
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

DOI : 10.5121/ijsea.2014.5302 9

COMPOSITIONAL TESTING FOR FSM-BASED
MODELS

Bilal Kanso1 and Omar Chebaro2

1Ecole Centrale Paris,Laboratoire de Mathématiques Appliquées aux Systèmes (MAS),
Grande Voie des Vignes F-92295 Châtenay-Malabry, France

2ASCOLA (EMN-INRIA, LINA), École des Mines de Nantes
44307 Nantes, France

ABSTRACT

The contribution of this paper is threefold: first, it defines a framework for modelling component-based
systems, as well as a formalization of integration rules to combine their behaviour. This is based on finite
state machines (FSM). Second, it studies compositional conformance testing i.e. checking whether an
implementation made of conforming components combined with integration operators is conform to its
specification. Third, it shows the correctness of the global system can be obtained by testing the
components involved into it towards the projection of the global specification on the specifications of the
components. This result is useful to build adequate test purposes for testing components taking into account
the system where they are plugged in.

KEYWORDS

Component-based system, Compositional testing, Conformance testing, Integration operators, Trace
semantics, Components, Systems, Projection, test cases generation.

1. INTRODUCTION

Compositional testing [1, 2] becomes increasingly one of the most promising techniques for
dealing with the state explosion problems in system testing. It consists in proving globally
correctness of a system by checking locally correctness of its subsystems (or components). The
main idea is to design, develop and validate each component independently in order to be widely
used in a more large system, while a system is described recursively, at a higher level of
abstraction, as interconnections of such components. The validation step is usually achieved using
the conformance testing theory, which aims to checking the functional correctness of an
implementation of a system with respect to its specification by means of experiments on the
implementation. In the paradigm of automata-based compositional testing, component behaviours
and their requirements are modelled as finite state machines (FSM) or labelled transition systems
(LTS). The composition of components is commonly formalized as an operation taking
components as well as the nature of their interactions to provide a description of a new more
complex component.

In this paper, the models that we use to denote specifications of components are made of finite
state machines extended to be able to encompass non-deterministic behaviours. The component
models are structured and combined by means of a slight extension of the synchronous parallel
operator [10, 27]. Although our framework is finite state machines rather than labelled transition
systems, the conformance relation we use is a slight extension of the ioco relation [25] to our

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

10

components called cioco. Our reason for choosing ioco to the detriment of relations issues from
finite state machines such that trace inclusion or quasi-reduction [5, 6], is that ioco contrary to
other relations, allows implementations not only to do what is specified, but also to do more than
what is specified. This requirement of testing conformance has a fundamental role in testing
practice [26].

Furthermore, in this paper, we will show that under some conditions, the conformance relation
cioco is preserved over the synchronous parallel operator. From a practice point of view, this
result means that making assumption that the synchronous parallel operator is well-implemented
and preserves its specification, the composition of component implementations always conforms
to the composition of their specifications, whether each implementation component is in
conformance (according cioco) to its corresponding sub-specification.

This result finds a way to make system validation modular. Systems are tested, subsystems per
subsystems, in a modular way, rather than ”as a whole”. Thus, explosion problems are less prone
and debugging is greatly facilitated. However, it turns out that in practice, such a result is not
enough. First, as the number of test case combinations is often huge, testing components in
isolation would cause test cases that are important for the global system to be overlooked.
Suppose a system S for computing student grade averages uses a calculator. Based on
compositional testing result, to test S, we need to test the calculator in isolation. However, there is
no way to ensure that important behaviours of the calculator involved in computing grade
averages are covered by generated test cases (i.e. test cases only bringing into play addition and
division for grades ranging from 0 to 20). Second, there is a need to test components in the
context in which they are expected to be used. By way of example, the disaster of Ariane 5 in
1996 is caused by the absence of testing in context of a software component which was only
tested for Ariane 4.

Following the projection approach in [2, 7], we equip our framework with a projection
mechanism which enables us to easily retrieve all relevant information about subsystems. From
global behaviours of a system, it helps capturing the behaviours of its sub-systems, that typically
occur in the context of the whole system. Then, we will give in this paper, a new compositinality
result that takes into account the behaviour of global system in which components are plugged in.
This result helps to strengthen the quality of components by taking into account their involvement
in the global system that encapsulates them. Furthermore, based on this result, specific test
purposes can be generated to make component testing efficient by focusing on the way
components are used in global systems.

