
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

DOI : 10.5121/ijsea.2014.5603 31

A REVIEW OF SOFTWARE QUALITY MODELS

FOR THE EVALUATION OF SOFTWARE

PRODUCTS

José P. Miguel1 , David Mauricio2 and Glen Rodríguez3

1Department of Exact Sciences, Faculty of Sciences, Universidad Peruana Cayetano

Heredia, Lima, Peru
2Faculty of System Engineering and Computing, National University of San Marcos,

Lima,Peru
3Faculty of Industrial and System Engineering, National University of Engineering,

Lima, Peru

Abstract

Actually, software products are increasing in a fast way and are used in almost all activities of human life.

Consequently measuring and evaluating the quality of a software product has become a critical task for

many companies. Several models have been proposed to help diverse types of users with quality issues. The

development of techniques for building software has influenced the creation of models to assess the quality.

Since 2000 the construction of software started to depend on generated or manufactured components and

gave rise to new challenges for assessing quality. These components introduce new concepts such as

configurability, reusability, availability, better quality and lower cost. Consequently the models are

classified in basic models which were developed until 2000, and those based on components called tailored

quality models. The purpose of this article is to describe the main models with their strengths and point out

some deficiencies. In this work, we conclude that in the present age, aspects of communications play an

important factor in the quality of software.

Keywords

Software Quality, Models, Software quality models, Software components, COTS

1. Introduction

Research on software quality is as old as software construction and the concern for quality
products arises with the design of error-free programs as well as efficiency when used. Research
to improve the quality of software is generated due to users demand for software products with
increasing quality. Actually, this is considered an engineering discipline [1].

According to the IEEE Standard Glossary of Software Engineering Terminology [2,3,28], the
quality of software products is defined as 1) the degree to which a system, component or process
meets specified requirements and 2) the degree to which a system, component or process meets
the needs or expectations of a user.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

32

An acceptable definition for a software product, given by Xu [4], was “a packaged software
component configuration or a software-based service that may have auxiliary components and
which is released and exchanged in a specific market". Here packaged components refer to all
kinds of programs. The software product takes different forms [4]: small, COTS (Commercial
Off-The-Shelf Components), packed software, large commercial software, open source software
and services.

In this paper we focus on the quality of the software product, that is, in the final product rather
than on the processes that lead to its construction, even though they are closely related.

The use of models is an acceptable means to support quality management software products.
According to ISO/IEC IS 9126-1 [5] a quality model is "the set of characteristics, and the
relationships between them that provides the basis for specifying quality requirements and
evaluation". The models to evaluate the quality of software have been constructed defining the
fundamental factors (also called characteristics), and within each of them the sub factors (or sub
characteristics). Metrics are assigned to each sub factor for the real evaluation.

Figure 1 updates the work of Thapar [6] and shows the evolution of quality models from the Mc
Call first model in 1977 until 2013. This evolution has categorized the models in: the Basic
Models (1977 - 2001) whose objective is the total and comprehensive product evaluation [6] and
the Tailored Quality Models (from 2001 onwards) oriented to evaluations of components. In this
work models oriented to evaluation of Free Software are also considered because of their actual
importance.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

33

Figure 1 Quality Models

The Basic Models are hierarchical in structure; they can be adjusted to any type of software
product and are oriented to the evaluation and improvement. The six most important are: Mc Call
et al in 1977 [7], Boehm et al in 1978 [8], FURPS Model in1992 [9], Dromey model in 1995 [10],
ISO 9126-1 model in 2001 [5] and its standards for both external metrics: ISO / IEC 9126-2 in
2003 [11], internal metrics: ISO / IEC 9126-3 in 2003 [12] and quality in use: ISO / IEC 9126-4
in 2004 [13]. The ISO -9126 model received inputs from previous models and sets standards for
assessing the quality of software. In 2007 an updated was established as the ISO 25010 model:
ISO / IEC CD 25010 [14]. The ISO 25010 actually is known as SQuaRE (Software engineering-
Software product Quality Requirements and Evaluation).

Tailored Quality Models began to appear the year 2001 with Bertoa model [15], followed by
Georgiadou Model in 2003 [16], Alvaro Model in 2005 [17], Rawashdesh Model [18]. The main
characteristic is that they are specific to a particular domain of application and the importance of
features may be variable in relation to a general model. These models arise from the need of
organizations and the software industry for specific quality models capable of doing specialized
evaluation on individual components. They are built from the Basic Models, especially the ISO
9126, with the adding or modification of sub factors and the goal to meet needs of specific
domains or specialized applications. In recent years the software construction has focused on the
reuse and development of Component-Based Software (CBSD). As a consequence the success of
a product strongly depends on the quality of the components.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

34

Other authors classify the models according to user’s characteristics. For example Klas [19]
distinguishes three categories of models that correspond to: 1) the level of general public use or
specific domain, 2) organizational level that focus on satisfying the interests of a specific
organization, and 3) the level project that applies to a specific project to ensure quality.

