
International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

DOI : 10.5121/ijsea.2015.6105 51

AN EMPIRICAL EVALUATION OF IMPACT OF

REFACTORING ON INTERNAL AND EXTERNAL

MEASURES OF CODE QUALITY

S.H. Kannangara

1
 and W.M.J.I. Wijayanayake

2

1
School of Computing, National School of Business Management, Sri Lanka
2
Department of Industrial Management, University of Kelaniya, Sri Lanka

ABSTRACT

Refactoring is the process of improving the design of existing code by changing its internal structure

without affecting its external behaviour, with the main aims of improving the quality of software product.

Therefore, there is a belief that refactoring improves quality factors such as understandability, flexibility,

and reusability. However, there is limited empirical evidence to support such assumptions.

The objective of this study is to validate/invalidate the claims that refactoring improves software quality.

The impact of selected refactoring techniques was assessed using both external and internal measures. Ten

refactoring techniques were evaluated through experiments to assess external measures: Resource

Utilization, Time Behaviour, Changeability and Analysability which are ISO external quality factors and

five internal measures: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class

Coupling and Lines of Code.

The result of external measures did not show any improvements in code quality after the refactoring

treatment. However, from internal measures, maintainability index indicated an improvement in code

quality of refactored code than non-refactored code and other internal measures did not indicate any

positive effect on refactored code.

KEYWORDS

Refactoring, Software Maintenance, ISO 9126, Software Quality, Code Metrics.

1. INTRODUCTION

Any useful software system requires constant evolution and changes to meet the ever-changing

user needs in a real-world environment. Therefore, the intrinsic property of software system is its

need to evolve. As the software system is enhanced, modified and adapted to new requirements,

the code become more complex and drifts away from its original design. Because of this, the

major part of total software development cost is devoted to software maintenance. Maintenance

of software is reported as a serious cost factor [1] and as stated in [2], over 90% of the software

development cost is for software maintenance.

While a software system is evolving, maintaining the software quality is one of the vital factors in

software maintenance process. The reason is, quality software are robust, reliable and easy to

maintain, and therefore, reduce the cost of software maintenance [3]. Software quality can be

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

52

described as the conformance to functional requirements and non-functional requirements, which

are related to characteristics described in the ISO-9126 standard namely reliability, usability,

efficiency, maintainability and portability [4]. In addition, factors that affect software quality can

be classified into two groups [5]: factors that can be directly measured i.e. internal quality

attributes (e.g. Coupling, Cohesion, LOC and etc.) and factors that can be measured only

indirectly i.e. external quality attributes (e.g. understandability, analyzability and etc.).

Software maintenance best practices are arising with the purpose of a better evolution of software

while preserving the quality of software systems. Thus, the one solution proposed to reduce the

software maintenance effort while maintaining the software quality is software refactoring

(Fowler, 2000), which is a method of continuous restructure of code according to implicit micro

design rules. According to the Fowler’s definition (Fowler, 2000), refactoring is the change made

to the internal structure of the software system by removing bad smells or problematic places in

the source code to make it easier to understand and cheaper to modify without changing its

observable behavior.

Although, the refactoring is by definition supposed to improve the maintainability of a software

product, its effect on other quality aspects is unclear. Therefore, there are hot and controversial

issues in refactoring. As stated by Mens and Tourwé [1], refactoring is assumed to be positively

affect non-functional aspects, like extensibility, modularity, reusability, complexity,

maintainability, and efficiency. Bios and Mens (2003) performed a return on investment analysis

in an open source project, in order to estimate savings in effort, given a specific code change.

They found that most of the time, refactoring has beneficial impacts on maintenance activities,

and thus are motivated from an economical perspective. However, additional negative aspects of

refactoring are reported too [1]. They consist of additional memory consumption, higher power

consumption, longer execution time, and lower suitability for safety critical applications.

Several studies have been conducted to evaluate the impact of refactoring of software quality ([7];

[8]). Even though those studies claim that refactoring improves the quality of software, most of

them did not provide any quantitative evidence. Therefore, the empirical evidence of the effect of

refactoring is rare to be found [9]. As mentioned in [10] ‘effect of a refactoring on the software

quality’ is one of the open issues that remain to be solved.

Altogether, the real advantages of refactoring are still to be fully assessed. Regarding the quality,

it appears to be a convergence of positive remarks, still, without solid quantification. In addition

there are few quantitative evaluations of impact of each refactoring techniques to the software

quality. It is sometimes difficult to judge whether the refactoring in question should be applied or

not without knowing the effect accurately. Especially in software development industry, from the

viewpoint of project managers, it is imperative to evaluate quantitatively the effect of refactoring

on program before applying it. Without knowing which refactoring technique will be more

beneficial in terms of quality, managers cannot judge whether they should go for refactoring or

not because they have to be cost sensitive. Therefore, there is a need of a study which can

evaluate quantitatively the impact of each refactoring technique on quality of code. The objective

of this study is to evaluate the effect of refactoring on code quality improvement in order to

decide whether the cost and the time put into refactoring are worthwhile.