The paper is structured as follows. Section 2 introduces the definition of our FSM-based
components and the synchronous parallel operator. Section 3 presents our conformance testing
theory for components. Section 4 shows the main limitation of the conformance testing
techniques and studies the preservation of the conformance relation for the synchronous parallel
operator. Section 5 introduces the compositinality result based on our projection mechanism.
Section 6 recalls the related works. Section 7 concludes and presents the future works.

2. COMPONENTS AND SYSTEMS

A component is defined in our framework as a finite state machine in which the dependence
between outputs and both current state and inputs is relaxed from a strict deterministic, to
encompass also non determinism. A Finite State Machine (FSM) is a non-deterministic Mealy
machine formally defined as follows:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

11

Definition 1 (Component) . A component C is a 5-tuple (S, s0, I, O, R) where:

• S is a finite set of states with the initial state s0∈ S;
• I is a finite set of finite set of inputs: O is a finite set of outputs;
• R⊆Sx I x O x S is the transition relation ;

Comp(I, O) denotes the set of components over the input-output signature (I,O).

In the following, for (s,i,o,s') in R, we simply write s R s' and we represent a
component in the standard way, by a directed edge-labelled graph where nodes represent states
and edges represent transitions.

In our context, we are mainly interested by finite traces. Finite traces are finite sequences of
couples (input|output) defined as follows:

Definition 2 (Component finite traces). Let C = (S, s0, I, O, R) be a component. The finite trace
of a state s of C, noted TraceC(s), is the whole set of the finite input-output sequences <i0|o0, …,
in|on> such that ∃ (s0,...., sn, sn+1) ∈ S* of states where fir every j, 0≤ j ≤ n,

sj R sj+1 with s0 = s.

Hence, TraceC(C) is the set Tracec(s
0).

Several composition operators have been proposed in the literature to combine FSM-based
components. The sequential composition (called also cascade composition) C = (C1 , C2) of
two components C1 and C2 corresponds to a composition where both components C1 and C2 are
interconnected side-by-side and the output of one is the input of the other [10, 27]. A reaction of
C consists then of a reaction of both C1 and C2 , where C1 reacts first, produces its outputs, and
then C2 reacts. That is to say, when C1 is triggered by an input i from the environment, C1

executes i and the produced output is fed to C2. The double sequential composition (C1, C2) is a
composition in which the system can be triggered either by an input of C1 and then feeds the
output produced to C2 or by an input of C2 and then feeds the output produced to C1. The
synchronous product (C1, C2) of two components C1 and C2 corresponds to a composition
where both components C1 and C2 are executed independently or jointly, depending on the input.
Hence, C1 and C2 are simultaneously executed when triggered by a joint input i that belongs to
both inputs set of C1 and C2. The Cartesian product [27] ⊗(C1, C2) is a composition where both
components are executed simultaneously when triggered by a pair of input values. The
concurrent composition [27] C=⊕ (C1 , C2) of two components C1 and C2 corresponds to a
composition where both components C1 and C2 are executed independently or jointly, depending
on the input received from environment. It combines both choice and parallel compositions, in
the sense C1 and C2 can be simultaneously executed when triggered by a pair of inputs (i1 , i2) (i1

belongs to inputs set of C1 and i2 belongs to inputs set of C2), (i1 ∈ I1 and i2 ∈ I2) or separately
when triggered by an input i: if i ∈ I1, then C1 is executed and the reaction of C is that of C1,
otherwise C2 is executed and the reaction of C is that of C2. The synchronous parallel
composition (called also interleaving parallel composition [10]) C = ⊙ (C1, C2) of two
components C1 and C2 is a composition in which both C1 and C2 are executed independently or
jointly depending on the input, in such a way that each input action received by C from the
environment consists exclusively of an input action of either C1 or C2 i.e. there is no common
input action for C1 and C2. Indeed, when the global system receives an input which is supposed to
be an input action of C1, C1 reacts by producing an output. If that output does not belong to the
input set of C2, the reaction of the global system consists only of the reaction of C1. Otherwise,