Due to the importance of COTS components Ayala [20] establishes a process to select software
components. It was based on observations and interviews with developers of COTS-based
components. The study concludes with varying results. One of the findings was discovering the
use of informal procedures to find, evaluate and choose components, and hence there exists the
need for methods to do components selection and support tools to help in the evaluation.

Some companies have also developed their own quality models, like the FURPS model [9]
already mentioned and set by Hewlett Packard. A recent work by Samarthyam is the MIDAS
model (Method for Intensive Design assessments) [21] established by the company Siemens that
is used for the design of software products in the industry, energy, Health and Infrastructure. A
description of some particular models used in businesses may be found in Pensionwar [22] and
quality modelling for software product lines in Trendowicz [23].

We notice that many efforts have been done for the development of software product quality
models. Furthermore several authors have done reviews of the literature on quality models and
they included some benchmarking. Among these works we can mention: Al-Badareen in 2011
[24], Dubey in 2012 [25], Al-Qutaish in 2010 [26], Ghayathri in 2013 [27] and Samadhiya in
2013 [28]. All these works refer to the Basic Quality Models. In this work we review the
literature of software product quality models including the Basic Models and the Tailored Models
and based on the ISO 25010 model we perform a comparative evaluation. Finally and because of
the increasing importance we include a review of product-oriented models for Open/Free
Software.

This paper is organized as follows: section 2 describes the methodology used and a common
terminology, shown in Table 1 is established, section 3 describes the Basic Quality Models,
Section 4 describes some Tailored Quality Models according to their relevance, section 5
considers the Free Software oriented models, in Section 6 we make a comparative assessment of
the models and in Section 7 some conclusions are established.

2. Methodology

2.1 Search strategies

Quality models have been found using the search engine Google Scholar, databases Science
Direct, Ebsco, Trove (repository of information of the National Library of Australia) and NDTLD
(Networked Digital Library of Theses and dissertations).

The main keywords used were "quality of software", "models for quality of software",
"Evaluation of the quality of software", "metrics for evaluation of software”, “general quality
software product models” , “models for COTS components", “Models for free/open source
quality”, “Tailored quality models”. The articles were classified according to the division
established: Basic Quality, Tailored Models and Open Source Models.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

35

2.2 Inclusion and exclusion criteria

The articles were classified according to their relevance preferring those describing models. In the
state of the art articles we found several synonymous terms. Table 1 was constructed, using the
literature review, to clarify the terminology and concepts related to quality. Regarding the
exclusion criteria, the articles oriented to the evaluation of the software building process were set
aside, since the purpose of the article is aimed at quality aspects of finished software products.
The terminology uses mainly the international standards stated American Society for Quality [29]
and in the ISO [5,11,12,13,14].

Table 1 Terminology used.

Terminology Synonyms Definition Reference

Acceptance Is all about the way the product is received in the
user community, as this is largely indicative of the
product’s ability to grow and become a prominent
product

(Duijnhouwe
r 2003)

Accountabilit
y

 The degree to which the actions of an entity can be
traced uniquely to the entity.

(ISO/ IEC
CD 25010
2008)

Accuracy The degree to which the software product provides
the right or specified results with the needed degree
of precision

(ISO/ IEC
CD 25010
2008)

Adaptability Versatility The degree to which the software product can be
adapted for different specified environments
without applying actions or means other than those
provided for this purpose for the software
considered.

(ISO/ IEC
CD 25010
2008)

Affordability How affordable is the component? (Alvaro
2005)

Analyzability The degree to which the software product can be
diagnosed for deficiencies or causes of failures in
the software, or for the parts to be modified to be
identified.

(ISO/ IEC
CD 25010
2008)

Appropriatene
ss

 The degree to which the software product provides
an appropriate set of functions for specified tasks
and user objectives.

(ISO/ IEC
CD 25010
2008)

Appropriatene
ss
recognisabilit
y

Understandabi
lity

The degree to which the software product enables
users to recognize whether the software is
appropriate for their needs

(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)

Attractiveness The degree to which the software product is
attractive to the user..

(ISO/ IEC
CD 25010
2008)

Authenticity The degree to which the identity of a subject or
resource can be proved to be the one claimed

(ISO/ IEC
CD 25010
2008)

Availability The degree to which a software component is
operational and available when required for use.

(Dromey
1995) (ISO/
IEC CD
25010 2008)

Changeability Changeable The degree to which the software product enables a
specified modification to be implemented. The ease

(ISO/ IEC
CD 25010

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

36

with which a software product can be modified 2008)

Co-existence The degree to which the software product can co-
exist with other independent software in a common
environment sharing common resources without
any detrimental impacts

(ISO/ IEC
CD 25010
2008)

Compatibility The ability of two or more software components to
exchange information and/or to perform their
required functions while sharing the same hardware
or software.

(ISO/ IEC
CD 25010
2008)

Confidentialit
y

 The degree to which the software product provides
protection from unauthorized disclosure of data or
information, whether accidental or deliberate.

(ISO/ IEC
CD 25010
2008)

Configurabilit
y

 The ability of the component to configurable. (Alvaro
2005)

Compliance Conformance The degree to which the software product adheres
to standards, conventions, style guides or
regulations relating to a main factor.