The reminder of this paper structured as follows: Section 2 provides a summary of relevant

literature along with comprehensive review of relevant work. Research methodology used for the

research is described in Section 3. Section 4 provides experimental design for the evaluation of

impact of refactoring using external measures and the measurement procedure used for the

analysis of the impact of refactoring using internal measures. Analysis of research findings is

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

53

presented in section 5 and 6 for external measures and internal measures respectively. Finally, the

section 7 provides the discussion of results and section 8 provides the conclusions and

suggestions for future research that can be pursued in this area.

2. RELATED WORK

A growing number of studies address the relationship between refactoring and the internal

structure of source code and its impact on program understanding, software quality, and the

evolution of a software design.

Studies which have evaluated the impact of refactoring on software quality can be categorized

into three main categories according to the focused quality factors: internal quality factors,

external quality factors and combination of both quality factors.

Even though some of those studies claim that refactoring improves the quality of software, most

of them did not provide quantitative evidence. Few researches quantitatively evaluated whether

refactoring indeed improves quality (ex. [7]; [8]).

Among them, significant number of studies evaluated quantitatively the impact of refactoring

using internal quality attributes. Bois and Mens [6] proposed a technique using metrics to analyse

the refactoring impact on internal quality metrics as indicators of quality factors. They proposed

formalism based on abstract syntax tree representation of the source-code, extended with cross-

references to describe the impact of refactoring on internal program quality. They focused on

three refactoring methods: “Encapsulate Filed”, “Pull up Method” and “Extract Method”.

However, they did not provide any experimental validation. Finally, the results of their work

showed both positive and negative impacts on the studied measures. Stroggylos and Spinellis [10]

analyzed source code version control system logs of four popular open source software systems to

detect changes marked as refactoring and examine their effects on software metrics. They finally

came up with a conclusion that refactoring does not improve quality of a system in a measurable

way. Bois et al. [11] developed practical guidelines in order to applying to refactoring methods to

improve coupling and cohesion characteristics and validated these guidelines on an open source

software system. There were only five refactoring techniques under study: Extract Method, Move

Method, Replace Method with Method Object, Replace Data Value with Object, and Extract

Class. They assumed that coupling and cohesion are internal quality attributes which are

generally recognized as indicators for software maintainability. At the end they came up with

results that the effect of refactoring on coupling and cohesion measures can be ranged from

negative to positive. Kannangara and Wijayanayake [12] evaluated both overall and individual

impact of selected refactoring techniques. Ten refactoring techniques were evaluated by them

through experiments and assessed five internal measures: Maintainability Index, Cyclomatic

Complexity, Depth of Inheritance, Class Coupling and Lines of Code. They used source codes

developed using C#.net and internal measures were extracted through Visual Studio IDE.

According to their findings, only maintainability index indicated an improvement in code quality

of refactored code than non-refactored code and other internal measures did not indicate any

positive effect on refactored code.

Few other studies took the approach of assessing the refactoring effects on external software

quality attributes. Geppert et al. [13] empirically investigated the impact of refactoring on

changeability. This study found that the customer reported defect rates and change effort

decreased in the post-refactoring releases. The effect of refactoring on maintainability and

modifiability was investigated by Wilking et al. [8] through an empirical evaluation.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

54

Maintainability was tested by randomly inserted defects into the code and measuring the time

needed to fix them. Modifiability was tested by adding new requirements and measuring the time

and Line of Code (LOC) metric needed to implement them. Their findings on maintainability test

show a slight advantage for refactoring and Modifiability test shows disadvantage for refactoring.

Kannangara and Wijayanayake [14] evaluated ten refactoring techniques separately using four

external quality factors. Outcome of their study indicates that there is no quality improvement in

most of the refactoring techniques that they have tested.

Other remaining studies used the approach of assessing the impact of refactoring on internal

attributes as indicators of external software attributes. To do so, they defined and relied on

relationships between internal and external attributes defined by different authors (ex. [16]).

Kataoka et al. [7] proposed coupling metrics as a quantitative evaluation method to measure the

effect of refactoring on program maintainability. For the purpose of validation they analyzed a

C++ program for two refactoring techniques: Extract Method and Extract Class which developed

by a single developer, however did not provide any information on the development environment.

Thus, it is questionable if their findings are valid in a different context where development teams

follow a structured process and use common software engineering practices for knowledge

sharing. Moser et al. [17] proposed a methodology to assess whether the refactoring improves

reusability and promotes ad-hoc reuse in an Extreme Programming (XP)-like development

environment. They focused on internal software metrics that are considered to be relevant to

reusability based on metric interpretation of Dandashi and Rine’s (2002) work. They came up

with a conclusion that refactoring has a positive effect on reusability. The impact of refactoring

on development productivity and internal code quality attributes was analyzed by Moser et al.

