
Software Complexity”, International Journal on Computer Science and Engineering (IJCSE), Volume
3, Number 6, June 2011.

[5] Hua-Yang Lin, Ping-Yu Hsu Gwo-Ji Sheen, “A fuzzy-based decision-making procedure for data
warehouse system selection”, Expert Systems with Applications Journal, Volume 32, pp. 939-953,
2007.

[6] Iman Attarzadeh, Siew Hock Ow, “Improving the Accuracy of Software Cost Estimation Model
based on a New Fuzzy Logic Model”, World Applied Sciences Journal, Volume 8, Number 2, pp.
177-184, 2010.

[7] Iman Attarzadeh, Siew Hock Ow, “A Novel Algorithmic Cost Estimation Model Based on Soft
Computing Technique”, Journal of Computer Science, Volume 6, Number 2, pp. 117-125, 2010

[8] Jagat Sesh Challa, Arindam Paul, Yogesh Dada, Venkatesh Nerella,Praveen Ranjan Srivastava and
Ajit Pratap Singh, “Integrated Software Quality Evaluation: A Fuzzy Multi-Criteria Approach”,
Journal of Information Processing Systems, Volume 7, Number 3, September 2011.

[9] Malik Qasaimeh, Alain Abran, “Extending Extreme Programming User Stories to Meet ISO 9001
Formality Requirements”, Journal of Software Engineering and Applications, Volume 4, pp. 626-
638, Nov. 2011.

[10] Martin Monperrus, Benoit Baudry, Joël Champeau,Brigitte Hoeltzener, Jean-Marc Jézéquel,
“Automated Measurement of Models of Requirements”, Software Quality Journal, Springer, Online
Edition, 2011.

[11] Mohammad Azzeh, Daniel Neagu, Peter I. Cowling, “Analogy-Based Software Effort Estimation
using Fuzzy Numbers”, Journal of Systems and Software, Volume 84, Issue 2, Pages 270-284, Feb
2011.

[12] Navdeep Kaur, Maninderpal Singh, “A Fuzzy Logic Approach to Measure the Precise Testability
ndex of Software”, International Journal of Engineering Science and Technology (IJEST), Volume 3,
Number 2, February 2011.

[13] Prasad Reddy P.V.G.D, Sudha K.R , Rama Sree P, Ramesh S.N.S.V.S.C “Fuzzy Based Approach for
Predicting Software Development Effort”, International Journal of Software Engineering (IJSE),
Volume 1, Issue 1, 2010.

[14] Praveen Ranjan Srivastava, “Optimal Software Release Using Time and Cost Benefits via Fuzzy
Multi-Criteria and Fault Tolerance”, Journal of Information Processing Systems, Volume 8, Number
1, March 2012.

[15] Praveen Ranjan Srivastava, Sirish Kumar, A.P. Singh, G. Raghurama, “Software Testing Effort: An
Assessment Through Fuzzy Criteria Approach”, Journal of Uncertain Systems, Volume 5, Number 3,
pp. 183-201, 2011.

[16] Rajesh Kumar, P.S.Grover, Avadhesh Kumar, “A Fuzzy Logic Approach to Measure Complexity of
Generic Aspect-Oriented Systems”, Journal of Object Technology, Volume 9, Number 3, May-June
2010.

[17] Sarah Maadqwy, Akram Salah, “Measuring Change Complexity from Requirements: A Proposed
Methodology”, IMACST: Volume 3, Number 1, Feb 2012.

[18] Dr. Sohail Asghar, Mahrukh Umar, “Requirement Engineering Challenges in Development of
Software Applications and selection of Customer- off- the- Shelf(COTS) Components”, International
Journal of Software Engineering(IJSE), Volume 1, Issue 2, 2010.

[19] Sumeet Kaur Sehra, Yadwinder Singh Brar, Navdeep Kaur, “Multi-Criteria Decision Making
Approach for Selecting Effort Estimation Model”, International Journal of Computer Applications,
Volume 39, Number 1, January 2012.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

115

[20] Vahid Khatibi, Dayang N. A. Jawawi, “Software Cost Estimation Methods: A Review”, Journal of
Emerging Trends in Computing and Information Sciences, Volume 2, Number 1, January 2011.

[21] Yogesh Singh, Sangeeta Sabharwal, “A Systematic Approach to measure the problem Complexity of
Software Requirements Specifications of an Information Systems”, Information and Management
Sciences Journal, Volume 15, Number 1, pp. 69-90, 2004.

Authors

D.Francis Xavier Christopher received his B.Sc., in 1996, M.Sc., in 1998 from Bharathiar
University, Coimbatore .He obtained his M.Phil, in the area of Networking from
Bharathiar University, Coimbatore in 2002. At present he is working as a Director,
School of Computer Studies in RVS College of Arts and Science, Coimbatore. His
research interest lies in the area of Software Engineering.

Dr.E.Chandra received her B.Sc., from Bharathiar University, Coimbatore in 1992 and
received M.Sc., from Avinashilingam University, Coimbatore in 1994. She obtained her
M.Phil., in the area of Neural Networks from Bharathiar University, in 1999. She
obtained her PhD degree in the area of Speech recognition system from Alagappa
University Karikudi in 2007. At present she is working as a Director at School of
Computer Studies in SNS Rajalakshmi College of Arts & Science, Coimbatore. She has
publ ished more than 20 research papers in National, International journals and conferences. She has
guided for more than 30 M.Phil., research scholars. At present guiding 5 Ph.D research scholars. Her
research interest lies in the area of Data Mining, Artificial intelligence, neural networks, speech recognition
systems and fuzzy logic. She is an active member of CSI, Currently management committee member of
CSI, Life member of Society of Statistics and Computer Applications.