(ISO/ IEC
CD 25010
2008)

Correctness The ease with which minor defects can be corrected
between major releases while the application or
component is in use by its users

(Dromey
1995)

Ease of use Usability,
operability

The degree to which the software product makes it
easy for users to operate and control it.

(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)

Efficiency Performance
Efficiency

The degree to which the software product provides
appropriate performance, relative to the amount of
resources used, under stated conditions

(IEEE
1993),
(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)

Fault
Tolerance

 The degree to which the software product can
maintain a specified level of performance in cases
of software faults or of infringement of its specified
interface.

(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)

Flexibility Code possesses the characteristic modifiability to
the extent that it facilitates the incorporation of
changes, once the nature of the desired change has
been determined.

(Ghayathri
2013)

Functionality Functional
suitability

The degree to which the software product provides
functions that meet stated and implied needs when
the software is used under specified conditions

(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)
ASQ

Helpfulness The degree to which the software product provides
help when users need assistance.

(ISO/ IEC
CD 25010
2008)

Installability The degree to which the software product can be
successfully installed and uninstalled in a specified
environment.

(ISO/ IEC
CD 25010
2008)

Integrity The degree to which the accuracy and completeness
of assets are safeguarded.

(ISO/ IEC
CD 25010

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

37

2008)

Interoperabilit
y

Compatibility Attributes of software that bear on its ability to
interact with specified systems.

(ISO/IEC
9126-1
2001), ASQ

Learnability Easy to learn The degree to which the software product enables
users to learn its application.

(ISO/ IEC
CD 25010
2008)

Maintainabilit
y

 The degree to which the software product can be
modified. Modifications may include corrections,
improvements or adaptation of the software to
changes in environment, and in requirements and
functional specifications

(ISO/ IEC
CD 25010
2008) ,
(ISO/IEC
9126-1
2001)

Modifiability Corrections, improvements or adaptations of the
software to changes in environment and in
requirements and functional specifications.

(IEEE 1998)
ASQ

Modification
Stability

 The degree to which the software product can avoid
unexpected effects from modifications of the
software

(ISO/ IEC
CD 25010
2008)

Modularity The degree to which a system or computer program
is composed of discrete components such that a
change to one component has minimal impact on
other components.

(ISO/ IEC
CD 25010
2008)

Non-
repudiation

 The degree to which actions or events can be
proven to have taken place, so that the events or
actions cannot be repudiated later.

(ISO/ IEC
CD 25010
2008)

Performance
efficiency

Performance The degree to which the software product provides
appropriate performance, relative to the amount of
resources used, under stated conditions.

(ISO/ IEC
CD 25010
2008)

Recoverabilit
y

Recovery The degree to which the software product can re-
establish a specified level of performance and
recover the data directly affected in the case of a
failure

(ISO/ IEC
CD 25010
2008)

Reliability The degree to which the software product can
maintain a specified level of performance when
used under specified conditions.

(ISO/IEC
9126-1
2001), (ISO/
IEC CD
25010 2008)

Reusability Adaptability The degree to which an asset can be used in more
than one software system, or in building other
assets

(ISO/ IEC
CD 25010
2008)

Replaceability The degree to which the software product can be
used in place of another specified software product
for the same purpose in the same environment.

(ISO/ IEC
CD 25010
2008)

Resource
utilization

 . The degree to which the software product uses
appropriate amounts and types of resources when
the software performs its function under stated
conditions.

(ISO/ IEC
CD 25010
2008)

Robustnesss The degree to which an executable work product
continues to function properly under abnormal
conditions or circumstances.

(Dromey
1995) (ISO/
IEC CD
25010 2008)

Scalability The ease with which an application or component
can be modified to expand its existing capabilities.
It includes the ability to accommodate major

(Dromey
1995)
(Alvaro

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

38

volumes of data. 2005)

Security The protection of system items from accidental or
malicious access, use, modification, destruction, or
disclosure

(ISO/ IEC
CD 25010
2008)

Supportability Support,
adaptability

The ability to extend the program, adaptability and
serviceability. The ease with which a system can be
installed and the ease with which problems can be
localized.

(Grady
1992).

Self-contained The function that the component performs must be
fully performed within itself.

(Alvaro
2005)

Testability The degree to which the software product enables
modified software to be validated

(ISO/ IEC
CD 25010
2008) ,

Technical
accessibility

 The degree of operability of the software product
for users with specified disabilities.

(ISO/ IEC
CD 25010
2008)

Time
behaviour

 The degree to which the software product provides
appropriate response and processing times and
throughput rates when performing its function,
under stated conditions.

(ISO/ IEC
CD 25010
2008)

Transferabilit
y

Portability The ease with which a system or component can be
transferred from one environment to another
(extend hardware or software environment).

(ISO/ IEC
CD 25010
2008)
,(ISO/IEC
9126-1
2001)

3. Basic quality models

According to their importance and following the timeline of figure 1, the main Basic models are
described in this section. They are characterized because they make global assessments of a

software product.

