
International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

DOI : 10.5121/ijwest.2011.2205 59

An Adaptive Service Choreography approach
based on Ontology-Driven Policy Refinement

Farhad Mardukhi, Naser NematBaksh and Kamran Zamanifar

Department of Computer Engineering, University of Isfahan, Isfahan

{Mardukhi, Nemat, Zamanifar}@eng.ui.ac.ir

ABSTRACT

Business corporations usually require choreography of services to be dynamic and adaptable. One way

for answering this demand is to develop the services having dynamic behaviours. However, it is not

enough and their behaviours must be composed dynamically too.

The current model such as WS-CDL has a static structure to specify choreography and is not able to

describe the choreography of services in a dynamic fashion. From another view, there are various types

of changes that each needs to be handled diversely. This work is going to bring adaptability into service

choreography model in response to policy changes. Precisely, this target will be met when choreography

model has dynamic structure and also the policy changes can be automatically (semi-automatically)

refined and propagated into the elements of model. Our proposal is describing choreography model on

the basis policy-enabled UML state machine which the policy can be refined through a ontology based

process.

KEYWORDS

Adaptive Systems, Service-Oriented Systems, Choreography, UML Stat Machine, Adaptable

Choreography Mode, Behaviour, Policy refinement.

1. INTRODUCTION

The applications and services needed to be dynamic and adaptable, particularly at the
organizations taking part in inter-organizational corporations. Consequently, there is
increasingly requirement in service oriented applications to make the applications more
dynamic. Adaptation is alternation of a system's behaviour to address arbitrary environment
changes. Separating computation components from interactions and coordination mechanisms,
and also making both components and interactions adaptable are two main methods in general
to cope with the continuing changes in dynamic environments [14].

The current service based collaboration model is not able to tune and configure the services
behaviour to being used as well as. Service behaviour explains how a service interacts with
others? A service with multiple behaviours are those which can play different behaviours when
collaborate with others. For example, a Login service which provides login behaviour both for a
user who has user name and password, and for another who is new. In fact, the services with
multiple behaviours have adaptive behaviours. But, just having services with adaptive
behaviours is not sufficient, but these adaptive behaviours need to be managed dynamically at
runtime.

For managing the behaviours of service dynamically, it is necessary to have an appropriate
adaptable model for specifying a collaboration of services. In current SOA standard, the service
based collaboration is studied through two known concepts: Choreography and Orchestration
[3,18]. Therefore, having adaptable models of both are essential to providing the adaptable

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

60

collaboration of services. This work targets to follow the choreography model since it has not
been regarded in compare with orchestration model so far. Another point is that, for inter-
organizational corporations, the policies are usually being changed which consequently impact
on choreography model, and enforce it to be changed accordingly.

This work studies on an approach to handle automatically the impacts of policy changes on
choreography model. We found that such approach requires at least two essential pre-requites.
First a dynamic choreography model of services which is capable of altering its elements
dynamically without designing the model by hand [21]. Second an approach to impact the
policies on the structure and behaviour of choreography model. Usually the policies is changed
by administrator who specify them at high-level of abstraction. Such policies need to be
decomposed and refined into enforceable policies at a low level of abstraction through a process
namely policy refinement.

The proposed model is policy-enable UML state machine as a dynamic model for describing the
choreography of services [9]. This model is dynamics because it is basically follow the event-
driven paradigm for modelling. A finite number of distributed agents communicate to establish
a choreography model. Each agent executes an UML state machine enriched by policies to
control its behaviour correctly.

The suggested policy refinement process considers the policies into two main types, measurable
QoS-based polices and Immeasurable policies, then presents two mechanisms for decomposing
them. For first type, the aggregated quality function annotated for the choreography model is
decomposed to individual quality measures associated to choreography partners. About the
second type, the policies are decomposed into lower levels on the basis of ontology concept
decomposition.

At the rest of this paper, the second sections overviews the related concepts, then the proposed
dynamic model is described at third section. The policy refinement process is discussed in
section four and finally the

2. DECENTRALIZED SERVICES CHOREOGRAPHY APPROACH

In a service-oriented environment, a number of services are combined to make a composed
service providing more capabilities. There are three main, though overlapping concepts:
Choreography, Behavioural Interface and Orchestration [3,4]. Choreography describes how
several services interact to gain a common goal. Choreography is a description language to
express the interaction protocol among participants to show that all things are go accord to plan
[18]. Based on definition of W3C, behavioural Interface shows how a service behaves in
choreography. In other words, it explains the observable behaviour of a service relate with other
parties which declare the dependencies between its interactions. An Orchestration view
describes how a service manages the internal activities to supply its capabilities [6]. The internal
actions include data transformation and invocation to internal software modules (e.g., legacy
applications). An Orchestration model defines a set of “active rules” are executed to manage the
behaviour of a participant which is described in choreography model.

