
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

DOI : 10.5121/ijsea.2012.3610 129

ENHANCEMENT IN FUNCTION POINT
ANALYSIS

Archana Srivastava1 , Dr. Syed Qamar Abbas2 , Dr.S.K.Singh3

1 Amity University, Lucknow, India
asahai@amity.edu, srivastavaarchana@yahoo.com,

2Director, Ambalika Institute of Management & Technology , Lucknow, India
3Professor, Amity University, Lucknow, India

ABSTRACT

Early and accurate estimation of software size plays an important role in facilitating effort and cost
estimation of software systems. One of the commonly used methodologies for software size estimation is
Function Point Analysis (FPA). The purpose of Software size estimation and effort estimation techniques is
to provide a useful measure of the software complexities, efforts, and costs involved in software
development. Despite almost three decades of research on software estimation, the research community has
yet not able to provide a reliable estimation model for End-User Development (EUD) environments. EUD
essentially out-sources development effort to the end user. Hence one element of the size and effort is the
additional design time expended in end-user programming. This paper discusses the concept end-user
programming and enhancement of FPA by adding end-user programming as an additional General System
Characteristic (GSC).

KEYWORDS

size estimation, end user programming, function point analysis, end user development

1. INTRODUCTION

End-User Programming system aims to give some programmable system functionality to people
who are not professional programmers. One of the most successful computer programs of all
times is the spreadsheet applications. The primary reason for its success is that end users can
program it without going into the background details of logic and programming. However, end
user programming is rare in other applications and where it exists usually requires leaving
conventional programming, for example AutoCAD provides LISP for customisation, and
Microsoft applications use Visual Basic. More effective mechanism for users is to customize
existing applications and create new ones as and when needed.

End-user programming is defined as “Creating a data structure that represents a set of instructions
either by explicit coding or by interaction with a device. The instructions are executed by a
machine to produce the desired outputs or behaviour” [12].

End-User Programming will be driven by increasing computer literacy and competitive pressures
for rapid, flexible, and user driven information processing solutions. These trends will push the
software marketplace toward having users develop most information processing applications
themselves via application generators. Some example application generators are spreadsheets,
extended query systems, and simple, specialized planning or inventory systems [15].

mailto:asahai@amity.edu
mailto:srivastavaarchana@yahoo.com

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

130

End-user programmers, who will generally know a good deal about their applications domain and
relatively little about computer science in contrast to the infrastructure developers will generally
know a good deal about computer science and relatively little about applications [16].

Effort estimation for software projects has proven to be an elusive and expensive problem in
software engineering. On one hand, stakeholders expect precise estimates in the early stages of a
project; on the other hand, reliably producing those numbers is extremely difficult and may well
be technically infeasible. Boehm et al. report that estimating a project in its first stages yields
estimates that may be off by as much as a factor of 4. Even at the point when detailed
specifications are produced, professional estimates are expected to be wrong by ±50%. [14]

Project estimation involves translating a set of business objectives or requirements into a measure
of product “size.” This size measure is then used to estimate the effort, duration, and quality of
the final software product. The ability of a system engineer or project manager to align the
business objectives with the technical estimates leads to well informed business decisions [19].

2. RELATED WORK

There are many models for software estimation available and prevalent in the industry.
Researchers have been working on formal estimation techniques since 1960. Early work in
estimation which was typically based on regression analysis or mathematical models of other
domains, work during 1970s and 1980s derived models from historical data of various software
projects. Among many estimation models expert estimation, COCOMO, Function Point and
derivatives of function point like Use Case Point, Object Points are most commonly used [20].

While Lines of Code (LOC) is most commonly used size measure for 3GL programming and
estimation of procedural languages, IFPUG FPA originally invented by Allen Albrecht at IBM
has been adopted by most in the industry as alternative to LOC for sizing development and
enhancement of business applications. FPA provides measure of software functionality based on
end user view of application software functionality. Albrecht's view was that it is the function of
the system, or what it does that is our primary interest. The number of actual lines of code taken
to deliver this function is a secondary consideration. The measure which Albrecht developed is
called the Function Point (FP).

The method of sizing software in terms of its function expressed in Function Points is now very
widely used. It is interesting to note that FPA came about, not because a new measure of system
size was requested, but because productivity was becoming increasingly important; it was out of
the need to measure productivity that FPA was conceived.