3.1 Mc Call Model

The Mc Call model established product quality through several features. These were grouped into
three perspectives: Product Review (maintenance, flexibility, and testing), Product Operation
(correct, reliable, efficient, integrity and usability) and Product Transition (portability, reusability
and interoperability). Figure 2 shows the model.

The major contribution of the McCall method was to considerer relationships between quality
characteristics and metrics. This model was used as base for the creation of others quality models
[25].

The main drawback of the Call Mac model is the accuracy in the measurement of quality, as it is
based on responses of Yes or No. Furthermore, the model does not consider the functionality so
that the user's vision is diminished.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Fig

3.2 Boehm Model

Boehm [8] establishes large-scale
model because adds factors at different levels. The high
easiness, reliability and efficiency of use of a software product; b) maintainability that describe
the facilities to modify, the testability and the aspects of understanding; c) portability in the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Figure 2 Mc Call Quality Model – 1977

Figure 3 – Boehm Model -1978

scale characteristics that constitute an improvement over the Mc Call
model because adds factors at different levels. The high-level factors are: a) Utility indicating the
easiness, reliability and efficiency of use of a software product; b) maintainability that describe

facilities to modify, the testability and the aspects of understanding; c) portability in the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

39

that constitute an improvement over the Mc Call
level factors are: a) Utility indicating the

easiness, reliability and efficiency of use of a software product; b) maintainability that describe
facilities to modify, the testability and the aspects of understanding; c) portability in the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

sense of being able to continue being used with a change of environment.
the model.

3.3 Dromey Model

The Dromey model [10] is based on the perspective of product quality. In this way the quality
evaluation for each product is different and a more dynamic evaluation is
states that for a good quality product, all the elements that constitute it
there is no discussion of how this can be done in practice, and this theoretical model is used to
design others more specific models

3.4 FURPS Model

The model categorizes the characteristics as
(NF). The RF are defined by the inputs and outputs expected
grouped as Usability (U), Reliability (R), Performance (P) and product support (S)
shows these characteristics. Its main problem is that some
considered.

3.5 ISO 9126 Model

The ISO 9126 model [5] was based on the McCall and Boehm models. The model has two main
parts consisting of: 1) the attributes of internal and external quality and
attributes.

Internal quality attributes are referred to the system properties that can be evaluated without
executing, while external refers to the system properties that can be a
its execution. These properties are experienced by users when the system is in operation and also
during maintenance.

The quality in use aspects are referred to the effectiveness of the product, productivity, security
offered to the applications and satisfaction of users. Figure 6

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

sense of being able to continue being used with a change of environment. Figure 3 [

is based on the perspective of product quality. In this way the quality
evaluation for each product is different and a more dynamic evaluation is established
states that for a good quality product, all the elements that constitute it, should be
there is no discussion of how this can be done in practice, and this theoretical model is used to

models. Figure 4 shows the model.

Figure 4 Dromey Model

characteristics as Functional Requirements (RF) and non
(NF). The RF are defined by the inputs and outputs expected or Functionality(F) while the NF are
grouped as Usability (U), Reliability (R), Performance (P) and product support (S)
shows these characteristics. Its main problem is that some main features, like portability

was based on the McCall and Boehm models. The model has two main
the attributes of internal and external quality and 2) the quality in use

Internal quality attributes are referred to the system properties that can be evaluated without
executing, while external refers to the system properties that can be assessed by observing during
its execution. These properties are experienced by users when the system is in operation and also

are referred to the effectiveness of the product, productivity, security
o the applications and satisfaction of users. Figure 6 [11,12] shows a view of the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

40

Figure 3 [25] shows

is based on the perspective of product quality. In this way the quality
established. The model

 so. However,
there is no discussion of how this can be done in practice, and this theoretical model is used to

Functional Requirements (RF) and non-functional
(F) while the NF are

grouped as Usability (U), Reliability (R), Performance (P) and product support (S) [9]. Figure 5
like portability, are not

was based on the McCall and Boehm models. The model has two main
the quality in use

Internal quality attributes are referred to the system properties that can be evaluated without
ssessed by observing during

its execution. These properties are experienced by users when the system is in operation and also

are referred to the effectiveness of the product, productivity, security
shows a view of the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

relationship between internal, external and quality in use attributes
model [5,11,13].

Fig.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

relationship between internal, external and quality in use attributes. Figure 7 and 8 illustrates the

Figure 5 FURPS Model

Fig. 6 Quality in the lifecycle ISO 9126

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

41

Figure 7 and 8 illustrates the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

42

The ISO-9126 model has been used as the basis for Tailored Quality Models. One of its features
was to standardize the terminology regarding quality of software.

Figure 7. ISO 9126 Quality Model for external and internal quality

Figure 8. ISO 9126 Quality in use

3.6 ISO 25010Model

This standard emerged in 2007 updating the ISO 9126 model. It is subdivided into 8 sub key
features and characteristics. Constitute a set of standards based on ISO 9126 and one of its main
objectives is to guide in the development of software products with the specification and
evaluation of quality requirements. Figure 9 illustrates the model

This model considers as new characteristics the security and compatibility that groups some of
the former characteristics of portability and those that were not logically part of the transfer from
one environment to another. It uses the term transferability as an extension of portability.
As with the ISO / IEC 9126, this standard maintains the three different views in the study of the
quality of a product, as they were illustrated in Figure 6 [14].

