
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

DOI : 10.5121/ijsea.2014.5101 1

SOME PRACTICAL CONSIDERATIONS AND A
METHODOLOGY FOR TESTING AUTONOMOUS

SYSTEM INTEGRATIONS
Safiullah Faizullah

Rutgers University, Piscataway, NJ, USA
safi.research@gmail.com

ABSTRACT

With interconnectivity between IT Service Providers and their customers and partners growing, fueled by
proliferation of IT Services Outsourcing, with some providers gaining leading positions in marketplace
today, challenges are faced by teams who are tasked to deliver integration projects with much desired
efficiencies both in cost and schedule. Such integrations are growing both in volume and complexity.
Integrations between different autonomous systems such as workflow systems of the providers and their
customers are an important element of this emerging paradigm. In this paper we present an efficient model
to implement such interfaces between autonomous workflow systems with close attention given to major
phases of these projects, from requirement gathering/analysis, to configuration/coding, to
validation/verification, several levels of testing and finally deployment. By deploying a comprehensive
strategy and implementing it in a real corporate environment, a 10%-20% reduction in cost and schedule
year over year was achieved for past several years primarily by improving testing techniques and detecting
bugs earlier in the development life-cycle. Some practical considerations are outlined in addition to
detailing the strategy for testing the autonomous system integrations domain.

KEY WORDS

Software testing, software validation/verification, unit testing, integration testing, test oracles, empirical
studies, regression testing.

1. INTRODUCTION AND BACKGROUND

Large corporations and governmental bodies rely on IT Services Providers to manage their
infrastructures, data centers, applications, workflow system, and sometimes their entre IT
organization. Distributed nature of IT infrastructure management is emerging as complex and
challenging service where it presents providers with unique opportunities and huge financial
rewards if such management is executed efficiently. This model necessitates, among others
activities, the need for connecting customers’ and their partners’ autonomous systems to those
that Service Providers deploy to manage their infrastructure. With major Service Providers
organizations gaining significant market share, such interconnectivity is part of most outsourcing
contracts. In particular, interconnecting Service Providers’ workflow systems such as Remedy,
Service Manager, Service Now (Workflow Systems), with customers’ workflow systems via
Case/Service Exchanges (interfaces), see Figure 1, is a growing segment and often a central piece

mailto:research@gmail.com

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

2

of larger contracts. These interfaces are highly visible, due to dependencies of other projects,
thereby enabling Service Providers to service the overall contracts and as such it could affect
customer satisfaction. Another important point is that with many of these projects on the ever-
growing pipeline, reusability is both financially desirable as well as customer satisfaction could
be positively enforced with reduced schedule. As such the deployment of these projects should be
handled with care from the project initiation to release to production. Such projects go through
multiple phases (refer to Figure 2):

1. Start requirement analysis phase, including fields mapping, data translation, protocol,
detailing the product specification, defining validation and verification mechanism,
test/use cases;

2. Followed by technical steps where protocols definition and fields/data mappings of
Service Providers’ work flow system such as Workflow System to those of the customer
or their partners is conducted;

3. Followed by configuration of interface with coding and deployment;
4. Next test scripts definition and agreement, test oracles, defining adequacy and coverage

criteria;
5. Multiple level of testing, utilizing agreed scripts, both by Service Providers and their

customers/partners in their respective environments as well as those done together to test
the integration of the systems; Please note that integration testing as a step in the overall
testing strategy in comparisons to testing autonomous system integrations which must
cover overall aspects of testing for this domain. Please keep this distinction in mind when
reading this paper.

6. Followed by User Acceptance Testing where the solution is scrutinized by the business
teams to ensure the interfaces are behaving per process and business cases that were
agreed during requirement phase;

7. Move to production and go-live;
8. Under maintenance and active management.

Loosely speaking, requirement analysis, configuration/coding and testing form the major
steps in such interconnections. Therefore, it is important to conduct these steps in standard ways
as much as possible. Innovative ways to reuse and reduce waste during the requirement analysis
phase are required which are achieved by implementing requirements/definition documents that
describe standards and incorporate use cases.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

3

Figure 1: Workflow-to-Workflow Interconnectivity Capability for Different ITIL Modules

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

4

Figure 2: Autonomously System Integration Project Flow

Aligning new projects to the definitions and use cases of standards enable reuse and improve
efficiencies and hence lower cost and shorten projects schedule. Configurations/coding based on
standard mappings/data translation can be streamlined and hence done efficiently. Utilizing an
enhanced approach to conduct configurations per standards and in close observation of use cases
can be cost effective, and in case the requirements are deemed achievable by the standard
definitions and mappings, the reduction in cost and schedule will be significant.

