
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

DOI : 10.5121/ijsea.2013.4401 1

DESIGN OF A MULTI-AGENT SYSTEM
ARCHITECTURE FOR THE SCRUM METHODOLOGY

Vishwaduthsingh Gunga1, Somveer Kishnah2 and Sameerchand Pudaruth3

1TNT Express ICS (Mauritius)
ashvin.gunga@gmail.com

2University of Mauritius
s.kishnah@uom.ac.mu
3University of Mauritius
s.pudaruth@uom.ac.mu

ABSTRACT

The objective of this paper is to design a multi-agent system architecture for the Scrum methodology.
Scrum is an iterative, incremental framework for software development which is flexible, adaptable and
highly productive. An agent is a system situated within and a part of an environment that senses the
environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses in the
future (Franklin and Graesser, 1996). To our knowledge, this is first attempt to include software agents in
the Scrum framework. Furthermore, our design covers all the stages of software development. Alternative
approaches were only restricted to the analysis and design phases. This Multi-Agent System (MAS)
Architecture for Scrum acts as a design blueprint and a baseline architecture that can be realised into a
physical implementation by using an appropriate agent development framework. The development of an
experimental prototype for the proposed MAS Architecture is in progress. It is expected that this tool will
provide support to the development team who will no longer be expected to report, update and manage
non-core activities daily.

KEYWORDS

Multi-agents systems, Scrum framework, Agile teams, Software development

1. INTRODUCTION

Software development organisations are facing increasingly pressure to deliver software on time
and within budget. Indeed they are looking for agile and efficient methods to develop software
due to rapid and often unexpected changes in the business environment (Ionel, 2008). Users’ and
customers’ participation throughout the software development cycle have become the norm rather
than a luxury. There is no choice here. Either they adapt or they perish. Stakeholders often have
changing needs which results in highly volatile requirements. Furthermore, software applications
are getting more and more complex. The client’s desire to have early views of the software and
maximum added value is minimal time cannot be ignored.

The traditional way of building software is a sequential life cycle. It consists of several phases
such as gathering requirements, analysis, design, coding, testing, evaluation and maintenance.
The traditional software development methodologies such as the Waterfall Model, the V-Model
and the Rational Unified Process (RUP) Model are often associated with common challenges and
obstacles leading to unnecessary project delays, overspending or simple total failure. Despite the
fact that these methodologies have been used extensively for many years, these models do not

mailto:gunga@gmail.com
mailto:kishnah@uom.ac
mailto:pudaruth@uom.ac

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

2

always deliver what is desired. Overspending on unnecessary features is very common. It is often
every difficult and costly to accommodate new requirements late in the development process.
Furthermore, the complex change management procedures requiring rigorous approvals and the
fostering on adversarial relationships between people working in the different phases further
complicates the scenario.

Agile software development methods have evolved in the mid-1990s and have successfully
provided an answer to the weaknesses of these traditional models. With more flexible light-
weight processes, agile methods aim at delivering products faster, with higher quality and
minimising the risks of project failures by developing higher value features in shorter iterations.
Changes in requirements as well as new features are accepted throughout the process and
customers and other stakeholders are involved earlier. Working software is used as the primary
measure of progress. Agile methods are a family of development processes which include the
Scrum framework, XP (eXtreme Programming), DSDM (Dynamic Systems Development
Method) and ASD (Adaptive Software Development). Scrum is one of the most popular methods.
Scrum framework, sometimes referred to as the Scrum methodology, was developed by Jeff
Sutherland and Ken Schwaber in early 1990s and formally announced in 1995 (Keith, 2007).

The main idea behind Scrum is that development is done in cycles of work called sprints. A sprint
is a time-box. It has a fixed duration, often between two to four weeks. Scrum emphasises on the
various roles (product owner, scrum master and scrum team), ceremonies (release planning
meeting, sprint planning meeting, daily scrum meeting, sprint review and retrospective meeting)
and artifacts (product backlog, sprint backlog, sprint burndown chart, release burndown chart) to
produce potentially shippable products at the end of each sprint. The team reviews the sprint with
the stakeholders and demonstrates the software features that have been implemented. A sprint
retrospective is conducted where feedback is gathered and incorporated in the next sprint
(Sutherland, 2010).