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

12

the output produced is directly fed to C2 and the reaction of the global system consists of the
reaction of both C1 and C2 (one falls into the same composition as the sequential composition). In
the same manner, when the global system receives an input supposed to be an input action of C2 ,
C2 reacts by producing an output. If that output does not belong to the input set of C1, the reaction
of the global system consists only of the reaction of C2. Otherwise, the output produced is directly
fed to C1 and the reaction of the global system consists of the reaction of both C1 and C2. Further
technical details about the different kinds of composition presented above can be found in
textbooks such as [27].

It has been shown that the synchronous parallel operator is the most suitable and the more used
operators to combine FSM-based components [10, 27]. Furthermore, it is generic enough to
encompass some other integration operators. Indeed, this kind of composition can be seen as a
general composition embodying both the synchronous and parallel aspects of composition. On
one hand, it is synchronous in the sense that all common actions between C1 and C2 are
synchronized. That means each output of C1 that is fed as input of C2 (i.e. O1 ∩ I2) and each
output of C2 that is fed as input of C1 (O2 ∩ I1) are hidden (i.e. synchronized). They are not
observable from the outside. On the other hand, it is parallel in the sense that both components C1

and C2 are considered autonomous: that is to say, a component may produce an output o
regardless of whether o is specified as an input of the other component (see Fig. 1).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

13

Note : in which the set I1 ∩ O2 = ∅ (resp. O2 = I1 and O1 = I2). ⊗ and
are particular cases of the concurrent composition.

Applying ⊙ to basic components yield larger components that we will call systems. Then, given
a set A of basic components, the set Sys(A) of systems over A is inductively defined as follows:

• For any component C ∈ A, C is in Sys(A);
• For any two components C1, C2 in Sys(A), ⊙(C1, C2) is in Sys(A).

3. CONFORMANCE TESTING

Conformance testing [4] is a technique for checking the functional correctness of an
implementation under test (iut) with respect to its specification (spec) by means of experiments
on iut. It consists in deriving test cases algorithmically from a system specification, executing
them on the real system and finally making sure that the latter behaves correctly by comparing its
outputs with those required in the specification.

The notion of conformance is usually based on the comparison between the behaviour of a
specification and an implementation using a conformance relation. The goal of this relation is to
specify what the conformance of an implementation is to its specification. Several kinds of
relations have been proposed in the literature. They differ mainly in both the formalism used to
model system behaviour and the testing aspects considered. The original FSM-based
conformance testing relation is defined as the testing equivalence of states whose goal is to
determine the equivalence of two machines [3]. Two state machines are said to be equivalent if
they produce exactly the same output sequence when offered the same input sequence. There is a
list of other conformance relations that can be found in the literature. The definitions of these
relations depend mainly on the underlying properties of the used finite state machines. Table 1
reviews some of them without going into details, for more detailed explanations, see [3, 5, 6].

Relation Informal definition Properties

Equivalence Equality of traces set Complete deterministic or
complete non-
deterministic

Quasi Equivalence For each input sequence
of spec, spec and iut
produce the same output
sequences

Deterministic or non-
deterministic

Reduction Trace inclusion Complete non-
deterministic

Quasi reduction For each input sequence
of spec, iut produces only
output sequences of spec

Non-deterministic

Table 1: Examples of conformance relations

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

14

It turns out that the conformance relations to test state equivalence are too strong, in practice, for
conformance testing. There is a number of common assumptions (e.g. specification is strongly
connected, minimized or complete) that are usually made in the literature to make test processes
at all possible [3, 11, 15, 16]. Test generation algorithms based on them are also expensive in time
and memory [17, 19, 18, 11 ,3], contrary to test cases generation techniques for inclusion
relations (e.g. reduction and quasi reduction relations) [5, 6].

