
International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

DOI : 10.5121/ijsea.2013.4604 39

CODECOVERAGE BASEDTESTCASE SELECTION
AND PRIORITIZATION

R.Beena 1, Dr.S.Sarala 2

1Research Scholar, Dept. of Information Technology, Bharathiar University, Coimbatore.
2Assistant Professor, Dept. of Information Technology, Bharathiar University,

Coimbatore

ABSTRACT

Regression Testing is exclusively executed to guarantee the desirable functionality of existing software
after pursuing quite a few amendments or variations in it. Perhaps, it testifies the quality of the modified
software by concealing the regressions or software bugs in both functional and non-functional applications
of the system. In fact, the maintenance of test suite is enormous as it necessitates a big investment of time
and money on test cases on a large scale. So, minimizing the test suite becomes the indispensable requisite
to lessen the budget on regression testing. Precisely, this research paper aspires to present an innovative
approach for the effective selection and prioritization of test cases which in return may procure a maximum
code average.

KEYWORDS

Test Case Selection, Test Case Prioritization, Code Coverage

1. INTRODUCTION

Regression testing is an authentication method pursued in all levels of system and software
testing. Despite ensuring the functioning capacity of the software or system after making
amendments, Regression Testing, exhibits a predominant function with the previously deployed
test codes of the enhanced software. The prime aspiration of running a Regression Test is to
assure that modified or amended component of software does not give way for bugs in the
unaltered portion of the software. The re-execution of test cases are performed to verify that the
previous functionality clubbed with the present changes is desirably functioning.

The various regression testing techniques are test case minimization, test case selection and test
case prioritization .The aim of test case minimization technique is to eliminate the redundant test
cases, while test case selection techniques are performed to reduce the size of a test suite. Test
case prioritization techniques are concerned with ordering of test cases for detection of faults at
the earliest. This paper presents a customized technique for Test case selection and Test case
prioritization.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

40

Test case selection implies identifying a smaller subset of test suite from the existing large test
suite [1]. According to [2], test case selection problem is stated subsequently.

Given: The original program, P, the revised version of P, P' and a test suite, T.
Aim: To identify T' ∈T, for the modified version P'

Test Case Prioritization is the process of arranging test cases in an order according to some
criteria. Test case prioritization problem defined by Rothermel et al. [3] is follows:

Given: A test suite, T, the set of permutations of T, PT, a function from PT to the real
numbers, f.
Aim: To identify T′ ∈ PT such that (∀T″) (T″∈PT) (T″≠T′) f (T′) ≥ f (T″)

Here, ‘PT’ represents the set of all possible prioritizations of ‘T’ and ‘f’. The function that is
applied to any such ordering actually yields an award value for the respective ordering.

2. RELATED WORK

Fischer et al. formulated a test case selection problem with the application of Integer
Programming [4]. The variations of the control flow were not discussed in this approach.

Agrawal et al. outlined an exclusive strategy on test case selection with a special perspective to
the discrepancies found in the program slicing techniques [5].

Rothermel and Harrold elucidated regression test case selection techniques based on graph
walking of Control, Program Dependence Graphs [6], and System Dependence Graphs [7]
besides, Control Flow Graphs [8].

Benedusi et al. executed path analysis for test case selection [9]. A testing structure called
TestTube was introduced by Chen et al. [10] which make use of a modification-based method for
selection of test cases.

Leung and White highlighted a firewall technique for regression testing of system integration
[11]. Laski and Szemer offered a technique for test case selection which is based on cluster
identification technique [12].

In [13], [14], Rothermel et al. were the premiers to study test case prioritization predicaments that
paved a way to them to present six different strategies based on the coverage of statement or
branches.

In [15], Li et al. gives empirical study results of two metaheuristic search techniques and three
greedy search techniques applied to six programs for regression test case prioritization.

In [16], Praveen et al. initiated a novel test case prioritization algorithm that calculates average
faults observed per minute.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

41

A Regression Testing Technique for Test Case Prioritization based on Code Coverage criteria is
recommended by K.K.Aggarwal in [17].

3. TEST CASE SELECTION

The test cases those are available for the existing version of the program is grouped into three
clusters. Those clusters are named as out-dated, required and surplus. The out-dated cluster
contains the test cases that are not required by both the original program and the modified
program. The required test case group consists of the test cases that are required to be executed
for the modified version of the software. The surplus group comprises of test cases that may be
essential for the later versions of P but are not required for the modified version of P i.e. P'. The
algorithm for Test Case Selection (TCS) which is contributed in the previous work [18] is given
in Figure 1.