2.1 Analysis of End User Programming

End user expects advanced interactive applications that are easy to use and easy to learn. As user
interface become easier to use they become harder to create. User interface developers need tools
which provide a rich support for development of advance user interfaces. U2ML tool is vital for
user interface and end user programming. U2ML looks after all the specification of a modern
day’s end user design, development and customisation tool [13].

It is foreseeable that the number of active end-user developers will soon exceed the population of
professional programmers. As such, there is a growing need to understand the possible risks and
benefits associated with EUD activities. Amongst others, relevant criteria include quality
(robustness, usability, learnability, etc.), cost, maintainability, and fit-for-purposefulness.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

131

Given the diversity of end-user developers, their activities and conditions, software development
frameworks must be flexible enough to respond rapidly to changing contexts and requirements.
This is currently infeasible with traditional Software Engineering methodologies. A more
attractive solution is to empower end-users to design, integrate and adapt software to meet their
changing needs. Despite warnings that EUD may lead to throw-away software [11], end-users
will continue to maintain their software whilst they remain motivated to do so. Several research
efforts have developed new tools to help end users create effective software. These tools will
have significant impact on the software size and hence on the effort required for development.

Over 64 million Americans used computers at work in 1997, and it was estimated that this
number will grow to 90 million in 2012, including over 55 million spreadsheet and database users
and 13 million self-reported programmers [10]. Existing characterizations of this end user
programming becoming common in software usage but it do not provide any guidance on the
impact of end user programming on estimating software size and effort.

3. END USER PROGRAMMING CHARACTERISTICS

There are basically only two target users in the real world:

• Developers, who want to see the source code and to write imperative code. These users
do not trust model-driven approaches, because they feel this can reduce their freedom in
application development;

• Non-developers, who want to ignore all the technical issues and have simple, possibly
visual or parameter-based configuration environments for setting up their applications.

There are two general approaches to helping users to design. In one case the computer is an
intelligent design assistant that tracks the user’s actions and infers what might be required. This
approach is based on programming-by-example (Lieberman, 2001) and extends adaptable user
interfaces that automatically change to fit a user profile or react to the user’s behaviour. In the
other approach, initiative is left with the user and the system provides powerful tools to support
design activity (e.g. Agentsheets: Repenning, 1993). End-user development is a complex field
which includes different approaches to helping users instructs machines and design artifacts.

User interfaces of development tools may not be a complex theoretical issue, but acceptance of
programming paradigms can be highly influenced by this aspect too. The user interface
comprises, for instance, the selection of the right graphical or textual development metaphor so as
to provide users with intelligible constructs and instruments. It is worth investigating and
abstracting the different kinds of actions and interactions the user can have with a development
environment. The end user aspects are prearranged into five phases as in the table 1. In each
phase there are interrelated end user programming aspects. These will be the characteristics to be
considered whenever the software developers want to estimate for the software size and effort.
Hence, end user programming and online help for end user are integrated in existing FPA as
GSC.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

132

Table 1
Proposed End User characteristics Formulation

Step End User & Online Help Aspect
Plan(P) End user requirement
Design(D) End User features, Functional Features
Code(C) Coding of tools, review and audit
Test(T) Review & Testing
Deploy(D) Software installation & Monitoring

4. REVIEW OF FUNCTION POINT ANALYSIS

Function Point Analysis (FPA) [3][14] consists of two main parts in the measurement. In the first
part following functionalities are counted while counting the function points of the system.

• Data Functionality

o Internal Logical Files (ILF)
o External Interface Files (EIF)

• Transaction Functionality

o External Inputs (EI)
o External Outputs (EO)
o External Queries (EQ)

The second part is 14 General System Characteristics (GSCs) that measured from 0 to 5 nominal
scales. These characteristics contribute to Value Adjusted Factor (VAF). The final function point
count is obtained by multiplying the VAF times the Unadjusted Function Point (UAF). These 14
GSC’s are : Data communication, Distributed functions, performance, heavily used configuration,
transaction rate, online data entry, End user efficiency, Online Update, complex processing,
Reusability, installation ease, multiple sites, facilitate change [17]. The standard equation for
estimation is:

FP = UFP * VAF (1)
Where UFP = Unadjusted Function Point and VAF = Value Adjusted Factor
As mentioned, the total number of UAF is accumulated from five components as in (2). The
simplified equation is as follows:

UFP = EI + EO + EQ + ILF + EIF. (2)

The weights are assigned to each component based on transactional and data function types. For
VAF, it is calculated from the summation of 14 GSCs as in (3).