To cope with the weakness of FSM-based conformance relation, LTS model has been first
appeared and some relations over it have been defined such as equivalence and pre-order relations
relying on the observable behaviour notion [21,20]. However it turned rapidly out LTS formalism
is so far to be applicable in testing practice due to the absence of a classification of actions into
inputs and outputs [4, 14]. LTS then has been extended to Input-Output Labelled Transition
System (IOLTS) in which there is a clear distinction between the input and outputs actions. For
IOLTS model, several conformance relations were proposed such as the testing pre-order ≤te , the
refusal pre-order ≤rf , ioconf and ioco [25, 26]. Among these relations, the relation ioco has
received much attention by the community of formal testing because it has shown its suitability
for conformance testing and especially automatic test derivation [25]. The reason is that the
objective of conformance testing is mainly to check whether the implementation behaves as
required by the specification i.e. to check if the implementation does what it should do. Hence, a
conformance relation has to allow implementations not only to do what is specified, but also to
do more than what is specified (for instance, when an annoyed user hits or kicks the coffee
machine, or does other strange things that we are not usually considered in the
specification). This requirement of testing conformance is well satisfied by ioco contrary
to other relations [12, 20, 21] requiring testing behaviours that are not in the specification
i.e. the implementation does not have the freedom to produce outputs for any input not
considered in the specification.

The ioco relation that we will call here cioco (c for component) is formally redefined in terms of
components as defined in Section 2. We make some modifications to the original definition of
ioco to fit our component definition. That is, after each trace tr of a specification spec, instead of
considering that the possible outputs of the corresponding implementation iut after executing tr
on it is a subset of the possible outputs of spec, we consider that the corresponding
implementation iut, after executing tr on it and then submitting any input i of the specification to
it, does not produce outputs that are not allowed by spec.

Note: Commonly in conformance testing, iut is assumed to be input-enabled i.e. it produces,
at any state, answers for all possible inputs providing by the environment.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

15

4. COMPONENT-BASED TESTING

As a matter of fact, the exponentially growing complexity and heterogeneity of today’s systems
give rise naturally to difficulties even the impossibility, in some cases, of using actual testing
methods in practice. It turns out important aspects for software systems such as heterogeneity,
decentralized and networked applications, etc. are not well-supported. This is especially due to
the fact that testing techniques are limited to scalability of the complexity of actual software
systems that are not only large but are also growing dramatically. As in a state-based components
approach, compositional reasoning about system correctness is viewed as one of the most
promising directions to bridge the gap between the increasing complexity of systems and actual
testing method limits.

4.1. Approach

Component-based testing (or compositional testing) consists in testing communicating
components that have been tested separately. It aims to guarantee the correctness of the
integration of a set of components op(C1 , . . . , Cn) from the correctness of each components Ci in
isolation where op is the integration operator of interest. Thus, such a compositional testing
theory provides a way to test the integrated system only by testing its sub-systems. As a
consequence, there is no need to re-test its conformance correction. In our framework, the
compositional testing problem is formally expressed as follows:

Given (iuti cioco speci) for i = 1, 2, is it the case of
⊙(iut1, iut2) cioco ⊙(spec1 , spec2)?

Hence, once this question is positively answered, the correctness of the integrated system
⊙(iut1,iut2) is obtained from the correctness of the individual components iut1 and iut2. To test the
integrated system, it is not necessary to consider it as a whole, but it is enough to consider its sub-
systems and test them separately. Indeed, the contrapositive of this property is the following:

¬(⊙(iut1, iut2) cioco ⊙(spec1, spec2)) ∃i, i = 1, 2, ¬ (iuti cioco speci)

Thus, by looking at this new property, we can easily see that non-correctness of ⊙(iut1, iut2)
implies that at least one of iut1 and iut2 is incorrect. In other words, that means to test ⊙(iut1,
iut2), it suffices to test iut1 and iut2 in isolation.

4.2. Illustration example

To illustrate our compositional testing, we consider two components of a coffee machine: a
”money component” M that handles the inserted coins and ”drink component” D that produces
the drinks. Fig. 2 illustrates the architecture of these components.

Note: this example is inspired from the example presented in [1].