The testing techniques needed for these projects require a significant amount of manual, non-
execution based, efforts which typically result in inadequately tested scenarios unless creative
techniques are employed. The multiple iterative testing strategies, involving both non-execution
based as well as execution based testing, are meant to reduce the required resources. We deploy
both testing to specification (black-box testing) and testing to code (white box testing) [1].
Moreover, during iterative development, if testing is not incorporated in the overall software life
cycle, developers’ waste time fixing bugs that they encounter in later development cycles; these
bugs could have been detected earlier if the code had been tested iteratively. The nature of these

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

5

developments requires testing techniques to quickly test each increment of the configuration
during code development. As such a closely coupled approach is needed whereby requirements
are tied to use cases which are tested thoroughly and issues are discovered early in the testing
cycle. The discovery of bugs, product defects or the need for enhancements at later stages are
exponentially more expensive and thereby a point of focus to be avoided or reduced significantly.
The iterative nature of the development can make regression testing more efficient if conducted
carefully. Another advantage of such test strategy is that developers (or testers) can use
capture/replay tools such as WinRunner, to perform stress/performance testing when needed for
very heavy and active interfaces [1-8].

2. TESTING STRATEGY

As the most significant and the dominant success criterion for any software projects/products in
the industry is the quality [9], this against the ever intense demand for fast turnover with much
wanted cost efficiencies, requires enhanced development paradigms with testing taking center
stage. It is not surprising then to note that the most time consuming and very crucial step in any
software development, including integrations, is testing. In general, software testing is a process
of providing inputs to software that is being tested and evaluating the produced results. The
mechanism used to generate expected results is called an oracle. There are several approaches
that we can adopt to generate, capture, and compare test results. Some of the common ways are:

A. Manual testing/verification of results by human- manual oracle (non-execution based);
B. Testing/Verifying specific values for known responses;
C. Testing/Verifying the consistency of generated values and end points;
D. Interface simulator to produce results;
E. Utilizing sampling of values to compare with independently generated expected results;
F. Automating the testing/verification for regression.

For testing autonomous system integrations, most of the above steps are utilized. These steps
enhance the quality of the integrations and improve both schedule (Figure 3) and cost (Figure 4.)
All of the tests utilized A through C, and by adding steps, D, E, F, DE, DF, EF, DEF we see
improvements in both schedule and cost.

Step A is an essential part of the autonomous systems integrations as each end workflow system
has different fields and data structures that need to be mapped to its counterpart and as such it
requires human investigation during unit, integration, and UAT. On the other hand, this step is
very laborious and hence contributes the most to both schedule duration and cost (see Figure 5
and Figure 6.) Even though human testers in step A will certainly utilize some tools to enhance
schedule/cost, currently manual interaction is its dominant aspect as is evident by comparing
Figure 3 and Figure 5 for schedule durations as well as Figure 4 and Figure 6 for cost
comparisons. Automating some aspects of this step is highly desirable [6, 10-11].

The computing speed has grown very rapidly and that coupled with low cost of memory, test
cases can generate very large amounts of data. This makes the oracle data also massive which is
needed for comparison. Integration work requires data comparison which must be incorporated
into test cases. This requires that we add to test cases the error handling, capturing error results, as
well as reporting differences. The nature of integration necessitates dependency on human oracles

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

6

to verify test results, this can only be fruitful and efficient where the testers know the details of
the code, and they are expected to know when the application misbehaves. Manual testing with
tester as oracles has disadvantages that include increased costs and longer schedule durations and
as such certain cycles of testing (in particular integration and regression testing) are automated as
much as possible. New techniques and strategies are needed to reduce the test suites as well as
detection of bugs/defects to be shifted to early test cycles (unit testing) in autonomous system
integration projects. We have had some successes in this area by bringing the learning from
previous work and adjusting our overall testing strategy, see Fig. 3-Fig. 6 for this trend.