14
VAF = 0.65 + 0.01 x ∑Ci

i=1

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

133

Where

Ci = degree of influence for each General System Characteristic
i = is from 1 to 14 representing each GSC
Σ = is summation of all 14 GSCs.
Later on function point was enhanced using the security feature as an additional GSC.

14
VAF = 0.65 + 0.01 x ∑ Ci + security [9]

i=1

In recent years, several research projects such as Search Computing, ResEval1, and FAST2 spent
substantial effort towards empowering end users (sometimes called expert users, to distinguish
them from generic, completely unskilled users), with tools and methods for software development
therefore it is proposed to consider End-User Programming as individual characteristic in GSC’s
in FPA model.

5. END USER PROGRAMMING ENHANCEMENT FOR FPA

The restriction to 15 factors seems unlikely to be satisfactory for all time. Other factors may be
suggested now, and others will surely arise in the future. A more open-ended approach seems
desirable. A new factor end user programming can also be added to the existing model as end
user programming practices if inbuilt in the software in the form of additional tools enhances the
features of the software as well as increases the software size.

14
VAF = 0.65 + 0.01 x ∑ Ci + security + end user programming

i=1
i.e.

16
VAF = 0.65 + 0.01 x ∑ Ci

i=1

Where

Ci = degree of influence for each Genaral System Characteristic
i = is from 1 to 16 representing each GSC
Σ = is summation of all 16 GSCs.

For ease of giving degree of influence, following end user characteristics are listed in Table 2.
The user can identify the number of characteristics that might take into consideration during
development. The number will indicate the score for degree of influence. Table 2 and table 3 will
be the additional characteristic sheet for GSC’s in FPA model.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

134

TABLE 2
EUP characteristics

S.No EUP facilities in software

1 Programming by example
2 Creating throw away codes
3 Creating reusable codes
4 Sharing reusable code
5 Easily understandable codes
6 Security features in codes for more control by end users
7 Authentication features
8 Personnel security
9 Inbuilt feedback about the correctness
10 Verification
11 Tools for analyzing by debugging
12 Error detection tools
13 Testable codes
14 Availability of online help
15 Self – efficacy: High sense of control over the environment

16 Perceived ease of use: Apart from extrinsic motivation
intrinsic motivation (enjoyment) should be present.

17 Perceived usefulness
18 Flexible codes
19 Scalability features
20 Ease of Maintenance

As in the EUP characteristics table 20 items are basically considered. The suggested score for
degree of influence is as below.

TABLE 3: DEGREE OF INFLUENCE FOR END USER PROGRAMMING

Score as Descriptions to determine
Degree of influence

0 None of the above
1 1<=n<=4
2 4<n<=8
3 8<n<=12
4 12<n<=16
5 16<n<=20

Where n is the number of applicable end user programming characteristics.

6. CONCLUSION AND FUTURE RESEARCH

We project that in 2012, over 13 million workers will “do programming” in a self-reporting
sense; however, based on spreadsheet and database usage, it seems likely that the number of end
user programmers will be much higher. Consequently, end user programming environments will
definitely have impact on software size and effort estimation for software projects. Sizing is a key
estimating activity. If the sizes of major deliverables can be predicted within 5 to 10 percent, then
the accuracy of the overall estimate can be quite good. The proposed enhancement of FPA is not

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

135

analysed at this stage. In the future, we will perform additional analysis with software having end
user programming, as well as collect and analyse new survey data, in order to better understand
the software usage of end users. We anticipate that more precise estimates and characterizations
of end user practices will help researchers target further work in developing languages and tools
to assist end users in programming tasks.

REFERENCES

[1] Verner, June M. and Tate, Graham, "A Model for Software Sizing", Journal of Systems and
Software, IEEE Software, pp. 173-177, July 1987.