Most known service specifications like WSCI [15] and BPEL4Chor [10] consider these
concepts very close to the view of WS-CDL in a choreography specification of W3C. Though,
WSCI refer to choreography from view of one participating service. It describes the observable
behaviour of a service relative to the message exchanges the service must support. This
definition of choreography matches with Behaviour Interface term in W3C.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

61

Recently a little different view is presented by WSMO. The Web Service Modelling Ontology
(WSMO) provides a conceptual framework and a formal language for semantically describing
all relevant aspects of Web services in order to facilitate the automation of discovering,
composing and invoking electronic services over the Web [16]. Based on WSMO view,
choreography describes how one service interacts with its users. While choreography in W3C
and SOAS is described respectively by a non-executable languages WS-CDL and WSCI [10, 4],
WSMO describes choreography by an executable language based on abstract state machine.
Choreography, in view of this works inspired of [2, 3, 15, 18, and 17] and also regarding to
the level of choreography abstraction in W3C specification [8], defines a set of independent
roles and their interaction behaviours. The roles are distributed on participating parties and each
one provides corresponding interaction behaviours. The choreography requirements will be
provided when each role provides its interaction behaviour. The interaction behaviour
determines a set of active rules which a role must execute to take part correctly in
choreography. According to this view, an executable choreography framework can be defined to
specify model, approach, and language and execution engine of choreography. Therefore,
conversely to the most research opinions in which choreography is only a description language,
in this work, we refer to choreography at two levels of abstractions. In one level, choreography
is description language to interactions amongst services at the level of public view. In a lower
level, local view, choreography regarded as an executable code to manage interaction
behaviours of one service against others at runtime. In the public view, choreography is a
centralized abstract process basically using WS-CDL language which describes observable
behaviours of services which collaborate to obtain a common goal and from local point of view,
choreography is decentralized processes amongst the participants basically using UML state
machine describes interaction behaviour of each service required to take part in collaboration.
Therefore, a choreography solution developed for service collaboration across participate
boundaries while preserving the local autonomy of their own business processes. This solution
is a decentralized approach to coordinate orchestration processes through a choreography
description which is implemented by a set of observable service behaviours.

2.1. UML STATE MACHINE

Today, the UML state machine [8] along with other elements of UML is leveraged broadly in
object-oriented application development. UML state machine is a hierarchical model of system
behavior showing how system reacts to the events happened at some states of system. It is
composed of nested states, transition between them and actions.

UML state machines preserved the form of traditional FSM and introduce new concepts. The
most important concept of UML state machine in compare with FSM is hierarchically nested
states. Hierarchy means that the states and machines can be built within other states and
machines. This hierarchal processing of elements makes it easier to describe complex
conditions and transitions. Another important new concept of UML state machine is orthogonal
regions [which refer to two or more independent, complement and concurrent active regions
making a large region named composed state.

The activities (actions) of the UML state machine can be described as an action within the state
itself or expressed as an action on the state transition. Also, it is possible to mix and match these
styles depending on the problem at hand. Also, we found that we needed ways to handle
common default conditions and exceptional situations. Hierarchy was a perfect solution as it
permits factoring common code, allowing more natural and concise expression. UML state
machines are event driven; actions come in the form of events that are presented to the state
machine, typically driving transitions.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

62

3 PROPOSED ADAPTIVE CHOREOGRAPHY MODEL

In this section, the adaptive choreography model is proposed on the basis of UML state machine
as a dynamic structure to show choreography of model. Firstly, the essential requirements for
bring adaptability into choreography model is described, and then we argue that providing
dynamic structure of choreography model is the key addressing the adaptability requirements.

3.1. EXPECTED ADAPTATION REQUIREMENTS IN OUR MODEL

Adaptation is a relationship between a system and its environment where change is initiated to
facilitate the survival of the system in that environment. Adaptation in our view generally refers
to ontogenetic adaptation which is the ability of a system to regulate itself and reconfigure its
structure as it interacts with the environment [1, 14]. Also, it is important that such system can
manage adaptation mechanisms during the life cycle of system. In context of software systems,
adaptation above can be phrased as:

Adaptive software architecture = Dynamic structure + Management [5], where management
activities monitor the system, decide and command to reconfigure the structure and regulate the
behaviour over that structure. Dynamic structure means that the structure of system must be
flexible to being reconfigured and regulated dynamically in response to commands of
management activities.

In this research, we are going to provide a dynamic structure for choreography system of a
service based collaboration and management activities are out of this research. This work uses
the specified term “engine’ instead of system.

Therefore, adaptation is ability of the choreography engine to regulate and reconfigure its parts
dynamically. Recall from previous section, the model of choreography engine is a set of state
machines which each execute the behaviour of one participated roles.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

63

Each state machine is set of states that machine can pass through, and the transition rules which
describes state exchanges as result of occurring the events and existing conditions. The machine
performs the actions (operations) when is placed in a state (Moor machine) or during a
transition.

The operations of a state machine are limited to a number of operation types which are defined
at choreography standards, see section 5. On the basis of this definition, adaptable choreography
engine is set of adaptable state machines, each has a dynamic structure. Hence, our attention is
to build an adaptable state machine providing a dynamic architecture enabling corresponding
participating role to manage its behaviour dynamically at run time of system.

Inspired of work [17, 5], dynamic structure of desirable state machine requires a variety of
properties which a number of them are followed. These distinguishing characteristics can be
seen as an elaboration of the desirable properties and determining the specified goals for
adaptable choreography engine. Also, these characteristics create a framework which can be
used to evaluate our work with others.

A multi interface service is a service providing multiple interface of a function (operation). For
example, a shipment service has an abstract function namely Post which is implemented by two
TNT_POST and USUAL_POST functions. Such service can play Post role in a collaboration
using each of this concrete service.