As Scrum is becoming more popular as an increasing number of projects are adopting this
framework, there is a growing need for tools and techniques to assist the agile teams. Physical
scrum task boards, spreadsheet templates and off-the-shelf suites and packages have so far been
the primary tools for assistance in many organisations. However, in certain cases, the weaknesses
and limitations of the tools overshadow the benefits. For example, the physical scrum task boards
are not suitable for geographically dispersed teams. Spreadsheet templates cannot capture
traceability of changes within sprints and ready-made suites are often click-intensive and require
high human involvement. As a consequence, it is necessary to explore alternative solutions that
provide better support to the scrum practitioners. In the recent past, some research has been
conducted to use software agent technologies in SPM (Software Project Management) and at
different stages of the software development life cycle.

Software agents are autonomous systems that display a certain degree of autonomy in their
environment. They are typically both reactive (responsive to a changing environment) and
proactive (goal-directed), and are able to communicate with other agents (often called, multi-
agent systems) in order to jointly perform a certain task. Depending on the type and nature of
software agents, they are suited to distributed environments, large network systems and mobile
devices. The use of software agents in the Scrum methodology is an innovative alternative to
current solutions and hence, the aim of this paper is to analyse how software agent technology can
contribute in the process for better support and assistance.

There are many tools that have been developed to support software development, namely
requirements management repository, project planning, defect tracking, source code repository,
releases repository and reporting. Some of these tools are targeted for software development

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

3

process while others are mainly for agile practitioners. Two essential factors identified by Reel
(1999) which are critical for the success of software projects are tracking progress and making
smart decisions. Most of the tools provide features to support these two areas but often, project
management is more complicated. As Scrum is becoming more popular, there is an
unprecedented need for the right tools that can support the teams. The core activities for the teams
are to turn the requirements and the product backlog into an executable product. However, Scrum
is more than just analysis, design, code and test. It is also about following the process while
ensuring that the roles are defined, the activities are followed and the artifacts are produced.
These non-core activities can consume significant amount of time during the sprint if appropriate
tools are not available.

In practice, the main tools currently used in the industry are scrum physical tasks boards,
spreadsheets and templates and web-based software. Each of these may work well in certain
scenarios and to some extent, but they pose serious limitations in other cases. For example, the
physical scrum boards are restricted to small and collocated teams in a single site while in real-
life scenarios, teams tend to be geographically dispersed. The web-based tools are manual driven
tools and rely heavily on human intervention. They are considered as tools used for persistence
and reporting only but the overheads to keep them updated and in synchronisation are left with
the scrum teams. Hence, there is a need to investigate about an alternative mechanism that can
better assist the scrum teams. As software agents are being introduced in a number of Software
Project Management areas, it is important to understand whether software agents can challenge
the existing scrum tools and be one of the innovative alternatives in the future.

This paper proceeds as follows. In Section II, the tools and techniques currently being used in
Scrum teams are reviewed. This section also describes how software agents are being used for
Software Project Management. The novel architecture for the integration of an agent-based
technology in Scrum is described in Section III. Finally, Section IV concludes the paper.

2. LITERATURE REVIEW

This section presents the various tools used to support Scrum teams. The advantages and
disadvantages of physical scrum task boards, spreadsheets templates, off-the-shelf tools and
application packages are discussed. The use of software agents in Software Project Management
is also considered. Finally, this section ends with an analysis of how software agents can be used
in Scrum.

2.1 Physical Scrum Board

A physical scrum task board is rated as the most effective format of a sprint backlog by Kniberg
(2007). The physical scrum task board is often one large whiteboard within the team’s work area.
It contains the list of tasks that are planned, in progress or completed within any current sprint.
The tasks are represented by post-it notes (also known as sticky notes). These notes are reviewed
on a daily basis in the daily stand-up meetings and are moved across the board based on the
progress made to date. The board enhances communication and interaction as it is visible to all
members of the team as well as encourages spontaneous discussions and meetings. For example,
if tasks lower down the board are moving to the right without the ones on the top, it implies that
the team is focusing on lower priority items. If there are many unplanned items, the tasks were
not identified during the sprint planning meeting and hence, the team is not fully focused. If there
are too many tasks in progress but not done, tasks are being done only partially and hence, team is
not entirely committed. Despite its numerous advantages, boards have a number of weaknesses.
Physical task board is not the ideal solution for offices with limited space and where walls are

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

4

already occupied for other purposes. Furthermore, a development centre may be working on
various projects with different teams. It might be difficult to maintain separate task boards for the
different projects (or sprints). Another question that can be raised is how will Scrum work with a
physical task board if the team members are not collocated? A physical task board is not the ideal
tool if the team members are on different floors of the building, different sites or even in different
countries (Collabnet, 2008).