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

43

Figure 9 ISO 25010 Model (ISO/ IEC CD 25010 2007)

4. Tailored Quality Models

From 2001 the development of software was based on components (CBSD). The Non Basic
models Software development concentrated on the use of Commercial Off-The-Shelf
Components (COTS). Figure 10 illustrates the activities of the development of a product based on
COTS available in the market

Figure 10 Activities for the construction of a System using components

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

4.1 Bertoa Model

The Quality Model Bertoa [15]
attributes for the effective evaluation of
companies to build more complex
sense for individual components and is

4.2 GEQUAMO

This model called GEQUAMO (
E.Georgiadou [16] and consists of the
characteristics and is intended to encapsulate
flexible way. In this form the user
reflecting the emphasis (weight)
decomposition of a CASE tool [16]

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

 is based on the ISO 9126 Model [5]. It defines a set of
evaluation of COTS. The COTS are used by software

complex software. The model discriminates those features that make
components and is shown in figure 11.

Figure 11 Bertoa Model

(Generic, Multilayered and Customizable Model), was
consists of the gradual breakdown into sub layers of

to encapsulate the various user requirements in a
the user (end user, developer, and manager) can build their own model

weight) for each attribute and / or requirement. Figure 1
[16].

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

44

a set of quality
. The COTS are used by software development

those features that make

was created by
 features and

in a dynamic and
their own model

Figure 12 shows the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

45

Figure 12 Layer of Characteristics applied to a tool CASE

4.3 Alvaro Model

Alvaro method considers a framework for the certification of software components) in order to
establish the elements of quality components [17,30]. This framework considers four modules: 1)
Model quality components for the purpose of determining the characteristics to be considered, 2)
Framework for technical certification, which determines the techniques that will be used to
evaluate the features provided by the model 3) the certification process that defines a set of
techniques that evaluates and certifies the software components with the aim of establishing a
well-defined component certification standard and 4) the frame containing the metric, which is
responsible for defining a set of metrics evaluating the properties of the components in a
controlled manner. In this article we refer to the quality components model. Figure 13 describes
the model where the introduced sub-features are highlighted in bold.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

4.4 Rawashdeh Model

The Rawashdeh Model [18] has as main objective the needs of

The model focuses on using components COTS and has been influenced by the ISO 9126 and
Dromey models. The model sets out four steps to create a

• Identify a small group of high level quality attributes, then using a top down technique
each attribute is decomposed into a set of subordinate attributes.

• Distinguish between internal
such as specifications or source code, and external system behavior during testing
operations and components.

• Identification of users for each quality attributes.
• Built the new model is with ideas

model.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Figure 13.Alvaro Model

has as main objective the needs of different types of users.

The model focuses on using components COTS and has been influenced by the ISO 9126 and
sets out four steps to create a product quality model [18]

Identify a small group of high level quality attributes, then using a top down technique
each attribute is decomposed into a set of subordinate attributes.
Distinguish between internal and external metrics. Internal measure internal attributes
such as specifications or source code, and external system behavior during testing
operations and components.
Identification of users for each quality attributes.
Built the new model is with ideas of ISO 9126, and Dromey Model Figure 14 shows the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

46

different types of users.

The model focuses on using components COTS and has been influenced by the ISO 9126 and
] that are:

Identify a small group of high level quality attributes, then using a top down technique

and external metrics. Internal measure internal attributes
such as specifications or source code, and external system behavior during testing

Figure 14 shows the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

5. Open Source Models

Actually free Software products have much popularity for the diverse characteristics and
freedoms they offer and because they are used in different contexts. Many of them are directed to
perform the same or similar applications than traditional products. F
Software Operating Systems (such as Linux, Solaris, FreeBSD), middleware
technologies/databases (Apache Web
Firefox, Open Office).

Models for assessing the quality
some particular aspects of Free Software
between models of first and second generation, an ideal model that captures all aspects of quality
in a free software product has not been defined yet

According to [32,33] these models
source. In the next section we describe

5.1 CapGemini Open Source Maturity Model

The model is based on the maturity of the product
These indicators are grouped in
each of the sub indicators is given a
the model.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Figure 14– Rawashdeh Model

Actually free Software products have much popularity for the diverse characteristics and
freedoms they offer and because they are used in different contexts. Many of them are directed to
perform the same or similar applications than traditional products. For example they
Software Operating Systems (such as Linux, Solaris, FreeBSD), middleware
technologies/databases (Apache Web Server, MySQL) and products for the end user (Mozilla

the quality of Free Software products adapt models like ISO-
particular aspects of Free Software. It is noteworthy that although there is a distinction

between models of first and second generation, an ideal model that captures all aspects of quality
a free software product has not been defined yet [31].

models started in 2003 and all of them emphasizes about the open
we describe four models.