[17]. A case study has been conducted to assess the impact of refactoring in a close-to industrial

environment and the collected measures were Effort (hour), and Productivity (LOC). Results

indicate that refactoring not only increases aspects of software quality, but also improves

productivity. Alshayeb [3] quantitatively assessed the effect of refactoring on different external

quality attributes: Adaptability, Maintainability, Understandability, Reusability, and Testability

using software matrices based on metric interpretation of [16]. However, this study didn’t prove

that refactoring improves external quality of the software. Shatnawi and Li [18] studied the effect

of software refactoring on software quality. They have conducted the study on a larger number of

refactoring techniques (43 refactoring) and measured four external quality factors indirectly using

nine different internal software quality measures based on Quality Model for Object Oriented

Design (QMOOD). They had provided details of findings as heuristics that can help software

developers make to more informed decisions about what refactoring techniques to perform in

regard to improve a particular quality factor. They have validated the proposed heuristics in an

empirical setting on two open-source systems. They found that the majority of refactoring

heuristics do improve the quality; however some heuristics do not have a positive impact on all

software quality factors.

Several concerns in those studies are:

• All of these previous studies did not come up with the same conclusions regarding the

impact of refactoring. Therefore, there is a need of analyzing the impact of

refactoring further.

• Most of the studies which evaluated external quality factors did it by using internal

quality factors and majority of them have used quality models. Therefore, their

research findings totally depend on the validity of those quality models.

• Those who evaluated external quality factors only focused on one or two external quality

factors. None of them have focused on ISO quality factors or other accepted quality

model for selecting quality factors.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

55

• Most of them didn’t measure both internal and external measures separately in their

studies.

• Except one study [18] all the other studies used less number of refactoring techniques for

their evaluation. Most of them did not provide any valid justification when selecting

refactoring techniques for their study.

To overcome above issues, this study was designed using ten refactoring techniques and focused

on both external and internal quality factors.

3. METHODOLOGY

After reviewing relevant literature, the main objectives of this study was defined to quantitatively

assess the effect of refactoring on code quality using different external and internal measures

separately in order to decide whether the cost and the time put into refactoring are worthwhile.

To achieve above objective, study was carried out separately using two measurements: external

measurements and internal measurements. Selection of both measures is mostly influenced by

previous related studies. Most of previous studies either measured internal or external measures

and some of them interpreted external measures by using internal measures. Therefore, this study

mainly focuses on measuring both measures separately in order to assess the impact of refactoring

on code quality. As external measurements, external quality factors have been used and as

internal measurements, code metrics have been used.

Furthermore, quantitative research approach was selected for this study. As the experiential

evidence of the effect of refactoring is rarer to be found and those experiments were ended up

with mixed picture of refactoring, experimental research approach is selected to quantitatively

access the impact of refactoring on code quality. Only one previous study [8] was used

experimental research approach to evaluate the impact of refactoring on quality factors. They

were not able to prove refactoring improves code quality. Hence, that become a good reason for

the selection of experimental research approach.

When measuring both external and internal measures, same refactored and non-refactored source

codes were used and the outcomes were analysed.

3.1. Selected Refactoring Techniques

Fowler (2000) proposed 72 refactoring techniques in his catalogue of refactoring. Among the

studies which have evaluated the impact of refactoring, the most recent study [18] present

evaluation of 43 refactoring techniques among 72 refactoring techniques in Fowler’s (2000)

catalogue. Evaluated refactoring techniques were ranked according to the impact of code quality.

Therefore, for this study, ten refactoring techniques were selected from Shatnawi and Li‘s [18]

study which were ranked as having a high impact.

Selected Refactoring Techniques are:

R1- Introduce Local Extension

R2- Duplicate Observed Data

R3- Replace Type Code with Subclasses

R4- Replace Type Code with State/Strategy

R5- Replace Conditional with Polymorphism

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

56

R6- Introduce Null Object

R7- Extract Subclass

R8- Extract Interface

R9- Form Template Method

R10- Push Down Method

3.2. Selection of Source Code Development Environment and Source Code

Refactoring is a technique which is mainly related to object oriented programming. Therefore, the

selection of development environment and programming language was done mainly based on the

above reason.

Java, C# and C++ are some of the most popular object oriented programming languages which

are being used in the current IT industry. Among those, Java and C++ are the commonly used

programming languages in previous studies which evaluated the impact of refactoring on code

quality improvement ([7]; [18]).

Therefore, C# was selected as the programming language and Visual Studio as the development

tool for this study.

In order to apply 10 refactoring techniques a small scale project with bad smells was selected as

the source code. The selected application was a system which was implemented in the

Department of Industrial Management, University of Kelaniya and used by academic staff at the

department to schedule their personal and professional events and to manage their online

documents repository. The source code contained around 4500 lines of codes. The relevant bad

smells were identified and all the selected refactoring techniques were applied to the source code.

3.3. Selected External Measures

Most of the previous studies claimed that refactoring improves the software quality. Software

quality is a general term and it can define with several quality attributes. Thus, all of those

arguments should be valid with any software quality attribute.