Algorithm TCS
Input:

- Matrix TCCij representing the test cases and their statements covered
- Vector SDELi representing the statements deleted in P’
- Vector SMODi representing the statements modified in P’

Output :
- Modified Matrix TCCij, Cluster of Test Cases out_datedi, surplusi, requiredi

begin
1. for each statement that belongs to SDELi

Remove the corresponding statements from TCCij.
2. Find the sum of each row.
3. if sum of the row is 0 then

Add the corresponding test case in the vector out_datedi. and
Remove it from TCCij.

4. Find the test cases that do not cover the statements in the vector SMODi,
Add the corresponding test case in the vector surplusi and
Remove it from TCCij.

5. Add the left over test cases in the vector requiredi.

End

Figure 1.  Algorithm TCS

4. TEST CASE PRIORITIZATION

The output obtained from algorithm TCS is supplied as input to the algorithm Test Case
Prioritization (TCP) which is described in Figure 2. An example for the steps of the algorithm
TCS and TCP is elucidated in section 5.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

42

Algorithm TCP
Input:

- Modified Matrix TCCij representing selected test cases and their statements covered
Output :

- Vector TCPi which contains the test cases to achieve 100% code coverage.
begin

1. Find the sum of each row of the matrix TCCij.
2. Select the test case with highest sum and add that test case into the vector TCPi.
3. Remove all the statements covered by that test case.
4. Repeat step1 until all the statements are deleted.

End

Figure 2.  Algorithm TCP

5. EXPERIMENTS AND RESULTS

5.1. Test Case Selection

The original version of the program contains 15 statements and 15 test cases. The test cases and
the coverage of the statements by the test cases are represented as a binary matrix. The binary
matrix represented as (TCCij) is given in Table 1.

Table1.  Test cases and statement coverage TCCij

S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0

S1
1

S1
2

S1
3

S1
4

S1
5

T1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0
T2 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0
T3 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
T4 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0
T5 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1
T6 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0
T7 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0
T8 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0
T9 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0
T10 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1
T11 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
T12 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1
T13 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0
T14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
T15 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0

Let us consider, in the modified version of the program the statements S3, S4, S6, S8, S10, S13
have been deleted and the statements S2, S7, S15 have been modified. So the two vectors SDELi

and SMODi are represented as



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

43

SDELi = {S3, S4, S6, S8, S10, S13} SMODi = {S2, S7, S15}

Table2. Modified TCCij

The matrix TCCij is personalized by removing the statements that are available in the vector
group SDELi at the end of the execution of step 1.The modified TCCij is given in Table 2. The
number of statements covered by each test case is calculated according to step 2. For example T1
covers four statements namely S1, S5, S7 and S11.Table 3 represents the total number of
statements covered by each test case.

Table3. Number of statements covered by test cases

Test Cases Statements
Covered

T1 4
T2 2
T3 0
T4 4
T5 4
T6 5
T7 5
T8 4
T9 3
T10 6
T11 0
T12 5
T13 4
T14 1
T15 5

S1 S2 S5 S7 S9 S11 S12 S14 S15
T1 1 0 1 1 0 1 0 0 0
T2 1 0 0 0 1 0 0 0 0
T3 0 0 0 0 0 0 0 0 0
T4 0 1 0 1 1 0 0 1 0
T5 1 0 1 0 0 0 0 1 1
T6 0 1 0 1 1 1 1 0 0
T7 1 0 1 0 1 0 1 1 0
T8 0 1 0 0 1 1 1 0 0
T9 0 0 1 1 1 0 0 0 0
T10 1 1 0 1 1 0 0 1 1
T11 0 0 0 0 0 0 0 0 0
T12 1 1 1 1 0 0 0 0 1
T13 0 1 0 1 0 0 1 1 0
T14 0 1 0 0 0 0 0 0 0
T15 1 0 1 0 1 1 1 0 0



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

44

As given in step 3, the test cases with the sum as zero are removed from the matrix TCCij. Now
the new matrix TCCij is given in Table 4. A new vector out_datedi is created which contains the
removed test cases from TCCij. The vector out-datedi = {T3, T11}