2.2 Spreadsheet Packages and Templates

Spreadsheet packages attempt to provide a better tool for Scrum. The features with these
packages offer significant flexibility to maintain the details of the backlog items. Searching,
sorting, inbuilt formulas, formatting, graphs and charts and automatic updates increase
productivity of the entire team. Pre-defined spreadsheet templates are also a common practice in
the scrum world. The spreadsheet stores the details of the product backlog, sprint backlog and
related items – fields like backlog item id, short descriptive name, importance and priority and
initial estimates (Kniberg, 2007). The product owner owns the product backlog. The product
backlog is placed in a shared drive where the entire team can simultaneously access the
spreadsheet through the shared enabled feature. The scrum team then agrees how the update of
the spreadsheet will occur. These solutions address, to some extent, the limitations of a physical
task board. Office space or other physical resources are no more a concern. The team members do
not need to be in the same site as long as the spreadsheet is accessible. However, there are still
issues like traceability of sprint and related tasks, maintaining thousands of rows in a spreadsheet
for large projects, the need to manually update the spreadsheet to keep it up-to-date, the risk of
the single document getting corrupted or deleted, the possibility of introducing errors during
updates and last but not the least, coordinating the updates in bigger teams. Hence, scrum teams
are often reluctant to use spreadsheet as a tool within Scrum.

2.3 Off-the-Shelf Packages

There are hundreds of off-the-shelf tools and application packages with the aim to support agile
methodologies and practices. A few of these tools directly support Scrum. Banerjee (2010) have
observed more than 125 recommendations for tools that support Agile and Scrum based software
development from agile experts all around the world. 53 different tools have been recommended.
The top 6 are listed: JIRA and its add-ins like Crucible (Code Review), Bamboo (Continuous
Integration) and Confluence (Collaboration), VersionOne, Rally, Mingle, Visual Studio Team
System with Scrum Templates and Excel templates from Jeff Sutherland.

In May 2010, the Forester Wave published a paper on “Agile Development Management Tools”
to evaluate the software vendors. They found that IBM and MKS led the pack with the best
overall current features set (West and Hammond, 2010). The use of electronic tools offers a
convenient way for distributed team to work together in Scrum and have access to same
information. However, the issues with these electronic tools are not only time-consuming to use –
time it takes for pages to load and refresh for each operation – but also, they are often click-
intensive whereby a number of mouse clicks are required to get simple operations done. Updates
rely heavily on human intervention. The team members often require a significant amount of
training and coaching to use the tools effectively and efficiently. Progress of tasks is not clearly
visible to the team throughout the day until the next daily stand-up meeting is held. The license
cost of any of the commercial software is yet another factor to consider.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

5

2.4 Agents in Software Project Management

Nienaber and Barnard (2007) created a generic model to support all the key areas of Software
Project Management (SPM). Based on this model, Sethuraman et al. (2008) developed an agent-
based Quality Review Management (QRM) module. Bodea and Niculescu (2007) implemented
an agent-based model for levelling project resources. Arauzo et al. (2009) also used a similar
mechanism to allocate resources for project tasks. They also proposed a multi-agent system with
capabilities to deal with the complexities and constraints inherent in a multi-projects environment.
Yen et al. (2001) looked at another direction and attempted to solve the issue of limited ability to
support proactive information exchange among team members in existing multi-agent models by
developing a multi-agent architecture, called CAST. Licorish et al. (2009) designed and
constructed a web-based tool called Agile Social Risk Mitigation Tool (ASRMT), which
incorporated a component on personality trait assessment.

2.5 Software Agents and the Scrum Methodology

As we have just seen, much research has been done in integration agents in SPM. However, to
our knowledge The researchers have either looked at the project management disciplined in a
more general framework or some specific areas of SPM, but more from a traditional management
viewpoint. There has been almost no serious attempt to thoroughly and objectively examine
Scrum and software agent technology in conjunction with real life cases. The generic framework
proposed by Nienaber and Barnard (2007) cannot easily be adapted to work in an agile
environment. Scrum uses different roles, artefacts and ceremonies compared to the traditional
project management styles. Management in Scrum is done in a more informal manner through the
daily stand-up meetings, the sprint planning meetings, the sprint review and the retrospective
meetings. However, the auction mechanism proposed by Bodea and Niculescu (2007) and later by
Arauzo et al. (2009) can be a potential candidate to manage the activities in Scrum in order to
reduce the workload on the Scrum teams. In the Scrum’s sprint planning ceremony, the scrum
participants agrees on a subset of the product backlog items that will be progressed in the next
sprint. The selection is based on a number of criteria such as the business value of the backlog
item, the priority, the team’s experience and knowledge, the estimated efforts and the
dependencies.