This study was designed to validate those arguments and several software quality attributes were

selected from ISO quality model [4]. The reason for selecting ISO quality model was that as

stated in [19], it is the most useful one since it has been built based on an international consensus

and agreement from all the country members of the ISO organization. Following are the external

quality attributes which were used for this study:

(1) Maintainability: A set of attributes that bears the effort needed to make specified

modifications [4]. Following sub characteristics were tested in this study.

a. Analysability

b. Changeability

(2) Efficiency: Efficiency is a set of attributes that bear on the relationship between the level

of performance of the software and the number of resources used, under stated

conditions [4]. Following sub characteristic were tested in this study.

a. Resource Utilization

b. Time behaviour

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

57

3.4. Selected Internal Measures

Code metrics have been selected as internal measures to judge the impact of refactoring on code

quality. As this study is strived to measure the maintainability of software, metrics which can

measure maintainability and complexity of code is considered as main selection criteria for the

selection of internal measures. Therefore, the selected code metrics were [23],

(1) Maintainability Index

(2) Cyclomatic Complexity

(3) Depth of Inheritance

(4) Class Coupling

(5) Line of Code

It can be validated/invalidated the assumption that refactoring improves code quality by

comparing values which obtained from above metrics.

4. EXPERIMENTAL DESIGN

4.1. Design of Experiment for External Measures

An experiment was carried out to evaluate the impact of refactoring using external measures. The

experiment consist of a group of participants with the same application developed using C#.net.

One group was assigned refactored code with selected refactoring technique/s while the rest was

assigned source code without refactoring. The assignment to a treatment and control groups were

done at random.

As subjects was randomly assigned to two groups and one group received an experimental

treatment while the other group(the control group) received no treatment, experimental design

type was selected as two group post-test-only randomized experiment.

4.1.1. Sample Selection

The major skill required with participants was their programming skill. Therefore, the selection

criterion of target population was programming skills. Current undergraduates and recently

graduated students of University of Kelaniya were selected as the population for experimental

sample selection.

The sample selection procedure was carried out based on two criteria. Those are,

• Based on semester examination results for programming related subjects

• Based on survey done in order to identify student’s familiarity of C#.Net and Object

Oriented Concepts: Online questionnaire was designed to gather responses.

After collecting both data, students’ results and responses were scaled to ten. Average values for

each student was calculated and ranked them based on average value. Then the selection of

students for the experiment was done according to their rank starting from top ranks.

For the experiment or to analyse all the selected refactoring techniques together, size of the group

was decided as 10 members per one group. Due to availability of limited resources at

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

58

Undergraduate laboratories and controlling of large groups is not possible with available human

resources, group number was limited to 10.

4.1.2. Variables and Measurements

Independent Variables:

The independent variable for this experiment is the treatment which is a single, dichotomous

factor. Either a participant is assigned to a group which uses a refactored code or to a group which

uses a code without refactoring, in order to rule out the placebo effect which is known as a

phenomenon which may result in some therapeutic effect if subjects is given control [23].

Dependent Variables:

Dependent variables for this experiment are,

• Marks obtained for question paper

• Time need to fix bugs

• Execution Time

• Memory Consumption

4.1.3. Research Hypothesis

This study was aimed at presenting evidence that would allow rejecting (or accepting) the

following four hypotheses:

Analysability

H0A: Analysability of refactored code is lower than un-refactored code.

H1A: Analysability of refactored code is higher than un-refactored code.

Changeability

H0B: Changeability of refactored code is difficult than un-refactored code.

H1B: Changeability of refactored code is easier than un-refactored code.

Time Behaviour

H0C: Response time of refactored code is longer than un-refactored code.

H1C: Response time of refactored code is shorter than un-refactored code.

Resource Utilization

H0D: Efficient utilization of computer Resources is lower for refactored code than un-refactored

code.

H1D: Efficient utilization of computer Resources is higher r for refactored code than un-

refactored code.

4.1.4. General Procedure

The first step of each experiment was done with controlled and experimental groups. The second

step for each experiment was carried out in a software testing environment, to collect resource

utilization and time behaviour measures.

Step 1:

The execution of the experiment was started with an oral presentation by introducing application

which is being used for the experiment, the experimental environment with procedure, and the

general conditions of the experiment.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

59

After that, an initial test was carried out to assess the impact of refactoring on code analysability.

Initially five minutes were provided to both groups to be familiar with source code. One group

was a control group which was assigned to un-refactored code and the other group was an

experimental group which was assigned to a refactored code. After that a question paper which

contained multiple choice questions and short answer questions related to source code was

distributed to participants and 30 minutes were provided to answer questions by referring the

code. At the end of the experiment, question papers were evaluated and marks were recorded for

the analysis.

To analyse the impact of refactoring on changeability next experiment was carried out. Source

codes with randomly inserted bugs were provided to both experimental and controlled groups.