CapGemini Open Source Maturity Model

maturity of the product and is set according to maturity
 product and application indicators [34]. For the final evaluation

is given a value between 1 and 5 giving a total score. Figure

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

47

Actually free Software products have much popularity for the diverse characteristics and
freedoms they offer and because they are used in different contexts. Many of them are directed to

y can be Free
Software Operating Systems (such as Linux, Solaris, FreeBSD), middleware

or the end user (Mozilla

-9126, adding
It is noteworthy that although there is a distinction

between models of first and second generation, an ideal model that captures all aspects of quality

and all of them emphasizes about the open

maturity indicators.
For the final evaluation

Figure 15 shows

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Figure 15

5.2 OpenBRR Model

The model is called Business Readiness Rating
and ISO 9126 Models. In this context identifies categories that are important for
software. The model has seven categories and thereby accelerates the evaluation process,
ensuring better choices with a small
granularity and cover aspects that have not been considered at the highest level. The objective
to keep always in a very simple level

5.3 SQO-OSS Model.

This is a hierarchical model that evaluates the source code and the community process allowing
automatic calculation of metrics
model differs from others in the following aspects:

• Focus to the automation
• Is the core of a continuous

collection.
• It does not evaluate functionality

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

Figure 15 Cap Gemini Model for free/ open Software

The model is called Business Readiness Rating framework and was influenced by the CapGemini
and ISO 9126 Models. In this context identifies categories that are important for evaluating open
software. The model has seven categories and thereby accelerates the evaluation process,

a small set [32]. The seven categories can be refined for greater
granularity and cover aspects that have not been considered at the highest level. The objective

simple level [35]. Figure 16 shows the model.

Figure 16 OpenBRR model

is a hierarchical model that evaluates the source code and the community process allowing
 [32]. The model is show in figure 17 and according

model differs from others in the following aspects:

 in contrast of other models that require heavy user interference.
continuous quality monitoring system and allows automatic metrics

functionality.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

48

influenced by the CapGemini
evaluating open

software. The model has seven categories and thereby accelerates the evaluation process,
can be refined for greater

granularity and cover aspects that have not been considered at the highest level. The objective is

is a hierarchical model that evaluates the source code and the community process allowing
and according to [36], the

in contrast of other models that require heavy user interference.
quality monitoring system and allows automatic metrics

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

• It focuses in source code.
• Considers only the community

5.4 QualOSS Model

It is a model that emphasizes three
and 3) Software process characteristics are equally important for the quality of a Free/ Open
source product [33]. The model is shown

The QualOSS model states that quality is highly depending on the context in which it is used an
the purposes that a company or person pursues with it.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

focuses in source code. Source code is the most important part of a software project.
community factors that can be automatically measured.

Figure 17 – SQO- OSS Model

hree aspects: 1) Product characteristics, community characteristics
and 3) Software process characteristics are equally important for the quality of a Free/ Open

The model is shown in figure 18 [31].

Figure 18 – QualOSS Model

model states that quality is highly depending on the context in which it is used an
the purposes that a company or person pursues with it.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

49

important part of a software project.

characteristics
and 3) Software process characteristics are equally important for the quality of a Free/ Open

model states that quality is highly depending on the context in which it is used an

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

50

This model correspond to a second generation of Free/Open source models and where most of the
assessment is highly automated.

6. Model Comparison

Al-Baradeen [24, 37], Al-Qutaish [25], Samarthyam [21] and Ghayathri [27] conducted
comparative studies of Basics Quality Models, reaching different conclusions depending on the as
they consider more important.

Table 2 shows a comparison of the basic models regarding the main characteristics according to
Table 1. We include the ISO 25010 in this evaluation because it contains the last standardized
terminology.

From table 2 we conclude that Model ISO 25010 is the most complete among the Basic Models,
because it covers 26 of the 28 features. Flexibility is related to the manufacturing process [27] and
is considered as an aspect of maintainability. Regarding Human Engineering this is a particular
feature considered only in the Boehm model and has close relation with operability, but this last
concept is wider.

From the table we conclude that reliability is a common feature to all models. The reason is the
close relation with the opinion of users and the success of any product will depend on the fact of
being used or not.

Table 2 was constructed using the sub characteristics of the model. However and because these
features are include in larger characteristic, it is possible that the presence of a feature implies that
other has to be present. For example the transferability is related with some aspects of portability
and adaptability.

Table 2 Comparison of Basic Models

Characteristic McCall Boehm

FUR

PS

Dro-

mey

ISO-

9126

ISO-

25010

Accuracy X X

Adaptability X X

Analyzability X X

Attractiveness X X

Changeability X X

Correctness X X

Efficiency X X X X X

Flexibility X

Functionality X X X X

Human Engineering X

Installability X X

Integrity X X

Interoperability X X

Maintainability X X X X

Maturity X X

Modifiability X

Operability X X

Performance X X X

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

51

Portability X X X X X

Reliability X X X X X X

Resource utilization X X

Reusability X X X

Stability X X

Suitability X X

Supportability X X X

Testability X X X X

Transferability X

Understandability X X X

Usability X X X X X

Comparison among tailored oriented models is more difficult because they use the model in a
particular context. The models can be either product oriented (GECUAMO), or for particular
domains (Bertoa) or adapted from the point of view of a user (Rawashdeh). Table 3 has been
made with almost the same features as the basic models. However it must be noted that the
absence of a feature does not invalidate any model.