3. DESIGN OF A MULIT-AGENT SYSTEM (MAS) ARCHITECTURE FOR

SCRUM

A In the previous section, the tools that Scrum teams are currently using were considered. Their
limitations were also highlighted. As mentioned earlier, there has been almost no attempt to
combine agents in the Scrum methodology. In this section, we proposed a model for Scrum that
uses software agent technology to assist Scrum teams.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

6

Figure 1. An approach to analysis and design for the MAS Architecture

For the analysis and design of the MAS model for Scrum, the Gaia methodology is used. This
allows abstract concepts to be successively translated to more concrete concepts, with
increasingly detailed models of the system being designed and constructed. This approach is
suitable in the context as no reference to implementation issues is made during analysis.

Figure 2. Gaia Models and their Relationships, Wooldridge et al. (2000)

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

7

The agent model shows the various agent types involved in the system. The services model
presents the functions associated with each agent role and specifies the main properties of the
services. Last, the acquaintance model defines the communication links that exist between
different agent types.

3.1 Analysis Model for Scrum

In the analysis phase, requirements are converted into roles and interaction models. Models help
in understanding the system without going through technical implementation details. The key
concepts in an agent-oriented analysis are shown in Figure 3.

System

InteractionsRoles

Responsibilities Permissions

Safety properties Liveness properties

Figure 3. Analysis concepts in Gaia, Wooldridge et al. (2000)

The main abstract entity is the system – the Scrum framework in this case - which relates to the
agent-based system. The roles are the key participants within the system. A role is further defined
by four main attributes namely responsibilities, permissions, activities and protocols. The
responsibilities are the functionalities of a role. A responsibility is further broken down into
liveness and safety properties. The liveness properties are the output of agents given certain
environmental conditions, while the safety properties are items to be maintained during execution
phases. The permissions are the rights associated with a role. The activities are private actions of
an agent without interaction with any other agent. Finally, the protocols are the way roles interact
with roles in the system.

1) Scrum Role Models

Three roles are involved in the Scrum framework. There roles are taken up by actual individuals
or teams in an organisation. There is a natural mapping between the Scrum roles and the roles in
the Gaia’s analysis concept. These roles are: the Product Owner, the Scrum Master and the Team.
The roles are modelled on the role-schema template described by Wooldridge at al. (2000).

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

8

Table 1. Role Model for Scrum Master

Role Schema: Scrum Master (SM)

Description: The role involves ensuring that the Scrum process is understood and
followed by the entire team. It also helps the team to do its best within its
environment.

• Instantiate a product owner to manage the backlog;

• Teach product owner how to do his/her job;

• Ensure that Scrum team adheres to Scrum values, practices and
rules;

• Schedule the sprint planning meeting with the product owner and
the team;

• Communicate sprint details to team and other stakeholders;

• Setup daily stand-up meeting with team;

• Ensure that the only questions answered in the daily stand-up
meeting are: what I have done yesterday, what are the
impediments and what I plan to do today;

• Log and remove impediments for the team;

• Ensure that sprint review meeting is held;

• Notify product owner if sprint goal cannot be achieved;

• Notify product owner if additional backlog items can be included
within the sprint;

• Notify product owner if backlog items needs to be removed from
sprint to meet targets;

Protocols and
Activities:

InstantiateProductOwner, AdviseProductOwner, AdviseTeamMember,
OrganiseSprintPlanningMeeting, CommunicateSprintDetails,
ScheduleStandupMeeting, InitiateAndConductStandupMeeting,
LogAndRemoveImpediment, OrganiseSprintReviewMeeting,
FeedbackSprintRisksToProductOwner, AcceptSprintBacklogItem,
RemoveSprintBacklogItem

Permissions: • Read sprint backlog

• Update impediment list

• Schedule meeting

• Generate report

Responsibilities

Liveness: Initiate: (InstantiateProductOwner.
OrganiseSprintPlanningMeeting.CommunicateSprintDetails.
ScheduleStandupMeeting.ProgressStandupMeeting.
OrganiseSprintReviewMeeting)

ProgressStandupMeeting: (InitiateAndConductStandupMeeting.
LogAndRemoveImpediment. FeedbackSprintRisksToProductOwner.
AcceptSprintBacklogItem.RemovesSprintBacklogItem)+

Safety: StandupMeeting <= 15 mins

Sprint Duration <= agreed duration (i.e. 2 weeks)

Current sprint backlog velocity <= agreed sprint velocity

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

9

Table 2. Role Model for Product Owner

Role Schema: Product Owner (PO)

Description: The role involves in managing the product backlog.