Error descriptions were provided for semantic errors. Participants were worked on fixing bugs

and 90 minutes of time frame was provided. Time used to fix bugs was recorded for analysis.

Step 2:

In order to measure resource utilization; memory consumption of software application to execute

one selected part from the application was measured and to measure time behaviour, the selected

part execution time was measured [4]. When selecting a part from the application, a piece of code

which is mostly affected by applied refactoring techniques was selected. Programs were modified

to execute automatically 1000 times to collect accurate figures related to execution time and

memory consumption during the selected task execution.

4.2. Design of experiment for internal measures

As mentioned earlier Visual Studio was selected as the extraction tool for internal measures. To

measure the impact of refactoring the same original and refactored source codes which used for

previous experiment were used. Internal measures were generated for both source codes and

recorded for further analysis.

5. ANALYSIS OF DATA – EXTERNAL MEASURES

As the research is quantitative and involves ratio data, parametric statistical test was used for

hypothesis testing.

5.1. Data Analysis for Analysability

Analysability was measured by using marks obtained by each group member for the given

question paper. Same question paper which contained 15 multiple choice and short answer

questions was distributed to both controlled and experimental groups. The time duration for

question paper was 30 minutes and 1 mark was given to each correct answer. For short answer

questions also there was only single correct answer. Therefore, if that answer was there 1 mark

was given and otherwise 0 marks. Hypothesis which was tested for Analyzability is that

“analysability of refactored code is higher than non-refactored code”. Table 1 summarized results

of hypothesis testing.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

60

Table 1 Hypothesis test results for Analyzability

Level of Significance 0.05

Controlled Group

Sample Size 10

Sample Mean 7.1

Sample Standard Deviation 3.6

Experimental Group

Sample Size 9

Sample Mean 6.63

Sample Standard Deviation 2.13

t Test Statistic 0.344524

p-Value 0.466775

Do not reject the null hypothesis

The assumption of better analysability cannot be answered according to hypothesis test results;

because there is insufficient statistical evidence to claim marks obtained by experimental group is

higher than control group. In fact it is lesser in experimental group. Therefore it can be stated that

refactoring does not significantly affect analysability of code of small scale system.

5.2. Data Analysis for Changeability

The measurement of changeability, which consisted of a random insertion of two non-syntactical

errors and one new requirement was measured by using time needed to fix bugs in minutes.

Hypothesis which was tested under Changeability is that “changeability of refactored code is

easier than non-refactored code”. Table 2 summarized results of hypothesis testing.

Table 2 Hypothesis Test Results for Changeability

Level of Significance 0.05

Controlled Group

Sample Size 10

Sample Mean 59

Sample Standard Deviation 26.27

Experimental Group

Sample Size 10

Sample Mean 77

Sample Standard Deviation 27.72

t Test Statistic -1.57325

p-Value 0.933464

Do not reject the null hypothesis

The assumption of better changeability thus cannot be answered according to hypothesis testing;

because, there is insufficient statistical evidence to claim a time spent by experimental group is

less than control group. Therefore, it can be stated that refactoring does not significantly affect

changeability of code of small scale application.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

61

5.3. Data Analysis of Time Behaviour

The measurement of time behaviour was measured by recording task execution time. Piece of

code which is highly affected by refactoring treatment was selected and the task which is related

to that code segment was selected for testing. Both pre and post refactored programs were

modified to execute 1000 times automatically. Results were recorded in milliseconds. Outliers

were detected from 1000 sample size from both samples. A hypothesis which was tested for Time

Behaviour is that “response time of refactored code is less than non-refactored code”. Table 3

summarized results of hypothesis testing.

Table 3 Hypothesis Test Results for Time Behavior

Level of Significance 0.05

Original Code

Sample Size 994

Sample Mean 61.18

Population Standard Deviation 21.22

Refactored Code

Sample Size 985

Sample Mean 75.71

Population Standard Deviation 20

Z-Test Statistic -15.7109

p-Value 1

Do not reject the null hypothesis

The assumption of better time behaviour of refactored code thus cannot be answered according to

hypothesis testing; because, there is insufficient statistical evidence to claim that task execution

time for refactored code is less than code without refactoring. Therefore, the conclusion of better

time behaviour is not facilitated by refactoring for small scale applications.

5.4. Data Analysis for Resource Utilization

Resource utilization was measured by using memory consumption of program while it is

executing. Piece of code which is highly affected by refactoring treatment was selected and the

task which is related to that code segment was selected for testing. Both pre and post refactored

programs were changed to execute 1000 time automatically. Results were recorded in bytes.