Table4.TCCij without out-datedi

S1 S2 S5 S7 S9 S11 S12 S14 S15
T1 1 0 1 1 0 1 0 0 0
T2 1 0 0 0 1 0 0 0 0
T4 0 1 0 1 1 0 0 1 0
T5 1 0 1 0 0 0 0 1 1
T6 0 1 0 1 1 1 1 0 0
T7 1 0 1 0 1 0 1 1 0
T8 0 1 0 0 1 1 1 0 0
T9 0 0 1 1 1 0 0 0 0
T10 1 1 0 1 1 0 0 1 1
T12 1 1 1 1 0 0 0 0 1
T13 0 1 0 1 0 0 1 1 0
T14 0 1 0 0 0 0 0 0 0
T15 1 0 1 0 1 1 1 0 0

The vector SMODi contains the statements that are modified in the new version of the program
and the test cases that do not cover those statements are removed from TCCij and inserted into the
cluster surplusi. The new TCCij is given in Table 5. The vector surplusi = {T2, T7, T15}

Table5.TCCij without surplusi

S1 S2 S5 S7 S9 S11 S12 S14 S15
T1 1 0 1 1 0 1 0 0 0
T4 0 1 0 1 1 0 0 1 0
T5 1 0 1 0 0 0 0 1 1
T6 0 1 0 1 1 1 1 0 0
T8 0 1 0 0 1 1 1 0 0
T9 0 0 1 1 1 0 0 0 0
T10 1 1 0 1 1 0 0 1 1
T12 1 1 1 1 0 0 0 0 1
T13 0 1 0 1 0 0 1 1 0
T14 0 1 0 0 0 0 0 0 0

All the remaining test cases that are available in TCCij are inserted into a new cluster group
requiredi as mentioned in step 5.The vector

requiredi = {T1, T4, T5, T6, T8, T9, T10, T12, T13, T14}

The comparison between the original size of the test suite and the reduced size of the test suite is
specified in Figure 3. The result shows that there is a notable reduction in the size between the
two test suites.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

45

Figure3. Test Suite Size after Selection

5.2. Test Case Prioritization

Input matrix TCCij for Test Case Prioritization is given in Table 5.

Iteration 1:

As given in step 1, the number of statements covered by each test case is counted from the new
matrix TCCij. It is given in Table 6.

Table 6. Number of statements covered by test cases

Test Cases Statements
Covered

T1 4
T4 4
T5 4
T6 5
T8 4
T9 3
T10 6
T12 5
T13 4
T14 1

As given in step 2, the test case with highest sum is removed from TCCij and that test case is
added into the Test Case Prioritized vector TCPi. The vector TCPi = {T10}.All the statements
that are covered by the test case T10 is removed from TCCij. The modified TCCij is given in
Table 7.

0

20

40

60

80

100

120

Initial Suite After Test Case
Selection

Test Suite Size



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

46

Table7.Updated TCCij

Iteration 2:

As given in step 1, the sum of each row of the updated matrix TCCij given in Table 7 is computed
and the sum is specified in Table 8.

Table8. Number of statements covered by test cases

Test Cases Statements
Covered

T1 2
T4 0
T5 1
T6 2
T8 2
T9 1

T10 0
T12 1
T13 1
T14 0

As given in step 2, the test case with highest sum is removed from TCCij and that test case is
added into the vector TCPi. Here in this example, there are three test cases {T1, T6, T8} with
highest sum. The test case T1 is selected here. The issue of equal priority is to be considered in
future. Now the vector TCPi = {T10, T1}. All the statements that are covered by the test case T1
is removed from TCCij. The modified TCCij is given in Table 9.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

47

Table 9. Updated TCCij

Iteration 3:

As given in step 1, the sum of each row of the updated matrix TCCij given in Table 9 is computed
and the sum is specified in Table 10.

Table 10. Number of statements covered by test cases

Test Cases Statements
Covered

T1 0
T4 0
T5 0
T6 1
T8 1
T9 0

T10 0
T12 0
T13 1
T14 0

As given in step 2, the test case with highest sum is removed from TCCij and that test case is
added into the vector TCPi. Here in this example, there are three test cases {T6, T8, T13} with
highest sum. The test case T6 is selected here. The final prioritized vector

TCPi = {T10, T1, T6}

Figure4 gives the size of the test suite after test case prioritization. The size of the test suite is
very much reduced and hence the cost of regression testing and time for execution of test cases
can be minimized to a greater extent.