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

16

The specifications and implementations of M and D are (see Fig. 3):

Money component specification specM: when it receives a coffee coin ”coinC” (resp. a tea coin
”coinT”) from the user, it gives an order ”makeC” (resp. ”makeT”) to the drink component D to
make coffee (resp. tea).
Drink component specification specD: when it receives the order ”makeC” (resp. ”makeT”) to
make coffee (resp. tea) from the money component M, if there is nothing wrong during the drink
preparation process, it directly delivers the coffee (resp. tea) to the user, or else it sends an error
message to the money component in order to refund the user.

Money component implementation iutM: it behaves as the money component specification
specM , but in addition it does some extra functionalities, that is if an error occurs during the
drink preparation process, it refunds the inserted coin to the user.

Drink component implementation iutD: it behaves exactly as the drink component specification
specD.

The components M and D may communicate separately (e.g. D may execute the transition
labelled with abs|coffee while M does nothing) or jointly in synchronization (e.g. when M
executes the transition labelled with coinC|makeC, M receives instantaneously the output makeC
and then produces the output coffee). Then, such a composition of M and D is the synchronous
parallel composition ⊙
defined in Section 2.

Note: for the sake of readability, input completeness (implementations) are not depicted
in Fig. 3c and Fig. 3d.

As far as the compositional testing is concerned, we have:

(iutM cioco specM) and (iutD cioco specD)

Our goal is to know if this is enough to ensure whether the global implementation ⊙(iutM , iutD) is
in conformance w.r.t cioco to the global specification ⊙(specM, specD). Hence, to test ⊙(iutM,
iutD), it suffices to test locally if (iutM cioco specM) and (iutD cioco specD). An answer to this
question is given later in this paper.

4.3. Compositionality for synchronous parallel operator

We show here that the compositionality of cioco for synchronous parallel operator cannot be
obtained without any assumptions made on both specifications and implementations. We first
give an example that illustrates the assumptions required to obtain the compositionality of cioco
w.r.t the synchronous parallel operator ⊙. Figure 4 shows two implementation models iut1 and
iut2 that have been tested to be cioco-correct according to their respective specification models
spec1 and spec2. It is easy to see that (iut1 cioco spec1) and (iut2 cioco spec2).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

17

Using the synchronous parallel operator ⊙, the global implementation iut = (iut1, iut2) can do the
trace <i1|o3, i2|o5>. Thus, o5 ∈ Out(iut after (<i1|o3>, i2)) whereas the global specification spec
=⊙(spec1, spec2) can do the trace <i1|o3> in such a way o5 ∉
Out(spec after (<i1|o3> , i2)). Hence, we can see that the global implementation iut does not
conform to the global specification spec according to cioco.

This counterexample shows that ⊙ may give rise to a global implementation that does not
conform to its global specification, even if the local implementations conform to their local
specifications. The reason is that cioco does not put any constraint on the traces that are not
specified in the specification. It allows implementations to do what they want with the
unspecified states. Observe that if the specification specifies for any input what the allowed
outputs are, then we do not have this problem. Hence, to cope with this problem, we assume that
specifications are input-enabled as in [1]. That is to say, all states of a specification spec accept all
input actions of spec (i.e. the transition relation R is total). Then, we have the following theorem
for the compositionality for ⊙:

Let us go back to the example presented in Subsection 4.2 where we have shown that:
(iutM cioco specM) and (iutD cioco specD)

Here, the question is if:

⊙(iutM , iutD) cioco ⊙(specM, specD)?

Our first attempt to answer this question is to check if the assumptions imposed in Theorem 1 are
satisfied. Observe that neither specM nor specD are input-enabled. Hence, Theorem 1 fails to hold
the compositinality of cioco for the components M and D. However, it is easy to see that the
global implementation ⊙(iutM, iutD) can do the trace tr = <coinC|preparing, abs|coffee,
coinC|preparing,abs|refund>. Thus:

refund ∈ Out(iut after (<coinC|preparing, abs|coffee,coinC|preparing>, abs))

whereas the global specification (specM, specD) can also do the trace <coinC|preparing, abs|coffee,
coinC|preparing> in such a way:

refund ∉ Out(spec after (<coinC|preparing, abs|coffee, coinC|preparing>, abs))