Property Description

(re)Configuration

• Reconfiguration possible at
runtime.

Can the components be added or removed?
Can the connections between components in the structure be changed at
runtime?

• Functionality recursive
structure.

Do configured composites of components themselves form a unity that can be
configured into larger composites?

• Non-functional
restructuring supported.

Can multiple components of the same type be created in parallel to serve a
single functional output?

• Elements can be
substituted.

Can one component be substituted for another component at runtime? Can the
components be safely substituted?

• Composition based on
declarative description
possible at runtime.

Is it possible at runtime to create compositions from declarative descriptions,
or does the basic structure have to be defined at compile time?

• Formal reasoning about
structure possible

Can the structure be formally represented so that it can be reasoned about? For
example, can proposed compositions be checked for integrity?

• Elements can be reused or
can use other reusable sub
elements.

Can the elements be expressed in explicit representation allowing reusability of
elements?

Regulation

• Non-functional regulation
possible.

Does the application have the ability to monitor non-functional properties, and
adjust its behaivour accordingly?

• Constraints rules and
policies regulation possible

Does the application have the ability to change the constraints which governs
its behaivour?

• Concepts definition
changing possible

Is it possible to change definition of concepts and their properties when system
is running?

TABLE I. List of Adaptation Requirements

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

64

3.2. CHOREOGRAPHY=DISTRIBUTED SERVICE OBSERVABLE BEHAVIOURS

Currently in service oriented systems, there is an increasingly need to make the applications
more adaptable. Complexities like heterogeneity, dynamism and uncertain conditions of
environment and user requirements [17, 18].

Such complexities define key requirements for service-oriented applications. Two much
important of such requirements which are now promised are [2, 14]:

(1) Separation of concerns; for example computational behaviours of services should be
separated from interaction and coordination behaviours, and their combination should be
programmable. (2) Adaptability of concerns; for example the computation and
interaction/coordination behaviour should be able to adapt themselves with the changes in the
environment and dynamic application requirements. The first requirement is mostly overcome
by current industrial application development environment. But, the second requirement is still
open research domain and there are only limited techniques to cover it. This research is adapting
interaction/coordination behaviour scope. On the basis of architecture of SOA [2] and with
regards to the above requirements, we decompose the behaviour of a service which collaborates
with others into three main layers: (1) Computational behaviour: shows what the component
does. It includes the functionalities of a component which delivered on its interface; for
example port definition at WSDL. (2) Composition behaviour: shows how a component
controls its interactions with others and accordingly how uses computation behaviours from
itself or others to behave correctly in composition. (3) Management behaviour: shows how a
component manages its behaviours. It is usually expressed by high level rules derived from
human knowledge to manage and configure the runtime component behaviour.

The second layer, composition layer, is divided into two sub layers: internal-action layer and
interaction (choreography) layers. The former describes how a service must control its internal
actions to play in collaboration. The choreography layer concerns with the observable behaviour
of a service must have during its interactions with others relevant to the pre-defined
choreography. Though we consider these sub layers separately, most standards like WS-CDL
specify them together because of complexity of separation. Of course, these standards
conceptually distinguish these sub layers but they are described in a unified language since they
are much interrelated.

Figure 1. The layers of service behaviours

We point to service interactions through business collaboration as a known term: service
choreography. This work focuses on interaction (choreography) sub layer and intends to provide
an adaptive approach for this layer (see figure 1). The main goal is realizing adaptive
choreography of services especially in response to changes of service collaboration rules and

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

65

policies. Adaptability of service choreography means each of them controls its interactions with
others adaptively to address changes in requirement and condition of environment.
For developing an appropriate solution we consider the following main strategies:

• It is better to use promised technologies and standard languages as much as possible
and extending them if necessary.

• Developers use high-level and simple model to design choreography and transform it
automatically to low-level model as possible as.

• The engine should provide a platform able to use of reusable and compostable
behavioural elements.

3.3. SEMANTIC MODEL OF CHOREOGRAPHY

In this section, we concentrate on a semantic model describing the proposed service
choreography model. To achieve the objectives of this work, the choreography model is
constructed on the basis of UML state machine controlled by a set of rules. Accordingly, the
choreography model behaves dynamically which is capable of changing its behaviour at
runtime.

The choreography model is realized when a set of local choreographies are modelled. Our
proposed model is a set of distributed local choreography engine, namely LCE establishes a
decentralized approach to choreography of collaborative services. Each LCE is located at the
boundary of each participant as shown at figure 2. Based on this figure, choreography domain
includes a number of observable behaviours domains. For any domain there is a UML state
machine activates under the control of rules defined at choreography domain. The rules enforce
the machines to behave according to with the relevant PP, public protocol, and its defined
behaviour. Therefore, when all machines work in according to these rules finally the
choreography of parties is obtained.

Figure 2. The distributed choreography conceptual model [25]

Each LCE is modelled as a UML state machine which represents a specified situation of a
choreography process. A situation of choreography is defined by values of some concept
instances which are important at that situation. For example in a typical scenario for build to

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

66

order (BTO), for state "offering" the values of offer properties and number of tries to make
agreement on offer declare the situation of the choreography. Thus, to capture the situation/data
of choreography we assign some concept instances to each state. Concept instances are
instantiated from ontology concepts which are defined at the OWL schema [19] attached to the
choreography model. Since the states are nested in UML, a concept instance is accessible
through the state where is defined and all of its internal states.