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

48

Figure4. Test Suite Size after Prioritization

6. CONCLUSION

Regression testing is carried out in the maintenance phase of the software development to retest
the software for the revisions it has endured and to confirm the accurate functionalities of the
revised version. A new technique for test case selection and test case prioritization process for
regression testing is proposed in this paper. The proposed technique is very effective in terms of
cost and time involved in regression testing. In future, the regression testing techniques may be
combined with optimization algorithms to contribute more enhanced results.

REFERENCES

[1] Rothermel G, Harrold MJ. A safe, efficient algorithm for regression test selection. Proceedings of
International Conference on Software Maintenance (ICSM 2003), IEEE Computer Society Press,
1993; 358–367.

[2] Rothermel G, Harrold MJ. Analyzing regression test selection techniques. IEEE Transactions on
Software Engineering August 1996; 22(8):529–551.

[3] G. Rothermel, R. Untch, C. Chu, and M.J.Harrold, “Prioritizing Test Cases for Regression Testing,”
IEEE Trans. Software Eng.,vol. 27, no. 10, pp. 929-948, Oct. 2001.

[4] Fischer K. A test case selection method for the validation of software maintenance modifications.
Proceedings of International Computer Software and Applications Conference, IEEE Computer
Society Press, 1977; 421–426.

[5] Agrawal H, Horgan JR, Krauser EW, London SA. Incremental regression testing. Proceedings of the
International Conference on Software Maintenance (ICSM 1993), IEEE Computer Society, 1993;
348–357.

[6] Rothermel G, Harrold MJ. Selecting tests and identifying test coverage requirements for modified
software. Proceedings of International Symposium on Software Testing and Analysis (ISSTA 1994),
ACM Press, 1994; 169–184.

[7] Rothermel G, Harrold MJ. A safe, efficient regression test selection technique. ACM Transactions on
Software Engineering and Methodology April 1997; 6(2):173–210.

0

10

20

30

40

50

60

70

80

After Test Case
Selection

After Test Case
Prioritization

Test Suite Size



International Journal of Software Engineering & Applications (IJSEA), Vol.4, No.6, November 2013

49

[8] Rothermel G, Harrold MJ. Experience with regression test selection. Empirical Software Engineering:
An International Journal 1997; 2(2):178–188.

[9] Benedusi P, Cmitile A, De Carlini U. Post-maintenance testing based on path change analysis.
Proceedings of the International Conference on Software Maintenance (ICSM 1988), IEEE Computer
Society Press, 1988; 352–361.

[10] Chen YF, Rosenblum D, Vo KP. Testtube: A system for selective regression testing. Proceedings of
the 16th International Conference on Software Engineering (ICSE 1994), ACM Press, 1994; 211–
220.

[11] Leung HKN, White L. Insights into testing and regression testing global variables. Journal of
Software Maintenance 1990; 2(4):209–222.

[12] Laski J, Szermer W. Identification of program modifications and its applications in software
maintenance. Proceedings of the International Conference on Software Maintenance (ICSM 1992),
IEEE Computer Society Press, 1992; 282–290.

[13] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Test Case Prioritization: An Empirical Study,”
Proc. Int’l Conf. Software Maintenance, pp. 179-188, Sept. 1999.

[14] S. Elbaum, A. Malishevsky, and G.Rothermel Test case prioritization: A family of empirical studies.
IEEE Transactions on Software Engineering, February 2002.

[15] Z. Li, M. Harman, and R. M. Hierons. Search Algorithms for Regression Test Case Prioritization,
IEEE Transaction on Software Engineering, vol. 33, no. 4, pp. 225-237, 2007.

[16] Praveen Ranjan Srivastava, Test Case Prioritization, Journal of Theoretical and Applied Information
Technology, pp. 178-181, 2008.

[17] K. K. Aggrawal , Yogesh Singh , A. Kaur, Code coverage based technique for prioritizing test cases
for regression testing, ACM SIGSOFT Software Engineering Notes, v.29 n.5, September 2004.

[18] R. Beena and S. Sarala, A Personalized Approach for Code Coverage based Test Suite Selection,
2012 International Conference on Computer and Software Modeling (ICCSM 2012), IPCSIT vol. 54,
2012.