Figure 3: Averaged Schedule for 5 Integrations

Figure 4: Averaged Cost for 5 Integrations

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

7

Figure 5: Averaged Schedule for 5 Integrations without Step A

Figure 6: Averaged Cost for 5 Integrations without Step A

3. CONCLUSION AND FUTURE WORK

Interconnecting Service Providers’ workflow systems such as Remedy, Service Manager, Service
Now (Workflow Systems), with customers’ workflow systems via integration interfaces is a
growing segment and often a central piece of larger contracts. These interfaces are highly visible,
due to dependencies of other projects to work smoothly, enabling Service Providers to service the
contract and as such it could affect customer satisfaction positively (or unfortunately negatively if
not done efficiently.) These projects need to be done in cost effective way with reasonable
schedules. Testing is an essential step in these interconnections and efficient methods need to be
deployed to achieve the desired results. We have shown a strategy that is deployed by a major
Service Provider where significant savings (~17%-27.5% schedule and ~20%-25% cost
reductions) were achieved by employing refined steps (see Figure 3 and Figure 4.)

Another factor for these savings was that by ensuring very few bugs/defects were undetected in
early cycles of these projects and thereby no costly retesting as a result of discovering

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

8

bugs/defects and it removal. As future work, we need to consider automating the testing of certain
commonly used use cases [6], particularly during early stages (step A) of our iterative testing
strategy, so that we can further reduce the testing cycle and eliminate human related errors and
costs. Deploying capture/replay tools such as WinRunner [8] to perform regression testing for
very heavy and highly active interfaces. integration of autonomous systems involve many
products (workflow systems, network, business processes, etc.) and as such any changes in any
of these components will necessitate changes in these interfaces, conduction crucial regression
testing is crucial. In addition, keeping an active eye on the environment capacity is very crucial as
production outages are very expensive. With growth of autonomous system integrations
implementations, this is even more urgent aspect than individual integration projects.

REFERENCES

[1] B. Beizer, Software Testing Techniques, (Van Nostrand Reinhold, New York, 2nd edition, 1990).
[2] M. Bozkurt, M. Harman, and Y. Hassoun., “Testing web services: a survey”, Technical Report TR-

10-01, Department of Computer Science, King’s College London, April 2010
[3] W. T. Tsai, et al, “Extending WSDL to facilitate Web services testing”, Proceedings of 7th IEEE

HASE, pp. 171- 172, 2002.
[4] A.K. Onoma, W.T. Tsai, M. Poonawala, and H. Suganuma, “Regression Testing in an Industrial

Environment”, Communications of the ACM, Vol. 41, No. 5, May 1998, pp. 81-86.
[5] R. Paul, “End-to-End Integration Testing: Evaluating Software Quality in a Complex System”, Proc.

of Assurance System Conference, Tokyo, Japan, 2001, pp. 1-12.
[6] J. Robbins, Debugging Applications. Microsoft Press, 2000.
[7] B. Marick, “When Should a Test Be Automated?” Proc. 11th Int’l Software/Internet Quality Week,

May 1998.
[8] “Mercury Interactive WinRunner,” 2003, http://www.mercuryinteractive.com/products/winrunner.
[9] L. Osterweil et al., “Strategic directions in software Quality”, ACM Computing Surveys, (4):738-750,

December 1996.
[10] S. Faizullah, “Rapidly Evolving Research Area- Testing Software Testing”, Invited Talk at

COMSATS Institute of Information Technology (CIIT), Abbottabad, Pakistan, 2009.
[11] S. Faizullah, “Trends in Testing Software Testing- A Case in Focus”, Talk at Frontiers in Technology

(FIT) 2010, Islamabad, Pakistan, Dec 21-23, 2010.

AUTHORS

Safi Faizullah received his Ph.D. in Computer Science from Rutgers University, New
Brunswick, New Jersey, USA in 2002. He also received MS and M. Phil. Degrees in
Computer Science from Rutgers University, New Brunswick, New Jersey, USA in
2000 and 2001, respectively. Dr. Faizullah also earned his BS and MS degrees in
Information and Computer Science from KFUPM, Dhahran, KSA in 1991 and 1994,
respectively. His research interests are in computer networks, mobile computing,
wireless networks, distributed and enterprise systems. He has authored over twenty
refereed journals and conference papers. Dr. Faizullah works for Hewlett-Packard and he is a Visiting
Scholar/Adjunct Professor of Computer Science at Rutgers University. He is a member of IEEE, SCIEI,
PMI and ACM

http://www.mercuryinteractive.com/products/winrunner