The states can be associated to some quality requirements too. This quality requirements define
the essentials must be obtained during that state. For example, if payment state are assigned to
the response time=5ms. It means that the maximum long time that the payment state allowed to
be finalized is 5ms.

In addition, there is a variety of policies defined that are applied while the control of machine is
passing through a state. Each policy is a rule which describes a decision or a constraint on
choreography model. The UML state machine is subject to various business rules that govern
the way a choreography participant behaves. A business rule is a conditional statement alike
"Provide credit payment only for customers who are golden and build an order with total value
larger than 1000".

The dynamic semantic of model basically is based on events. While an event occurs, the model
has the capability to react to it. Events can be happened in the form of receiving a message, a
new decision and system faults and exceptions. To capture the dynamic semantic of events, it is
essential to model the three following main concerns:

• How are the events queued up to be consumed by state machine?
• How does the event dispatcher mechanism work?
• How does the event processor consume the event instances?

The first and second concerns are not provided by standard UML state machine and depend on
the application of state machine. More information about them is given in the rest of paper. The
third concern is described at the semantic of UML state machine.

The actions are carried out in response to events by state machine. Regarding to requirements of
choreography model, the actions are divided into two main classes: operational and policy-
driven actions. The first class includes the basic actions which usually are defined in the
standard choreography language like WS-CDL. The second class refers to the actions which
must be performed in result of firing a rule.

In this proposed model, the events and actions are managed respectively by the event provider
and control object entities. These main entities are linked to state machine. For any
choreography model there is at least one instance for each of them. The event provider first
gathers the events from diverse sources then insert them in the queue and finally inject them
into machine. The control object is an object that collects related actions under control of same
entity. The state machine concerns the control object as the executor for actions. While the
machine is transiting, come into a state or leave it may ask the control object to perform actions
by calling them. In such way the whole choreography model is separated into independent
concerns.

To sum up, if we want to design a choreography using this proposed model, we have to describe
the event providers, the controlled objects and the automata which will react to event by
transiting from one state to another along with calling corresponding actions of controlled
objects.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

67

 4. POLICY REFINEMENT

Policy is a declarative word which is defined based on different views [13]. Generally, policy is
set of rules to describe the goals, decisions, actions, or constraints of a system [11].
Policy is a set of rules and constraints which control the behaviour of a system during its life.
Policy is as an aspect of the information, which can impact the behaviour of objects in the
system. The policy based management system is a promised and modern paradigm that
dynamically manages the behaviour of a system correctly in accordance with the business goals
[13]. The most of current software development processes encompasses a separate process to
model the policies of software. On the basis of principle “separation of concerns” which is
followed by almost all development process, the policy is a main concept should be separated
from other concepts such as functions, interaction protocol, data access and interface.

 4.1. POLICY TYPES

Policies are defined at different levels of abstraction ranging from those declaring the goals of a
system to enforceable policies for individual resources. The administrators express the goals by
a set of high level policies which are not executable unless they decomposed to a set of low
level policies; each is enforced on a specified resource. Usually this task is done by designers
through a process namely policy refinement. Policy refinement derives low level policies from
high level policies specified by stakeholders in abstract style [20, 11]. Process of policy
refinement is very complicated because a lot of manual operations are needed to extract low
level enforceable declared based on pre defined properties of system. For example, a policy may
enforce an entity to perform an action when an event is occurred and the entity has particular
state. The entity state is exposed by values of its important attributes. The events, actions and
attributes must be defined previously at the system.

Policy refinement for service Choreography: An essential element for enabling SOA
application with policy- is the ability to automatically derive individual services policies from
the policy of service choreography and vice versa. This is very important because it saves policy
editors from having to manually codify policies, which is time consuming and error-prone.

In this wok, the choreography of services is subjected to policies for adding some
considerations. A policy from our view is a rule describes how the choreography must do to
obtain the ultimate goals. We assumed that the services participating in choreography are multi
behavioural. Therefore, they must know how to adjust their behaviours in choreography. For
example, suppose that a seller service has behaviour for payment both for Debit and Credit
types. For some choreography instances, the Debit payment is displayed and for some else the
Credit. Therefore, the seller service uses a policy to control its payment behaviour.

Clearly, developing a mechanism for deriving the low level policies needs primarily a formal
and reasonable language for describing the policies. Also, there must be relationship, directly or
indirectly, between both levels of policies. Therefore, we define the levels of policies based on
two following trade-off goals:

• It’s easy to be defined by administrators.

• It’s possible to apply low level policies directly on service behaviours.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

68

As the policies in this work are categorized at four main levels:

High level Policies: The goals and objectives of a chorography are declared by these policies.
These types of policies are abstract and usually needs manual operations to be refined. For
example, “User satisfaction is the major desire” is a sample for this kind of policies.

Choreography-Level Policy: The policies which manage the flows of control and data though
process of choreography. These policies are described depends on ontology concepts which are
meaningful between the participants of services from public point of view. This level of policy
is regarded as high-level policy for policy refinement process.
the following are cases for this type of policy:

• A “Golden Customer” is a customer who has spent more than $10000 in services. Golden
Customers are entitled a 10% discount on new orders.

• The 10% discount for golden customers does not apply for packaging products

• The TNT_Service is used for shipping the orders which are built for packages by golden
customer.