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

18

Hence, we can see that:
¬((iutM , iutD) cioco (specM, specD))

5. TESTING IN CONTEXT

In Section 4, we have studied compositionality properties for cioco over the synchronous parallel
operator ⊙. We then proved that if single components of a system conform to their
specifications, the whole system built over ⊙ is in accordance with its specification, unless the
specification model is input-enabled. However, it turns out that in practice, such a compositional
approach is not enough. As an illustration, we consider an over simplified system that computes
grade averages. A typical design view of this system consists of two components:

1. An ”user interface” (“controller”) G that helps the user to make various operations on
grades

2. A ”calculator” C that receives operation commands from the user, performs the
requested operation, and reports back to the user

According to the result obtained in Theorem 1, to test the grade average system, it suffices to test
separately the calculator C and the controller G. However, testing the component C separately
may lead to the consideration of test cases involving arithmetic operations which are irrelevant to
computing student grade averages as subtraction, multiplication, square root, etc. This may cause
test cases of interest to the system to be missed, i.e. test cases only bringing into play addition and
division for grades ranging from 0 to 20.

In the following, we show how to improve significantly the result obtained in Theorem 1, by
considering the global system in which components are plugged-in. We do so by defining
projection mechanism. Such a projection mechanism is given in an accurate way by taking a
behaviour p of the global system and keeping only the part of p being activated in the component
that we want to test. This will allows us to generate more relevant unit test cases to test individual
components.

5.1. Subsystem and projection

Given a system S= ⊙(C, C'), we can inductively characterize the set of all basic (i.e. elementary)
components, noted Sub(S), from which the global system S is built as follows:

– if C is a basic component, then Sub(S) = {C} ∪ Sub(C ');
– if C' is a basic component, then Sub(S) = {C'} ∪ Sub(C);
– otherwise (i.e. both C' and C' are not basic), then Sub(S) = Sub(C) ∪ Sub(C').

Projection techniques [2] are defined by pruning from any global behaviour p, all that does not
concern the sub-system that we want to test. For any finite trace tr of a system S and a component
C of S, we characterize the set of finite traces tr↓c of C involved in tr.

In the following definition, the notation:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

19

means that the state s' is reachable from the state s, after the trace η following by i|o.

We then introduce the projection of a system, which we call component in context, on a one of
its sub-systems.

In this definition, S is the set of the states of the component in context. s0 is the initial state of the
component. Each state is represented by the unique sequence <i0|o0, . . . ,in|on> which leads to it
from the initial state:

R gives, for each state s, and for each couple input-output i|o, the set of states that can be reached
from s when the input i is submitted to the component.

Note: it is easy to see that the traces of the component S↓c obtained by projection is a subset of
the traces of the component C itself.

5.2. Result

We here present our result of compositionality of testing. It consists in proving that the
correctness of the integrated system is obtained from the correctness of the components given by
projection of the global system on its components.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

20

Theorem 2 then provides a way to test the integrated system only by testing the projection of that
system on its subsystems. As a consequence, to test the integrated system, it is not necessary to
consider it as a whole, but it is enough to consider the projection of that system on its sub-
systems (which may be done at different development steps and eventually developed by different
teams) and test them separately. Comparing this result with our previous result presented in [13]
or Tretmans’s result [1], the new result does not require that the specifications are input-enabled.
This last property is often hard to get in practice due to the fact that system input domains are
usually too large. Let us replace, in the example presented in Subsection 4.2, the money
specification by this presented in Figure 5. The projection ⊙(specM, specD)↓specM of ⊙(specM,
specD) on specM is then the component specM itself (Figure 5).