 Table 3 Comparison of Tailored Quality Models

Characteristic Bertoa Gecuamo Alvaro Rawashdeh

Accuracy X X X

Adaptability X X

Analyzability
Attractiveness

Changeability X X X

Compliance X X X X

Configurability X

Compatibility X

Correctness X

Efficiency X X
Fault Tolerance X

Flexibility

Functionality X X X X

Human Engineering

Installability

Integrity

Interoperability X X X
Learnability X X X X

Maintainability X X X

Manageability X

Maturity X X X X

Modifiability
Operability X X

Performance
Portability X X

Recoverability X X

Reliability X X X

Replaceability X X

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

52

Resource utilization X X X X

Reusability X X

Scalability X
Stability X

Security X X X

Self Contained X

Suitability X X X

Supportability

Testability X X X X

Time Behavior X X X
Understandability X X X X

Usability X X X X

7. Conclusions

The overall conclusion is that there are very general models for assessing software quality and
hence they are difficult to apply to specific cases. Also there exist tailored quality models whose
range is in small domain, using as starting model the ISO 9126. Models for Free/Open source
emphasize the participation of community members.

Tailored Quality Models originated from the Basic Models basic consider a specific domain and
selects the features and sub features to consider. The model created in this way is for a specific,
particular product or from the point of view of a user domain. Therefore have limitations.

The ISO 9126 model was updated in 2007 by the ISO 25010 that redefines the fundamental
characteristics increasing them from six to eight. In the future the developing of models will have
to consider these characteristics. Future works will have as main reference this model. In the case
of Free Software the aspects of user communities should be considered as a feature of high level
because the level of influence in both the construction and the product acceptance.

In all the models studied none has incorporated the aspect of communication as one of the quality
factors. At the present time, there is a need for quality components for communications at all
levels and especially in complex systems, where it becomes a critical factor because of the
Internet.

Finally, we note that in most of the studied models the factors and criteria have the same value
which is relative because it depends of the application domain. For example aspects of
transferability can be crucial in software that is installed on different machines.

References

[1] Côte M & Suryn W & Georgiadou E. (2007).) “In search for a widely applicable and accepted

software quality model for software quality engineering paper,” Software Quality Journal, 15, 401–
416

[2] IEEE. (1990). IEEE Std 610.12-1990 (1990)- “IEEE Standard Glossary of Software Engineering
Terminology,”
http://web.ecs.baylor.edu/faculty/grabow/Fall2013/csi3374/secure/Standards/IEEE610.12.pdf

[3] IEEE. (1998). Standard for Software Maintenance, Software Engineering Standards Subcommittee of
the IEEE Computer Society.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

53

[4] Xu Lai & Sjaak Brinkkemper. (2007). “Concepts of Product Software: Paving the Road for Urgently
Needed Research,” Technical report, Institute of Information and Computing Sciences, Utrecht
University, The Netherlands. European Journal of Information Systems 16, 531–541.

[5] ISO/IEC IS 9126-1. (2001). Software Engineering - Product Quality – Part 1: Quality Model.
International Organization for Standarization, Geneva, Switzerland.

[6] Thapar SS & Singh P & Rani S. (2012). “Challenges to the Development of Standard Software
Quality Model,” International Journal of Computer Applications (0975 – 8887) Volume 49– No.10,
pp 1-7.

[7] Mc Call, J. A. &, Richards, P. K. & Walters, G. F. (1977). Factors in Software Quality, Volumes I,
II, and III. US Rome Air Development Center Reports, US Department of Commerce, USA.

[8] Boehm, B. W., Brown, H., Lipow,M. (1978) “Quantitative Evaluation of Software Quality,” TRW
Systems and Energy Group, 1978

[9] Grady, R. B. (1992). Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, Englewood Cliffs, NJ, USA

[10] Dromey, R. G. (1995). “A model for software product quality,” IEEE Transactions on Software
Engineering, 21:146-162

[11] ISO/IEC TR 9126-2. (2003). Software Engineering - Product Quality - Part 2: External Metrics.
International Organization for Standardization, Geneva, Switzerland.

[12] ISO/IEC TR 9126-3. (2003): Software Engineering - Product Quality - Part 3: Internal Metrics,
International Organization for Standardization, Geneva, Switzerland.

[13] ISO/IEC TR 9126-4. (2004): Software Engineering - Product Quality - Part 4: Quality in Use
Metrics. International Organization for Standardization, Geneva, Switzerland.

[14] ISO/ IEC CD 25010. (2008). Software Engineering: Software Product Quality Requirements and
Evaluation (SQuaRE) Quality Model and guide. International Organization for Standardization,
Geneva, Switzerland.