• The aggregated price of a choreography should not be more than 30

Behavioural-Level policy: This type of policy controls the observable behaviour of a
participant for playing a role of choreography. Since the observable behaviour of a participant is
shown by a UML state machine, the policies are associated to the state of machines. For each
state, the policies are checked when enter into/exit from that state. Each policy in this level is
defined by a rule having ECA template, where E is a set of events, C is a condition expression
and A is a list of actions. E and C are or joined for each rule. The following example is an
E: Golden_User
C: Order.Type==Packaged
A: Perform Credit_Payment

Service-Level Policy: This type of policy allows services to specify requirements and
capabilities needed for establishing a connection with them. The known language for expressing
this type of policies is WS-Policy. The Web Services Policy Framework is a standard that
supports the specification of various quality properties for Web Services and service systems.
From another aspect, policies are also divided into two main categories:

Measurable quality-driven policy: A policy which express a consideration about a measurable
quality property. A quality property specifies a desired quality aspect, for example cost, and
availability, which can be declared in terms of numbers. For example, the following are two
cases for this type of policy respectively at choreography-level and behavioural-level:

- It is desire to perform the choreography of services whose cost less than 20.
- It is assumed that a specified participant of choreography provides payment service with

maximum cost 5.

 Business-driven policy: Such policy specifies a business decision about controlling the
behaviour of an entity or adjusting its uncountable quality requirements. Two examples are
followed:

- For a golden customer which request for a packaged product perform TNT_service for
shipping.

- All data exchanged with seller part must be encrypted.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

69

This work focuses on deriving behavioural-level policies from choreography policies. The
figure 3 shows this issue.

Figure 3. The overall process of policy refinement

4.2. BUSINESS-DRIVEN POLICY REFINEMENT PROCESS

In this section, we are going to discuss on how policy refinement brings adaptability to
choreography model. When a new decision is made by managers, the policy refinement
transforms it into the low levels of policies. Then, each low level policy must be deployed to
one choreography participant and associated to a specified state through a decomposition sub
process. Therefore, this work performs the policy refinement through two main sub processes:
Transformation and Decomposition. Figure 4 shows this scenario in which both sub process use
ontology model to decompose and enforce the high-level policies.

 Figure 4. The outlined process of Policy refinement

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

70

4.2. 1. Policy Decomposition

This sub process is done on the basis of ontology concept decomposition. The policies on two
both level of granularity, choreography and observable behaviour levels are described by
adopting ontology concepts. OWL, the Web ontology Language, is proposed as a language for
declaring the policies and more of information aspect of choreography. Currently, the OWL is
enriched by SWRL [21], as a semantic rule language, to expressing the ontology not only in
hierarchal of concepts but also in rule based relation among them.

The process of policy decomposition can be summarized in the following steps:

1. Preparing the OWL file for polices at two levels.
A very simple of ontology model for our case is followed.

Figure 5. An outline of domain ontology for a case study

 Also, the high level policies are describe depends on ontology concepts in a sort of
SWRL rules. For example, a sample of policies in high level of abstraction is below:

if package(?order,?pckg) ^ swrl:eq(?pckg,”Yes”) and user(?order,?User)^

srwl::Isinstanceof(?User,GoldUser) ���� Shipement (?order, “TnT service”)

This rule declares that for users who are golden and make the orders for packaged
products, the TnT service is proposed for shipment their orders. In this rules the
concepts which are used are defined for choreography level of services. In other words,
these concepts are meaningful for all participants of choreography.

2. Relating the concepts of ontology at high and low levels by means of meaningful OWL
relationships between HL and LL classes.
These relations are derived from a relation template to make the associations among the
ontology concepts. A relation template can be expressed at the style as:
LowProperty(?LClassx) ^ HasRelation(?LClassx, ?HClassy)���� HProperty(?HClassy)

For exemplify this template, the following shows two cases:

• Items(?Order, ?Items) ^ Swrl::Subset(?items, [‘HDD’,’CPU’,’MB’]) ����

Package(?Order,”Yes”).

• Type(?User, ?kind) ^ Swrl::Subset(?kind,’A’) ^ amount(?order,?toral)^

Swrl::Largethan(?total,100) V Type(?User, ?kind) ^ Swrl::Subset(?kind,’B’) ^

amount(?order,?toral)^ Swrl::Largethan(?total,1000))����

srwl::Isinstanceof(?User,GoldUser)

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

71

3. Ultimately, the necessary information is extracted from policies at high level by
inference on SWRL rules which are prepared by developers. The necessary information
is specified by low level policies which defined based on concepts which are
meaningful for some participants of choreography. Actually, in this step the low level
policies will be generated accord to information model of choreography. For example, a
low level policy is shown as below:

Items(?Order, ?Items) ^ Swrl::Subset(?items, [‘HDD’,’CPU’,’MB’]) ^ (Type(?User,

?kind) ^ Swrl::Subset(?kind,’A’) ^ amount(?order,?toral)^ Swrl::Largethan(?total,100))

V If (Type(?User, ?kind) ^ Swrl::Subset(?kind,’B’) ^ amount(?order,?toral)^

Swrl::Largethan(?total,1000))���� Shipement (?order, “TnT service”)

We assumed that products of a package include ‘HDD’, ‘CPU’ and ‘MB’. This low level of
policy is can be enforced because all the elements and information which are used are
indentified for choreography, but not for all participants. For example, the seller is aware of user
type but the shipment is not. Therefore, it is necessary to deploy the rules to according
participants. In this regard, firstly the policy must be divided into some parts and each is located
at a participant engine which access to essential information.