According to Theorem 2, to test ¬(iutM cioco specM), it is enough to test that:

¬(iutM cioco ⊙(specM , specD)↓specM) or ¬(iutM cioco ⊙(specM , specD)↓specD)

But, we know ¬(iutM cioco ⊙(specM , specD)↓specM) since after the trace <coinC|makeC> and for
the input error of specM, the implementation iutM produces the output refund which is not
allowed by the specification specM (the only allowed output is abs). Hence, we can conclude that:

¬ (⊙ (iutM, iutD) cioco ⊙ (specM, specD))

6. RELATED WORK

Several compositional testing approaches have been proposed [1, 8, 13, 2, 10, 22, 7]. These
approaches vary according to both formalism and integration operators. In [1], it has been proved
that the conformance testing ioco based on labelled transition systems is only compositional w.r.t
parallel composition when specifications and implementations are assumed input-enabled. In [8],
it has been then shown that cspio (an adapted version of ioco to CSP formalism) is compositional
not only for parallel composition but also for other CSP’s composition operators by assuming
input completeness of the specification in the same alphabet of the implementation. The authors
of [13] use co-algebra theory to obtain generic result of compositional testing. They propose to
extend component-based testing approach [1] to co-algebraic components [24]. In [2, 10, 22, 7],
the authors address differently the compositional testing problem from [1,8, 13]. In [2], the
authors work with input-output symbolic transition systems (IOSTS) and propose to test each
component of a system in isolation by generating accurate test purposes for them from the global
system specification and assuming that the specification of every component in the system is
available. This allowed them to test the global system by selecting behaviours of basic

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

21

components that are typically activated in the system, and then re-enforce unitary testing w.r.t
those behaviours. However, there is no testing compositinality result. In [10], the authors study
how to design a component when combined with a known part of the system, called the context,
has to satisfy a given overall specification in the context of finite state machine. In [22], the
authors extend the so-called assume-guarantee reasoning [9] used in model checking areas as a
means to cope with the state explosion problem of compositional testing. They then proposed to
test each component of a system separately, while taking into account assumptions about the
context of the component. They use the input- output labelled transition systems as behavioural
models of components and the parallel composition to compose components. The conformance
relation used in this approach is the ioco relation. The underlying idea behind this approach is to
check that, given a assumption A about the environment in which the components are supposed to
operate, such that (iut2 ioco A) and ((iut1 || A) ioco spec) then ((iut1 || iut2) ioco spec). The authors
showed that this property holds if the assumption A is input-enabled. Finally, in [7], the authors
propose to extend [2] in order to be able to generate test purposes for co-algebraic components
[13, 24].

7. CONCLUSION

This paper defines a framework for modelling and testing component-based systems. On the first
hand, we have proposed a FSM-based framework for modelling systems and we have defined the
synchronous parallel operator for combining component behaviour. On the second hand, we have
proved two compositional testing result. The first one, assuming input completeness of the
specification model in the same alphabet of the implementation model, that compositionality
holds for the synchronous parallel operator. The second one shows, using projection mechanism,
that compositionality naturally holds for the synchronous parallel operator.

For future work, we will be interested in proposing an approach to generate adequate test
purposes automatically that focus mainly on component behaviours which are activated in the
global system. The underlying idea is to build for a trace tr of the global system a finite
computation tree for the component involved in tr. Then, using the algorithm proposed in [2] to
generate correct test cases for individual components.

REFERENCES

[1] H.M. van der Bijl, A. Rensink and J. Tretmans, Compositional Testing with ioco, FATES,LNCS,
2931:86–100, Berlin, 2004.

[2] A. Faivre, C. Gaston and P. Le Gall, Symbolic Model Based Testing for Component Oriented
Systems, , TestCom/FATES, 90–106, 2007.

[3] D. Lee and M. Yannakakis, Testing Finite-State Machines: State Identification and Verification,
IEEE, 306-320 (43), Los Alamitos, USA, 1994.

[4] J. Tretmans, A Formal Approach to Conformance Testing, PhD. Thesis, University of Twente,
Enschede, The Netherlands, 1992.

[5] A. Petrenko and N. Yevtushenko, Conformance Tests as Checking Experiments for Partial
Nondeterministic FSM, FATES, 118-133, 2005.

[6] A. Petrenko and N. Yevtushenko, Testing from Partial Deterministic FSM Specifications, IEEE,
1154-1165 (54), Washington, USA, 2005.

[7] B. Kanso, M. Aiguier and C. Gaston, Testing of Component-Based Systems, 19thAsia-Pacific
Software Engineering Conference (APSEC) 2012, IEEE, 300-305, HK,China, December 4-7, 2012.