• Create product backlog;

• Add/Remove user story, feature and new requirement as
product backlog item;

• Initiate Sprint;

• Provide sprint goal to the team;

• Review priority for product backlog item;

• Review business impact for product backlog item;

• Request for estimates for product backlog items;

• Explain business needs of product backlog item;

• Accept/Approve estimates for product backlog item;

• Approve estimated sprint velocity;

• Approve changes in sprint backlog;

• Publish product backlog to everyone and ensures visibility;

• Cancel sprint;

• Set date and location for sprint demo;

Protocols and
Activities:

CreateProductBacklog, AddProductBacklogItem,
RemoveProductBacklogItem, UpdateProductBacklogItem,
InitiateSprint, CommunicateSprintGoal; UpdatePriority;
UpdateBusinessImpact; CommunicateBusinessNeeds;
RequestForEstimates, ApproveEstimates; ApproveSprintVelocity;
ApproveSprintBacklogItems; PublishProductBacklog; CancelSprint;
CommunicateDemoDateAndLocation

Permissions: • Read product backlog

• Change product backlog / product backlog items

• Read sprint backlog

Responsibilities

Liveness: Initiate: (CreateProductBacklog. ManageProductBacklog

.InitiateSprint. ParticipateInSprintPlanning).

ManageProductBacklog: (AddProductBacklogItem|

RemoveProductBacklogItem|UpdateProductBacklogItem|

UpdatePriority|UpdateBusinessImpact)*

ParticipateInSprintPlanning: (CommunicateSprintGoal.

RequestForEstimates.ApproveEstimates. ApproveSprintVelocity.

ApproveSprintBacklogItems.CommunicateDemoDateAndLocation)

Safety: Nil

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

10

TABLE 3. Role Model for Scrum Team

Role Schema: Scrum Team (Team)

Description: The role involves in turning subset of the product backlog into a
sprint backlog, and subsequently turning the latter into a potentially
shippable functionality by the end of the sprint.

• Attend sprint planning meeting;

• Break down product backlog items into tasks and sub-tasks;

• Provide estimates to product backlog items / tasks to
product owner for approval;

• Create sprint backlog;

• Provide sprint velocity to product owner for approval;

• Manage sprint backlogs;

• Update backlog item status;

• Log work;

• Attend daily stand-up meeting;

• Answer the three questions in daily stand-up meeting;

• Assign product backlog item to team member;

• Perform sprint demo

• Participate in sprint review meeting;

Protocols and
Activities:

AttendSprintPlanningMeeting, BreakDownProductBacklogItem,
ProvideEstimates, ProvideSprintVelocity, CreateSprintBacklog,
ManageSprintBacklog, UpdateBacklogItem, LogWork,
AttendStandupMeeting, AnswerQuestions, AcceptBacklogItem,;
PerformDemo, ParticipateInSprintReviews

Permissions: • Read product backlog

• Read sprint backlog

• Update sprint backlog

Responsibilities

Liveness: ParticipateInSpringPlanning: (AttendSprintPlanningMeeting.
BreakDownProductBacklogItem.ProvideEstimates.
ProvideSprintVelocity.CreateSprintBacklog)

ParticipateInSprint: (AttendStandupMeeting. AnswerQuestions.
AcceptBacklogItem.ManageSprintBacklog.UpdateBacklogItem.
LogWork)

ParticipateInReview: (PerformDemo. ParticipateInSprintReviews)

Safety: Nil

2) Scrum Interaction Models

In addition to the role models, it is important to capture and represent the interactions
between the various scrum roles. This is achieved through the interaction models in Gaia.
These models are made up of a set of protocol definitions, one for each type of inter-role

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

11

interaction. According to Wooldridge et al. (2000), the protocol definition will have the
following attributes:
Purpose : brief textual description of the nature of interaction;
Initiator : the role(s) that starts the interaction;
Responder : the role(s) that interacts with the initiator;
Inputs : information used by initiator as inputs;
Outputs : information supplied by/to responder during the course of the interaction.
Processing : brief textual description of any processing during the course of the interaction.
These attributes are then modelled in an interaction diagram as shown in Figure 4.