4.2. 2. Policy Deployment

This sub process targets to locate and deploy the decomposed policies. For that, it is necessary
to place each policy or a part of it into a participant domain where the information needed for
that policy is presented. For example, if a policy is defined on order properties must be enforced
on a participant which access to order data type. We performed this activity through a locating
process of entities by use of information model of concepts. All instances of ontology which are
adopted in choreography are associated with a place they are defined. In our choreography
model, each ontology instance is assigned to a state of machine. This feature enables us to
associate a definite scope for any ontology concept. Therefore, each concept instance is owned
by a state of machine. Since overall choreography is spawn of a distributed UML state machine
which in turn each machine is spread its logics overall some nested states.

In this sub process, the information model of concept instances is used to locate the policies.
The information is supposed to be declared through a tree of hierarchal concepts which are
assigned to the states of machines, as figure 6 shows.

Figure 6 a snapshot of a decomposing a rule to set of sub rules

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

72

Regard to figure 6, an overall low level policy as CC3 must be enforced on state machines. To
do that, the CC is decomposed into CC1 and CC2. Each of them respectively is divided into
C1& C2, and C3 & C3. C1 and C2 in this example are associated to User state. User state itself
is an internal state of a state machine belonged to seller partner. Finally, each low level policy
must be deployed on corresponding state. In our choreography model, we annotate a state with
such deployed policy. Clearly, when a policy is decomposed as some relevant policies which
each one may be deployed in independent place, it is needed to making them connected in way
that they act totally as a unified policy. This requirement is addressed through even distribution
and exchange. For example, when the policies which are declared by the seller are fired, then
Seller must send an appropriate event to the Shipper.

4.3. MEASURABLE QUALITY-DRIVEN POLICY REFINEMENT PROCESS

In this section we present a novel method to decompose and refinement the quality-driven
policies into low level policies. Response time, price and availability are three measurable
quality criteria in which each consideration about them for choreography can be regarded as a
quality-driven policy. For a choreography which is subjected to a number of measurable
qualities, there must be a way to find an optimal definite set of candidate services which finally
provide the best aggregated quality. This problem is fundamentals in domain of service
composition domain [12]. Almost works leverage optimization techniques to solve this
problem. Often, the related works attempt to find the best composition among all candidate
composition of services. In their approach, the composition logic is presented by a process of
abstract services. Such service combines through a set of control structures like sequence,
parallel, switch and so on. For any abstract service there are a lot of concrete services which in
make the composition to be created in huge different combinations.

In this work, we are going to bind each abstract service to a set of quality boundaries so that the
aggregate quality is obtained from choreography of services is supposed to become maximize as
possible as. In other words, we derive some quality criteria limitations from whole
choreography limitations defining some quality levels for each quality criteria. These levels
increases the speed of algorithms aim to find the best composition of services because most of
inappropriate services will be disregard.

Suppose that Q is aggregate quality value can be obtained from whole choreography, Q can be
calculated as a result of linear programming problem as below:

Maximize Q
 �
�

��
�
����

���
� P��
�

���
� x� � �

 q�� � q����

 q���� � q�����
 Subject to:

∑ q�� � � ���� , 1 � k � m

∑ x�
 1����
��� , 1 � k � m

In this equation, k is an index for quality criteria and m is the number of quality criteria this
work regards to. For example, price, response time, availability, reputation and reliability are
some cases where some of them are interested in maximizing and other like to be minimized.
This issue must be considered by programmer, for example by negating the quality value when
calculated at all aggregated quality.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

73

For showing levels particular quality criteria, l is used for this purpose. ML(k) is used for
returning the maximum of levels can be considered for a quality. For example, if minimum
price is able to obtain for an abstract service is 10 and maximum price is 100, then the levels
can be exemplified at 9 levels. It is adjusted by developed when starting the linear
programming. To point to services taking part in choreography, i is used to identified them and

n is number of them. #$%& is a probability shows how much of candidate service for an abstract
service, i , can provide a specified level, l, of particular quality, k,.

q���� and q���� are respectively the maximum and minimum quality values are obtainable for a
quality as price about a specified abstract service. To normalize the values of quality criteria and

map them on [0,1] space, we use � '()* + '(),)-

 '(),./+ '(),)-�.

This linear programming equation can be solved by standard methods. Also, the problem
definition declares some limitations which the solution must be subjected to. For example, the
aggregate price of all choreography must not exceed that what customer defined as his/her
desires.

When the above program is solved, the results are a set of quality levels for any abstract service.
These levels are bind to each abstract service of choreography which is used as local search to
disregard those concrete services are out of these levels of requirements. We can say that, the
aggregate quality value of choreography is decomposed and refined to a set of independent
quality values, each distinguish a required level of quality.

5. RELATED WORK

There are a variety of works follow the goals are close to those we attempt to achieve. Most of
them try to bring adaptability into orchestration model. However, the works which are tightly
close to this work are few.

WS-CDL [3,4] and WSCI [15] are two main standards have many constructs to describe the
choreography of services. These languages do not address the model-driven relation between
the abstract process of corporation and executable process which is defined by orchestration.
Also, these standards are defined based on workflow view and cannot support adaptability as
well because all the constructs must be defined during design time.