Outliers were detected from 1000 sample size from both samples. A hypothesis which was tested

for Resource Utilization is “efficient utilization of computer Resources is higher for refactored

code than non-refactored code”. Table 4 summarized results of hypothesis testing.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

62

Table 4 Hypotheses Testing results for Resource Utilization – Memory Consumption

Level of Significance 0.05

Original Code

Sample Size 1000

Sample Mean 370970.4

Population Standard Deviation 159046.9

Refactored Code

Sample Size 1000

Sample Mean 377310.3

Population Standard Deviation 162510.2

Z-Test Statistic -0.88169

p-Value 0.811027

Do not reject the null hypothesis

The assumption of better resource utilization of refactored code thus cannot be answered

according to hypothesis testing; because according to the hypothesis test results, there is

insufficient statistical evidence to claim a minimum memory allocation for refactored code than

code without refactoring. Therefore, the conclusion of better resource utilization is not facilitated

by refactoring in small scale systems.

5.5. Summary of Results

Table 5 shows the summary of hypothesis testing results of the impact of refactoring on code

quality measured by using external measures. In the table symbols are represented as follows.

• Improvement: ‘+’

• Deteriorate: ‘-‘

• No impact: ‘0’

Table 5 Summary of the effect of refactoring on code quality using external measures

Here it can be noticed that none of the external measures show improvements in code quality

when all the selected refactoring techniques are applied together.

6. ANALYSIS OF DATA – INTERNAL MEASURES

Code metrics values were generated from both refactored and non-refactored codes and Table 6

summarized the results with percentage of improvement in code metrics after refactoring code

using all the selected refactoring techniques. When generating results following are the

methods/formulas used by the tool to give the code metrics values [20].

• Maintainability Index = MAX(0,(171 - 5.2 * ln(Halstead Volume) - 0.23 * (Cyclomatic

Complexity) - 16.2 * ln(Lines of Code))*100 / 171)

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

63

• Class Coupling: Measures the coupling to unique classes through parameters, local

variables, return types, method calls, generic or template instantiations, base classes,

interface implementations, fields defined on external types, and attribute decoration.

• Cyclomatic Complexity: Measures the structural complexity of the code by calculating

the number of different code paths in the flow of the program

• Depth of Inheritance: Indicates the number of class definitions that extend to the root of

the class hierarchy.

• Lines of Code – Indicates the approximate number of lines in the code

Table 6 Code Metrics Values for the all the refactoring techniques

Internal Measure Non-refactored Code Refactored Code % Change

Maintainability Index 69 72 4%

Cyclomatic Complexity 1367 1436 -5%

Depth of Inheritance 5 5 0%

Class Coupling 221 237 -7%

Lines of Code 4922 5005 -2%

The higher value for maintainability index (MI) indicates the higher maintainability of the code.

Therefore, as MI for refactored code is higher than non-refactored code, it can be concluded that

refactored codes are maintainable compared to non-refactored code. Cyclomatic complexity, class

coupling and line of code metrics are preferred to have lower values as metrics values for highly

maintainable source codes. However, for refactored codes, values for these metrics are higher

than non-refactored code. Therefore, the refactored code’s maintainability is relatively lower than

non-refactored code when considering cyclomatic complexity, class coupling and line of code

metrics.

Furthermore, high number of deteriorates of quality than the quality improvements can be noticed

in Table 6 according to the percentage change of code metrics values. Therefore, it can be stated

that the impact of refactoring on code quality is not showing positive results on majority of

internal measures.

7. DISCUSSION AND RESEARCH FINDINGS

7.1. Discussion on Impact of Refactoring on Code Quality Using External Measures

Impact of refactoring on code quality improvement using external measures were measured using

four sub quality factors defined in ISO 9126 quality model. Hypothesis test results indicates that

there is deteriorate of code quality in refactored code than non-refactored code. Table 7

summarized the findings of analysis of the impact of refactoring on code quality.

Table 7 Summary of effect of refactoring on external measures

 External Measure No Improvement Improvements

Analysability *

Changeability *

Time Behaviour *

Resource Utilization *

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

64

Therefore, by using overall analysis and analysis of each refactoring technique, it can be

concluded that there is no improvement in code analysability, changeability and time behaviour

after applying ten refactoring techniques which was used for this study.

Among related previous studies, Wilking et al. [8] which is the only study which analysed

external measure similar to this study, did analysis of impact of refactoring on code

maintainability, modifiability and memory consumption. Maintainability and modifiability was

negatively affected by refactoring treatment according to their findings. Those measures are more

similar to external measures: analysability and changeability used in this study. Thus there is

similarity in results of this study and their study for those external measures. However, for

memory consumption Wilking et al. [8] got a positive result which is different than results got

here.

7.2. Discussion on Impact of Refactoring on Code Quality Using Internal Measures

The impact of all the selected 10 refactoring techniques on code quality using internal measures

were measured using five internal measures namely: maintainability index, Cyclomatic

complexity, Depth of Inheritance, Class coupling and Line of Code.

Table 8 summarized the results obtained by comparing values obtained for code metrics from

each refactored and un-refactored codes.