Figure 4. Gaia Interaction Model, Wooldridge et al. (2000)

Considering the descriptions of the three roles in Scrum, there are approximately forty different
agent interactions that need to be modelled. Only the interaction models for the sprint planning
ceremony are illustrated. The same approach should be adopted to have the models for all the
remaining interactions. To develop these models, the sprint planning ceremony needs to be
decomposed into further details and repetitive tasks which are candidates for automation are
identified.

Sprint Planning

Sprint planning is a very important event in Scrum as the entire sprint success relies on how the
sprint planning has been executed. A pre-requisite for the sprint planning meeting is a properly-
shaped product backlog. It means that: the product backlog exists, there is one designated product
owner, important product backlog items have the correct ratings assigned to them, the product
owner understands the backlog items (as there can be new features, new requirements or new user
stories), and justifications for having this backlog item in the backlog and its business needs
and/or impacts.

The product owner and the entire team (including the scrum master) have to attend the sprint
planning meeting. During the meeting, the product owner provides the sprint goal and a brief
summary of the product backlog – these are the stories that need to be developed, the scope and
importance of the product backlog items. Based on the importance of these stories, the team
selects a subset of the backlog items that will be developed for the next sprint. These stories are
broken down into tasks and sub-tasks to form the sprint backlog. The sprint backlog items are
estimated and use velocity calculations as reality checks. Finally, the team agrees on the
completion date as well as the place and time for the daily stand-up meetings. Some of the
expected outputs from the sprint planning meeting are: the goal of the sprint, the team members
that will be involved in the sprint, breakdown of the product backlog items into tasks/sub-tasks
that will form the sprint backlog, the estimates of the tasks/sub-tasks for the product backlog
items, the sprint backlog and the planned completion date of the sprint.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

12

The scrum master then communicates the sprint details to all the other stakeholders.

Sprint Planning Interaction Models

The interaction models are presented in Figure 5, as shown below.

OrganiseSprintPlanningMeeting

Scrum Master Team / Product
Owner

Schedule meeting and send invites for the
spring planning meeting.

Backlog may also be attached.

Date/Time & Location

Meeting invites to Scrum
participants

CommunicateSprintGoal

Product Owner Team / Scrum
Master

Provide sprint goal

Confirmation of participation

Sprint goal

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

13

Figure 5. Interaction Models for Sprint Planning

3.2 Design Models for Scrum

The objective of the classical design process is to turn the analysis models into more concrete
models with adequate low level of abstraction to allow easy implementation. The Gaia
methodology takes the design stage one step further as it is also concerned with how the society
of agents will operate to realise the goals of the system. Moreover, it reviews what each agent will
require to achieve its own objectives (Wooldridge et al. 2000). In the agent-oriented design
process, three design models are generated from the analysis models as depicted in Figure 2,
namely the agent model, services model and the acquaintance model.

1) Scrum Agent Model

The first step in the design process is to document the various types of agents that will be used in
the Scrum framework. These types are then instantiated as agent instances during execution time.
Often, there is a direct one-to-one relation between the roles and the types. The different roles
identified in the analysis process are the Scrum Master, the Product Owner and the Team. The
agent model for Scrum will be defined using a simple agent type tree. The leaf nodes correspond
to the Scrum roles. The other nodes correspond to the agent types. The agent types are annotated
using the instance qualifiers in Table 4. The agent model for the Scrum framework is modelled in
Figure 6. For the team agent, an assumption of a minimum of three and a maximum of ten team
members are involved.

Table 4. Instance Qualifiers, Wooldridge et al. (2000)

Qualifier Meaning
n there will be exactly n instances
m..n there will be between m and n

instances
* there will be 0 or more instances
+ there will be 1 or more instances

Figure 6. Scrum Agent Model

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

14

2) Scrum Services Model

The next step in the design process is to identify the services that are associated with each agent
role. In the object oriented world, a service is as simple as a method. In the agent-oriented world,
the service is a single block of activity in which an agent will commit. These services are not
necessarily available to other agents. For each service, the inputs, outputs, pre-conditions and
post-conditions needs to be identified. The service model is directly derived from the roles and
interaction models. The inputs and outputs are from the role protocols while the pre- and post-
conditions are from the safety properties of a role. The planning of the sprint ceremony is
modelled in Table 5.