[15] Bertoa, M & Vallecillo A. (2002). “Quality Attributes for COTS Components,” I+D Computación,
Vol 1, Nro 2, 128-144.

[16] Georgiadoui, Elli “GEQUAMO-A Generic, Multilayered, Customizable Software Quality model,”
Software Quality Journal, 11, 4, 313-323. DOI=10.1023/A:1025817312035

[17] Alvaro A & Almeida E.S. & Meira S.R.L. (2005). “Towards a Software Component Quality Model,”
Submitted to the 5th International Conference on Quality Software (QSIC).

[18] Rawashdeh A, & Matalkah Bassem. (2006). “A New Software Quality Model for Evaluating COTS
Components,” Journal of Computer Science 2 (4): 373-381, 2006

[19] Klas Michael & Constanza Lampasona & Jurgen Munch. (2011). “Adapting Software Quality
Models: Practical Challenges, Approach, and First Empirical Results,” 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, 978-0-7695-4488-5/11, IEEE pp.
341-348

[20] Ayala Claudia & Hauge, Øyvind & Conradi Reidar & Franch Xavier & Li Jingyue. (2010).
“Selection of third party software in Off-The-Shelf-based software development—An interview study
with industrial practitioners,” The Journal of Systems and Software, pp 24-36

[21] Samarthyam G & Suryanarayana G & Sharma T, Gupta S. (2013). “MIDAS: A Design Quality
Assessment Method for Industrial Software,” Software Engineering in Practice, ICSE 2013, San
Francisco, CA, USA, pp 911-920

[22] Pensionwar Rutuja K & Mishra Anilkumar & Singh Latika. (2013). “A Systematic Study Of Software
Quality – The Objective Of Many Organizations, ” International Journal of Engineering Research &
Technology (IJERT), Vol. 2 Issue 5.

[23] Trendowicz, A & Punter, T. (2003) “Quality modeling for software product lines,” Proceedings of the
7th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering,
QAOOSE, Darmstadt, Germany

[24] Al-Badareen Anas Bassam. (2011). “Software Quality Evaluation: User’s View,” International
Journal of Applied Mathematics and Informatics, Issue 3, Volume 5, pp 200-207.

[25] Dubey, S.K & Soumi Ghosh & Ajay Rana. (2012). “Comparison of Software Quality Models: An
Analytical Approach,” International Journal of Emerging Technology and Advanced Engineering,
Volume 2, Issue 2, pp 111-119

[26] Al-Qutaish, Rafa E. (2010). “Quality Models in Software Engineering Literature: An Analytical and
Comparative Study,” Journal of American Science, Vol. 6(3), 166- 175.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014

54

[27] Ghayathri J & Priya E. M. (2013) “Software Quality Models: A Comparative Study,” International
Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)
,Volume 2, Issue 1, pp 42-51.

[28] Samadhiya Durgesh & Wang Su-Hua & Chen Dengjie.(2010), “Quality Models: Role and Value in
Software Engineering,” 2nd International Conference on Software Technology and
Engineering(ICSTE). Pp 320-324.

[29] ASQ (2007). American Society for Quality. Glossary. http://www.asq.org/glossary/q.html , jan 2007.
[30] Alvaro A. &. Almeida E.S & Meira. S.R.L (2010). “A Software Component Quality Framework,”

ACM SIGSOFT SEN 35, 1 (Mar. 2010), 1-4.
[31] Glott R. & Arne-Kristian Groven & Kirsten Haaland & Anna Tannenberg. (2010). “Quality models

for Free/Libre Open Source Software– towards the “Silver Bullet”?,” EUROMICRO Conference on
Software Engineering and Advanced Applications IEEE Computer Society, 439-446.

[32] Adewumi Adewole, Sanjay Misra and Nicholas Omoregbe. (2013). “A Review of Models for
Evaluating Quality in Open Source Software,” 2013 International Conference on Electronic
Engineering and Computer Science, IERI Procedia 4, 88 – 92.

[33] Haaland K & Groven AK & Regnesentral N & Glott R & Tannenberg A. (2010). “Free/Libre Open
Source Quality Models-a comparisonbetween two approaches,” 4th FLOS International Workshop on
Free/Libre/Open Source Software, pp. 1-17.

[34] Duijnhouwer FW & Widdows. (2003). “C. Open Source Maturity Model, ”. Capgemini Expert Letter.
[35] Wasserman AI & Pal M & Chan C. (2006). “Business Readiness Rating for Open Source,”

Proceedings of the EFOSS Workshop, Como, Italy.
[36] Samoladas I & Gousios G & Spinellis D & Stamelos I. (2008). “The SQO-OSS quality model:

measurement based open source software evaluation,” Open source development, communities and
quality. 237-248.

[37] AL-Badareen Anas Bassam & Mohd Hasan Selamat & Marzanah A. Jabar & Jamilah Din & Sherzod
Turaev. (2011). “Software Quality Models: A Comparative Study”, J.M. Zain et al. (Eds.): ICSECS
2011, Part I, CCIS 179, pp. 46–55. © Springer-Verlag Berlin Heidelberg.