[2] Albrecht, Allan J. and Gaffney (Jnr), John E., "Software Function Source Lines of Code and
Development Effort Rediction: A Software Science Validation", IEEE Transactions on Software
Engineering, Vol. SE-9, No. 6, pp. 639-647, Nov. 1983.

[3] N. E. Fenton and S. L. Pfleeger, 1997. Software Metrics: A Rigorous and Practical Approach, 2nd
Edition Revised ed. Boston: PWS Publishing.

[4] L. M. Laird, and M. C. Brennan, 2006. Software Measurement and Estimation: A Practical Approach,
Wiley-IEEE Computer Society Pr, ISBN: 0-471-67622-5.

[5] Forselius, P., 2004. Moving from Function Point Counting to Better Project Management and
Control, IWSM/MetriKon Presentation.

[6] C. R. Symons, Software Sizing and Estimating − MkII FPA (Function Point Analysis), John Wiley
and Sons, Chichester, U.K., 1991.

[7] A. Abran, M. Maya, J. M. Desharnais, and D. St-Pierre, “Adapting function points to real-time
software,” American Programmer, Vol. 10, 1997, pp. 32-43.

[8] C. Jones, Applied Software Measurement: Assuring Productivity and Quality, McGraw-Hill, New
York, 2008.

[9] N. A. S. Abdullah1, R. Abdullah2, M. H. Selamat2, A. Jaafar2,Software Security Characteristics for
Function Point Analysis, Proceedings of the 2009 IEEE IEEM

[10] Scaffidi, C., Shaw, M., and Myers, B. The “55M End User Programmers” Estimate Revisited.
Technical Report CMUISRI-05-100, Carnegie Mellon University, Pittsburgh, PA, 2005.

[11] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. Meta-design: A manifesto for
end-user development. Communications of the ACM, 47(9):33–37, September 2004.

[12] Contributions, Costs and Prospects for End-User Development, Alistair Sutcliffe, Darren Lee & Nik
Mehandjiev

[13] “Object based designing of pattern using U2ML” in proceeding of International conference of
advances in computer vision and information technology (ACVIT-2007)

[14] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R. Cost models for future
software life cycle processes: COCOMO 2.0. Annals of Software Engineering, Special Volume on
Software Process and Product Measurement (1995).

[15] Appendix C: COCOMO II Process Maturity led by Dr. Barry Boehm
[16] http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
[17] http://www.devshed.com/c/a/Practices/An-Overview-of-Function-Point-Analysis/3
[18] http://www.cs.toronto.edu/%7Esme/papers/2005/ESEC-FSE-05-Aranda.pdf
[19] http://www.crosstalkonline.org/storage/issue-archives/2011/201101/201101-Stark.pdf
[20] http://approachtoproject.com/component/k2/item/10-software-estimation-techniques.html

http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
http://www.devshed.com/c/a/Practices/An-Overview-of-Function-Point-Analysis/3
http://www.cs.toronto.edu/%7Esme/papers/2005/ESEC-FSE-05-Aranda.pdf
http://www.crosstalkonline.org/storage/issue-archives/2011/201101/201101-Stark.pdf
http://approachtoproject.com/component/k2/item/10-software-estimation-techniques.html

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.6, November 2012

136

Author

Author Archana Srivastava has done M.Sc(Maths), MCA, M.Tech(IT) and is working
as Sr. Lecturer in Amity Institute of information Technology, Amity University,
Lucknow, India. She is persuing phD in software engineering. She has more than 12
years of teaching experience.

Co-Author Syed Qamar Abbas completed his Master of Science (MS) from BITS
Pilani. His PhD was on computer-oriented study on Queueing models. He has more
than 20 years of teaching and research experience in the field of Computer Science and
Information Technology. Currently, he is Director of Ambalika Institute of
Management and Technology, Lucknow. He is actively involved in academic and
research work. Till date he has published over 50 research papers in national and
international journals.

Co-Author Dr. S.K.Singh is Professor and Programme Director in Amity Institute of
Information Technology, Amity University, Lucknow, India. He has done
M.Sc(Maths), MCA, M.Tech(IT) and PhD in Applied Computer Science. He has more
than 18 years of teaching experience. Till date he has published over 14 research
papers in national and international journals.