Table 5. Scrum Services Model – Plan Sprint Ceremony

3) Scrum Acquaintance Model

The Acquaintance Model in Gaia’s design phase shows the different communication links that
exist between the different agent types in Scrum. With the model, it is easier to identify if there
are any potential communication bottlenecks between the agent types. The model is represented
as a directed graph. The nodes on the graph represent the different agent types. The arc, say from
a to b, indicates that a will send messages to b, but not necessarily vice-versa. The acquaintance
model for Scrum is shown in Figure 7. As there are only three agent types directly derived from
the Scrum roles, communication can be between any of the three agents in a two-way direction.

Figure 7. Scrum Acquaintance Model

3.3 Proposed Multi-Agent System (MAS) Architecture for Scrum

Figure 8 presents the MAS Architecture to support Scrum. This models acts as the design
blueprint and baseline architecture for solutions aiming at assisting the Scrum team using agent
technology. This model is tailored to support the entire Scrum methodology contrary to existing
tools and techniques which are often limited to only the analysis and design phases. Furthermore,

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

15

this model provides a conceptual view of the system. It is therefore independent of
implementation issues. The use of a multi-agent system has been chosen for various reasons. The
agents in the system can be launched from different workstations over the network and hence
provide flexibility to geographically dispersed teams. More agents for the scrum team can be
added easily into the model without changing the architecture. Each agent is managed
independently in an autonomous way but agents are able to cooperate with each other to achieve
the common sprint goals.

Figure 8. Proposed MAS Architecture for Scrum

Table 5: Components in the MAS Architecture for Scrum

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

16

Component Description
Agent Framework Provides infrastructure to develop, deploy, run and maintain

agent-based solutions (e.g. AgentService, JADE).
Framework Components Components that are often provided part of the agent

development framework.
Management Agent Manages other agents in the system by tracking the instantiation

and disposal of agent instances during execution time.
Directory Facilitator Agent Provides yellow pages service to the agents in the system and

provide details of the difference services being offered by other
agents. Any agent requiring a particular service can check
against the yellow page facility to identify the agents providing
such services.

Templates Provide the default pattern and baseline implementation to the
types, behaviors and knowledge components.

Agent Template,
Behaviour Template,
Knowledge Template

Represent templates implementation for the agent type, agent
behavior and agent knowledge.

Scrum Master Agent, Product
Owner Agent and Scrum Team
Agent

Represent agent type for Scrum Master, Product Owner and
Scrum Team. Each agent type follows the Agent Template.

Scrum Master Behavior, Product
Owner Behavior and Scrum Team
Behavior

Reflect the protocols for each scrum role and provides the list of
services that each agent provides in the system.

Scrum Master Knowledge, Product
Owner Knowledge and Scrum
Team Knowledge

Hold the necessary rules to be able to implement the protocols
and related services for each scrum role.

User Interface Allows the scrum participants and stakeholders interact with the
system through input and output.

Data Repository Represents the main data store for all information for Scrum
(e.g. product backlog items, sprint backlog items, tasks
allocations, task progress etc). It can be anything ranging from
simple text files or XML files to relational databases.

Additional Agents Agents that are not directly related to the Scrum process but will
be required to support the solution.

Reporting Agent Uses the information from the repository and provides reporting
facility by present the information into appropriate formats (e.g.
product burndown charts) to the stakeholders and scrum
participants.

Personal Assistant Agents Assist individual team members in specific tasks e.g. sorting of
assigned tasks based on priority.

Monitoring Agent Monitors and controls the tasks and activities of the agents in
the system.

Integration Agent Provides integration facility to existing solutions by exchanging
information (e.g. in XML) to external systems

Each agent type in the MAS is associated with a behaviour object and a knowledge object. The
agent type extends the agent template and acts according to the template. The agent type is
instantiated during runtime to create the agent instances. The knowledge base of the agent type is
represented by the knowledge object. For example, the knowledge object for the product owner
holds the details of the product backlog, while one for the scrum team contains details of the
sprint backlog items. The agent template ensures that its instances have exclusive access to the
knowledge objects and deals with any concurrency issues.

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

17

The agent framework handles the persistence of these knowledge objects in a transparent way to
the application developers. The behaviour object implements the abilities and services of the
agent and holds all agent computational logic. The behaviour objects in the MAS Architecture are
implemented by extending the Behaviour Template. The association of the knowledge and
behaviour object makes the agent types autonomous in the system to achieve the common sprint
goals. The agents use the directory facility to identify other agents in the system and initiate
conversations to pass messages and communicate with each other. The model for the agent type
presented in the proposed MAS Architecture is shown in Figure 8.