[8] A. Sampaio, S. Nogueira and A. Mota, Compositional Verification of Input-Output Conformance via
CSP Refinement Checking, ICFEM, Springer-Verlag, 20-48, Rio de Janeiro, Brazil, 2009.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

22

[9] E. Clarke, D. Long and K. McMillan, Compositional model checking, Proceedings of the Fourth
Annual Symposium on Logic in computer science, IEEE Press, 353-362, Pacific Grove, California,
US,1989.

[10] A. Petrenko and N. Yevtushenko, Solving Asynchronous Equations, Proceedings of the FIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE XI) and Protocol Specification, Testing and Verification (PSTV
XVIII), 231-247, Deventer, The Netherlands, 1998.

[11] D. Lee and M. Yannakakis., Principles and Methods of testing Finite State Machines—A survey,
IEEE, 1996.

[12] R. Milner, Communication and concurrency, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
[13] M. Aiguier, F. Boulanger and B. Kanso, A formal abstract framework for modelling and testing

complex software systems, Theor. Comput. Sci., 66-97, 2012.
[14] J. Tretmans, Testing labeled transition systems with inputs and outputs., The 8th International

Workshop on Protocol Test Systems, 461-476, Ervy, France, 1995.
[15] F. C. Hennie, Fault detecting experiments for sequential circuits, FOCS’64, 95-110, 1964.
[16] M. Yannakakis and D. Lee, Testing Finite State Machines, STOC, 476-485, 1991.
[17] T.S. Chow, Testing Software Design Modeled by Finite-State Machines, IEEE Trans. Softw. Eng.,

178-187 (4), Piscataway, NJ, USA, 1978.
[18] A. Gill, Introduction to the theory of finite-state machines, McGraw-Hill, New York, 1962.
[19] W. Chung and P. Amer, Improved on UIO Sequence Generation and Partial UIO Sequences, Testing,

and Verification, XII, Lake Buena Vista, North-Holland, 1992.
[20] R. De Nicola and M. C. B. Hennessy, Testing Equivalences for Processes, Theoretical Computer

Science (TCS), 83–133 (34), 1984.
[21] R. De Nicola, Extensional equivalence for transition systems, Acta Inf., Springer, 211-237 (24), April

1987.
[22] L.B. Briones, Assume-guarantee Reasoning with ioco Testing Relation, Proceedings of the 22nd IFIP

International Conference on Testing Software and Systems, 103-107, 2010.
[23] D’Souza, D.F. and Wills, A.C., Objects, Components, and Frameworks with UML: The

Catalysis(SM) Approach Addison-Wesley Prof., 1998.
[24] L.S Barbosa, Towards a Calculus of State-based Software Components, Journal of Universal

Computer Science, 9(8):891-909, August 2003.
[25] J. Tretmans, Conformance Testing with Labelled Transition Systems: Implementation Relations and

Test Generation, Computer networkss and ISDN systems, 29(1):49-79, 1996.
[26] J. Tretmans, Test Generation with Inputs, Outputs and Repetitive Quiescence, Software-Concepts and

Tools, 17(3):103-120, 1996.
[27] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems - A Cyber-Physical Systems

Approach, 978-0-557-70857-4, 2010.

Authors

Bilal Kanso holds a teaching and research position since September 2012 at Paris 12
University. He was a post-doctoral fellow at the Computer Science department of Supélec
France. He participated in the development of a technique for adding temporal operators to
the Object Constraint Language (OCL) in order to express temporal properties of the object-
oriented programs, with verification issues in mind. He obtained his PHD degree from the
Ecole Centrale Paris in November 2011. His dissertation deals with formal methods and
software testing using both conformance testing and coalgebra theories. His research also includes model
checking and its application to object-oriented programming and compositional verification and testing
methods.

Omar Chebaro holds a postdoc position since January 2012 in the ASCOLA team, a joint
team of EMNante and INRIA. He obtained his PHD degree from the university of Franche-
Comté in December 2011. His dissertation deals with formal methods and software
verification using static analysis, program transformation and dynamic analysis. His
research also includes concrete and symbolic test generation, label coverage and
compositional verification.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

23