Some works add several extra structures to standard language supporting adaptability. For
example, some structures are added to BPEL controlling exceptions at runtime. ECF,
Executable Choreography Framework, proposed by [17] aiming to perform the choreography on
peer-to-peer model which supporting adapting. ECF is an answer to make on-demand
collaboration. In ECF, the choreography is modeled based on some active rules. It uses a
distributed aspect platform to enable dynamic superimposition of collaboration activities. One
of the main properties of ECF is managing control of choreography process through the partners
so that the data and flow of any work are remaining under corresponding partner. ECF uses
aspect-oriented programming to develop some aspects which can be executed in a chain way
after getting a message by a partner.

Another known work which uses a same model to show choreography is WSMO [16].
Choreography in WSMO is described as abstract state machine. WSMO like our work uses the

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

74

ontology and rules to describe choreography logic, but despite our work it doesn't support
nested states and also the choreography is defined from view of one partner to access the
capability of a service, not as global view to a corporation.

Xiaoqiang and et al [1] proposes a model for choreography of services showing collaboration
across organization boundaries. This model defines an approach containing three steps: Firstly,
a central choreography process is developed showing the business collaboration, then at the
second step, this process transformed to a decentralized process which span on the participating.
The third step is mediating the decentralized choreography process with the inner orchestration
process. Adaptability is gained on the use of this median. This mediator is capable of separating
the changes of inner process and choreography contract rules, each one from another.

6. CONCLUSION

Adaptive systems are being requested increasingly especially for distributed Web based
systems. Achieving the adapting system in general and particularly in choreography of services
is main focuses of this research. We propose a new service choreography model which provides
dynamic structures able to support the adaptability. It is a very useful model in dynamic
corporations where the model of choreography (contract) and especially its constraints have
ongoing changes.

We presented that UML state machine is a good model to specify choreography of services.
One of the main advantage that was achieved is that state machine can be regards as an
independent component of model which is independent of the actions are performed during
corporation. This means that the state machine is separated from control objects which cover the
actions. Attention to the primary goals of our work, the adaptability is obtained both in
reconfiguration of model and regulation of it. Substitution of stats is possible which means the
reconfiguration and the changes of transition rules are possible too which means the regulation
of model.

The types of changes in a system are diverse which policy change is a key one. When changing
a policy its effects will propagated its effects on the most elements of system. Related to
choreography model, the changes of policy must be refined to propagate through the elements
of choreography, this paper introduces a mechanism for refinement policies into distributed
elements of choreography.

One of the main challenges we faces and not done yet is the verification of dynamic
choreography model. We are going to do it as next work using the checking model like SPIN.
Also transformation WS-CDL, as global view, to UML stat based for any partners of
corporation is another main requirement which has been left already and can be regarded in the
future.

 REFERENCES

[1] Qiao Xiaoqiang, Wei Jun, "A Decentralized Services Choreography Approach for Business
Collaboration, IEEE International Conference on Services Computing (SCC'06), 2006.

[2] M.P Papazoglou , P. Traverso, Schabram Dustdar & F. Leymann, (2007) ," Service-Oriented
Computing: State of the Art and Research Challenges", Journal of Innovative Technology for
Computer Professionals, IEEE Computer Society, November 2007.

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

75

[3] M. Barros, M. Dumas & P. Oaks. (2005),”A Critical Overview of the Web Services Choreography

Description Language (WS-CDL)”, BPTrends [Online accessed: Jan, 2011]. Available:
http://www.bptrends.com.

[4] [4] W3C, (2005) “WS-CDL XSD schema”, URI=http://www.w3.org/TR/2005/CR-ws-cdl-10-
20051109/#WS-CDL-XSD-Schemas (online accessed = Feb 2011).

[5] Z. Li & M. Parashar,(2006), "Enabling Dynamic Composition and Coordination for Autonomic
Grid Applications using the Rudder Agent Framework", The Knowledge Engineering Review, Vol.
00:0, pp: 1-15

[6] G. Decker, O. Kopp, F. Leymann & M. Weske, (2007), “BPEL4Chor: Extending BPEL for
Modeling Choreographies”. Proceedings of the IEEE 2007 International Conference on Web
Services, IEEE Computer Society, pp: 296-303.

[7] D. Roman, J. Scicluna, C. Feier, M. Stollberg & D. Fensel, “Ontology-based Choreography and
Orchestration of WSMO Services”, http://www.wsmo.org/TR/d14/v0.1/, (online accessed= Jan
2011)

[8] G. Booch, J. Rumbaug & I. Jacobson, The Unified Modeling Language User Guide, Addison -
Wesley, 1999

[9] D Harel and M Politi, Modeling Reactive Systems with Statecharts, McGraw Hill, 1998
[10] Decker, G., Kopp, O., Leymann, F., Weske, M.: “BPEL4Chor: Extending BPEL for Modeling

Choreographies”. Proceedings of the IEEE 2007 International Conference on Web Services, IEEE
Computer Society (2007), 296-303.