Figure 8. Model for Agent Type in the proposed MAS Architecture for Scrum

4. CONCLUSIONS

The aim of this paper was to present a novel multi-agent system architecture that can be used for
Scrum. The autonomous nature of agents provides the possibility for scrum participants to
delegate the non-core activities to the system. As a consequence, the scrum team can focus on
software development during a sprint rather than on managing tasks. The reporting agent in the
MAS architecture provides the ability to report information on more regular basis without being
dependent on the team. The proposed MAS architecture is also suitable in scenarios where the
teams are geographically dispersed. The scrum team members may be located in different
buildings on sites across the country or across continents. The work in this paper is a first attempt
to combine software agent technology in the Scrum process. Thus, it provides a completely new
direction to research in such disciplines. The development of an experimental prototype to
validate our proposed model is in progress.

REFERENCES

[1] ARAUZO, J.A., GALAN, J.M., PAJARES, J. and LOPEZ-PAREDES, A., 2009. Multi-agent
technology for scheduling and control projects in multi-project environments. An Auction based
approach. Inteligencia Artificial 42 (12-20).

[2] BANERJEE, U., February 17, 2010. Agile Tool – Expert Recommendation. Accessed 20 October
2012, https://udayanbanerjee.sys-con.com/node/1289479.

[3] BODEA, C. N. and NICULESCU, C. S., 2007. Improving Resource Leveling in Agile Software
Development Projects through Agent-Based Approach. Journal of Applied Quantitative Methods 2
(2).

International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.4, July 2013

18

[4] COLLABNET, 2008. Scrum with a Physical Taskboard. Accessed 9 May 2013,
http://scrummethodology.com/scrum-with-a-physical-taskboard.

[5] FRANKLIN, S. and GRAESSER, A., 1996. Is it an Agent or just a Program?: A Taxonomy for
Autonomous Agents. ECAI '96 Proceedings of the Workshop on Intelligent Agents III, Agent
Theories, Architectures, and Languages. Pages 21-35.

[6] IONEL, N., 2008. Critical Analysis of the Scrum Project Management Methodology. Proceedings of
the 4th International Economic Conference on European Integration – New Challenges for the
Romanian Economy. May 30-31, Oradea, 435-441.

[7] KEITH, K., Feb 2007. Scrum Rising: Agile Development could save your studio. Game Developer,
14(2), pp. 22-26.

[8] KNIBERG, H., 2007. Scrum and XP from the Trenches – How do we Scrum. C4 Media Inc., InfoQ
Enterprise Software Development Series, ISBN 978-1-4303-2264-1.

[9] LICORISH, S., PHILPOTT, A. and MACDONELL, S. G., 2009. Supporting Agile Team
Composition: A Prototype Tool for Identifying Personality (In)compatibilities. ICSE Workshop on
Cooperative and Human aspects on Software Engineering.

[10] NIENABER, R. and BARNARD, A., 2007. A Generic Agent Framework to Support the Various
Software Project Management Processes. Interdisciplinary Journal of Information, Knowledge and
Management, Vol. 2.

[11] REEL, J. S., 1999. Critical Success Factors in Software Projects. IEEE Software, 16(3), pp. 18-23.
[12] SETHURAMAN, A., YALLA, K.K, SARIN, A. and GORTHI, R.P., 2008. Agents Assisted

Software Project Management. COMPUTE '08 Proceedings of the 1st Bangalore Annual Compute
Conference, Article 5.

[13] SUTHERLAND, J., July 2010. Scrum Handbook. The Scrum Training Institute. Accessed 15 July
2011, http://jeffsutherland.com/scrumhandbook.pdf.

[14] WEST, D. and HAMMOND, J. S., 2010. The Forrester Wave: Agile Development Management
tools, Q2 2010. Accessed on 12 August 2011, http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=SA&subtype=WH&htmlfid=RAL14023USEN.

[15] WOOLDRIDGE, M., JENNINGS, N. R. and KINNY, D., 2000. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems, Vol. 3,
Issue 3.

[16] YEN, J., YIN, J., IOERGER, T. R., MILLER M. S., XU, D. and VOLZ, R. A., 2001. CAST:
Collaborative Agents for Simulating Teamwork. Proceedings of the 17th International Joint
Conference on Artificial Intelligence, Vol. 2, pp. 1135-1142.

http://scrummethodology.com/scrum-with-a-physical-taskboard
http://jeffsutherland.com/scrumhandbook.pdf
http://www-01.ibm.com/common/ssi/cgi-