Table 8 Summary of effect of refactoring on internal measures

Internal measures No Improvement Improvements

Maintainability Index *

Cyclomatic Complexity *

Depth of Inheritance *

Class Coupling *

Lines of Code *

Cyclomatic complexity, LOC Depth of Inheritance and class coupling indicates there is no quality

improvement in source code after refactoring. However, the Maintainability Index shows

improvement in code maintainability in refactored code.

The MI is a composite number, based on several unrelated metrics for a software system. It is

based on the Halstead Volume (HV) metric, the Cyclomatic Complexity (CC) metric, the average

number of lines of code per module (LOC), and optionally the percentage of comment lines per

module (COM) [20]. Although MI indicate maintainability is higher for refactored code,

Cyclomatic complexity and LOC metrics which are components of MI indicate maintainability of

refactored code is lower according to the results of this study. As MI is composite number and

there are several arguments about accuracy of MI value [22] , to come up with final conclusion

only raw metrics values such as complexity, LOC, coupling and depth of inheritance can be

considered. Therefore, the final conclusion that can be derived from internal measures is that

there is no quality improvement in source code after refactoring.

Shatnawi and Li [18] did analysis with coupling metric in their study to analyse the impact of

refactoring. For the same 10 refactoring techniques, their study got 30% of improvements in

coupling metrics and 70% of unchanged. Therefore, there is a slight difference in results of their

study and this study. Depth of inheritance also measured in several studies and got negative

results ([10]; [17]) which is different than results of this study. Two studies by Moser et al. [15]

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

65

and Moser et al. [17] measured line of code metrics and got positive result which is also not

compatible with the results of this study.

However, Moser et al. [17] got the same results for complexity metrics as this study. Furthermore,

several other studies also claim that value of Coupling metric is decreased after refactoring ([10];

[15]; [17]).

8. CONCLUSION AND FUTURE WORK

The main objective of this study was to assess the impact of refactoring on code quality in

software maintenance. To achieve that, the research was carried out using two approaches

separately. Firstly, the impact of refactoring was assessed using external measures namely;

analysability, changeability, time behaviour and resource utilization. Then the impact of

refactoring was evaluated using internal measures namely; maintainability index, cyclomatic

complexity, depth of inheritance, class coupling and lines of code. Experimental research

approach was used to measure both measurements and ten selected refactoring techniques were

tested.

According to the experimental results all the external quality factors indicate that there is no

quality improvement after refactoring treatment to the source code. Values for internal measures

were generated from both refactored and un-refactored codes. According to the analysis the

values of Cyclomatic complexity, Class coupling and Line of code metrics indicate that

refactoring does not improve the code quality. According to the results of both experiments using

two types of measurements: internal and external, this study indicate that refactoring does not

improve the code quality.

There are several arguments that may come against this study. The one argument that can come

against the experiment is that expert developers would constitute a much better evaluation. Their

knowledge on better system design might change the experimental results. However as stated by

Höst et al. [24] undergraduate students have comparable assessment ability compared to a

professional software developer. Other one is, the work is limited to the refactoring descriptions

that appear in Fowler’s work and may not apply to variations of these refactorings. Furthermore,

the low number of participants for the experiment which can directly affect the sample size for

the hypothesis testing.

The results of this study indicate that there is further need of addressing the impact of refactoring.

Refactoring techniques used in this study were selected from the ranking done by previous study

[18]. Therefore, in the future it is better to conduct a study to find refactoring techniques which

are commonly used in industry by a survey. Then analyse the impact of those commonly used

refactoring techniques will be more advantageous to the software development industry rather

than selecting refactoring techniques subjectively. Furthermore, it would be better that the same

experimental setup can be executed in industry environment with the industry experts and with

the industry level matured source code.

REFERENCES

[1] Mens T, Tourwé T. A (2004). Survey of software refactoring. IEEE Transactions on Software

Engineering, 30(2), 126–139.

[2] Koskinen J. (2010). Software Maintenance Costs. Jyväskylä: University of Jyväskylä.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

66

[3] Alshayeb M. (2009). Empirical investigation of refactoring effect on software quality. Information

and Software Technology Journal, 51(9), 1319–1326.

[4] ISO/IEC 9126-1 Standard. (2000).

http://www.cse.unsw.edu.au/~cs3710/PMmaterials/Resources/9126-1%20Standard.pdf. Accessed 10

July 2014.

[5] Pressman R. (2005). Software Engineering: A Practitioner’s Approach, McGraw-Hill. Fowler M,

Beck K, Brant J, Opdyke W, Roberts D. (2000). Refactoring: Improving the Design of Existing Code,

Addison Wesley: Upper Saddle River, NJ, 464.

[6] Bois B.D, Mens T. (2003). Describing the impact of refactoring on internal program quality, In

Proceedings of the 8. International Workshop on Evolution of Large-scale Industrial

Software Applications, Amsterdam, The Netherlands, 37-48.

[7] Kataoka Y, Imai T, Andou H, Fukaya T. A (2002). Quantitative evaluation of maintainability

enhancement by refactoring. In Proceedings of the IEEE International Conference on Software

Maintenance, Montreal, Quebec, Canada.

[8] Wilking D, Khan U, Kowalewski S. (2007). An empirical evaluation of refactoring, e-Informatica

Software Engineering Journal, 1, 27-42.

[9] Mens T, Demeyer S, Bois B D, Stenten H, Gorp P V. (2003). Refactoring: Current Research and

Future Trends. Electronic Notes in Theoretical Computer Science, 80(3).

[10] Stroggylos K, Spinellis D. (2007) Refactoring – does it improve software quality?, In Proceedings of

5th International Workshop on Software Quality (WoSQ’07:ICSE Workshops), 10–16.

[11] Bois B D, Demeyer S, Verelst J. (2004). Refactoring – improving coupling and cohesion of existing

code. In Proceeding of the 11th Working Conference on Reverse Engineering (WCRE’04), 144–151.

[12] S. H. Kannangara and W.M.J.I. Wijayanayake, “Measuring the Impact of Refactoring on Code

Quality Improvement Using Internal Measures”, In Proc. of the International Conference on Business

& Information, Sri Lanka, December 2013.

[13] Geppert B, Mockus A, Robler F. (2005) Refactoring for changeability: a way to go. In Proceeding of

11th IEEE International Software Metrics Symposium (METRICS’05), Como, Italy.

[14] S. H. Kannangara and W.M.J.I. Wijayanayake, “Impact of Refactoring on External Code Quality

Improvement: An Empirical Evaluation”, In Proc. of International Conference on Advances in ICT

for Emerging Regions, Sri Lanka, December 2013.

[15] Moser R, Sillitti A, Abrahamsson P, Succi G. (2006) Does Refactoring Improve Reusability?. In

Proceeding of the 9th International Conference on Software Reuse (ICSR’06), 287–297.

[16] Dandashi F, Rine D C. (2002). A Method for Reusability of Object-Oriented Code Using a Validated

Set of Automated Measurements. In Proceedings of 17th ACM Symposium on Applied Computing

(SAC 2002), Madrid.

[17] Moser R, Abrahamsson P, Pedrycz W, Sillitti A, Succi G. (2007). A case study on the impact of

refactoring on quality and productivity in an agile team. In Proceeding of the Central and East-

European Conference on Software Engineering Techniques, Poznan, Poland.

[18] Shatnawi R, Li W. (2011). An Empirical Assessment of Refactoring Impact on Software Quality

Using a Hierarchical Quality Model, International Journal of Software Engineering and Its

Applications, 5(4).

[19] Al-Qutaish R E. (2010). Quality Models in Software Engineering Literature: An Analytical and

Comparative Study. Journal of American Science, 6(3), 166-175.

[20] Code Metrics Values. http://msdn.microsoft.com/en-us/library/bb385914.aspx. Accessed 30 March

2012.

[21] Donald T C & Julian S (1963), Experimental and Quasi-Experimental Designs for Research, Cengage

Learning

[22] Heitlager I, Kuipers T, Visser J. A. (2007) Practical Model for Measuring Maintainability. In

Proceeding of the 6th International Conference on the Quality of Information and

Communications Technology.

[23] Andersson, M. and Vestergren, P. (2004). Object-Oriented Design Quality Metrics.

[24] Höst, M.B. Regnell, and Wohlin C (2000). Using students as subjects – a comparative study of

students and professionals in lead-time impact assessment. Empirical Software Engineering, 5:201–

214.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

67

Authors

Miss. Sandeepa Harshanganie Kannagara holds a Bachelor’s degree in Management and

Information Technology from the University of Kelaniya with First Class honours. In

addition as a professional qualification she has successfully completed the British Computer

Society (BCS) examinations and she is a Professional Member of BCS. Presently, she is a

Lecturer attached to School of Computing, National School of Business Management, Sri

Lanka. Her research findings are published in the International Journal on Advances in ICT for Emerging

Regions and presented in several international research conferences. Her research interests are Software

Quality, Software Maintenance, Opinion mining and Big Data.

Dr. W M Janaka I Wijayanayake received a PhD in Management Information Systems

from Tokyo Institute of Technology Japan in 2001. He holds a Bachelor’s degree in

Industrial Management from the University of Kelaniya, Sri Lanka and Master’s degree in

Industrial Engineering and Management from Tokyo Institute of Technology. He is currently

a Senior Lecture in Information Technology at the department of Industrial Management,

University of Kelaniya Sri Lanka. He has experience in research and teaching in Information Technology

related subjects at undergraduate level as well as postgraduate level in Sri Lankan universities and foreign

universities. His research findings are published in prestigious journals such as Journal of Information &

Management, Journal of DATABASE, Journal of Business Continuity & Emergency Planning,

International Journal of Business Continuity and Risk Management and many other journals, and presented

in many international academic conferences. His research interests are Data Engineering, Software

Engineering, Business Intelligence, Knowledge Management, and Information System Engineering.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015

68

INTENTIONAL BLANK