[11] Kevin Carey, Vincent Wade,” Realizing Adaptive Web Services through Automated Policy
Refinement”, IEEE, 2007

[12] A. Barker, D. Robertson, "Choreographing Web Services", J. IEEE Transaction on Service Computing, 2(2):
14, 2009, [doi:10.1109/TSC.2009.8]

[13] Erradi A., "Policy-Driven Framework for Manageable And Adaptive Service-Oriented Processes",
PhD thesis, The school of Computer Science and Engineering(CSE), University of New South
Wales(UNSW), June 2008.

[14] Li Z. and Parashar M., "Enabling Dynamic Composition and Coordination for Autonomic Grid
Applications using the Rudder Agent Framework", The Knowledge Engineering Review, Vol. 00:0,
1-15, 2006

[15] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S., Riemer, K.,
Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S., “Web Service Choreography Interface
(WSCI) 1.0”, Available from "href=" http://www.w3.org/TR/wsci/".

[16] Roman, D., Scicluna, J., Feier, C., (eds.) Stollberg, M and Fensel, D.: D14v0.1. “Ontology-based
Choreography and Orchestration of WSMO Services.”, Available from
http://www.wsmo.org/TR/d14/v0.1/

[17] Thomas Cottenier, Tzilla Elrad, Executable Choreography Processes with Aspect-Sensitive
Services, Computer Science Department, Illinois Institute of Technology, 3300 S. Federal Street
60616 Chicago, Illinois, USA {cotttho, elrad}@iit.edu

[18] Svirskas A., Wilson M., and Roberts B.," Adaptive Support of Inter-Domain Collaborative
Protocols using Web Services and Software Agents".

[19] Martin, D., et al.,(Nov 2004), OWL-S: Semantic Markup for Web Services. DAML White Paper
Release.

[20] A. Bandara, E. Lupu, J. Moffett & A. Russo, (2004), A goal-based approach to policy refinement,
Policies for Distributed Systems and Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE
International Workshop on 7-9 June 2004 Page(s):229 - 239.

[21] A. Guerrero, V.A Villagr´a, J.E.L de Vergara, A. S´anchez-Maci´an, & J. Berrocal, (2006),
Ontology based Policy Refinement Using SWRL Rules for Management Information Definitions
in OWL. In: Proc. 17th IFIP/IEEE InternationalWorkshop on Distributed Systems, Operations and
Management (DSOM), Dublin, Ireland 227–232.

[22] C. Pahl,"Dynamic Adaptive Service Architecture .Towards Coordinated Service Composition",
Lecture Notes in Computer Science, Software Architecture. M. Babar I.Gorton, Springer Berlin /
Heidelberg. 6285:472-475, 2010, [doi: 10.1007/978-3-642-15114-9_43]

International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

Authors

F. Mardukhi received his B.Sc degree in Computer Engineering from Sharif
University of Technology, Iran in 1996 and Master of Sofware Engineering from
University of Isfahan, Iran in 2002. Currently he is pursuing his Ph.D degree in the
Engineering Faculty og Engineer
Web Service technology, Coordination problem, and adaptive software systems. He
is working on dyamic and adaptive choreography models for Web services in B2B
coporation.

Dr. N. Nematbakhsh received his B.S
Isfahan University, Iran in 1973 and Master of Science in Computer Science in
1978 from Worcester Polytechnic Institute, USA. He received the Ph.D in
Computer Engineering from University of Bradford, England in 1989.
working as Assistant Professor in the Department of Computer Engineering,
Isfahan University. His expericed areas include Software Engineering Methods,
Service Oriented Computig and Software Realibility.

 Dr. K. Zamanifar received his B.Sc and M.S
Engeering from University of Tehran, Iran (1976
in Computer Science from School of Computer Studies, University of Leeds,
England in 1996. He is working as Associative Professor in the
Computer Engineering, Isfahan University. He is member of Management
Committee of Computer Society of Iran and member of Iranian Association of
Electrical and Electronic Enigeering. He activated at the most conferences as
member of Executive Committee. His research interests are Parallel and Distributed
Systems, Distributed Operating System, Concurrent Systems and Computer
Supported Cooperative Work.

Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

received his B.Sc degree in Computer Engineering from Sharif
University of Technology, Iran in 1996 and Master of Sofware Engineering from
University of Isfahan, Iran in 2002. Currently he is pursuing his Ph.D degree in the
Engineering Faculty og Engineering in Isfahan University. His interests include
Web Service technology, Coordination problem, and adaptive software systems. He
is working on dyamic and adaptive choreography models for Web services in B2B

Dr. N. Nematbakhsh received his B.Sc degree of Science in Mathamatics from
Isfahan University, Iran in 1973 and Master of Science in Computer Science in
1978 from Worcester Polytechnic Institute, USA. He received the Ph.D in
Computer Engineering from University of Bradford, England in 1989. He is
working as Assistant Professor in the Department of Computer Engineering,
Isfahan University. His expericed areas include Software Engineering Methods,
Service Oriented Computig and Software Realibility.

Dr. K. Zamanifar received his B.Sc and M.Sc degree in Electrical and Electronic
Engeering from University of Tehran, Iran (1976-1985). He also received the Ph.D
in Computer Science from School of Computer Studies, University of Leeds,
England in 1996. He is working as Associative Professor in the Department of
Computer Engineering, Isfahan University. He is member of Management
Committee of Computer Society of Iran and member of Iranian Association of
Electrical and Electronic Enigeering. He activated at the most conferences as

Committee. His research interests are Parallel and Distributed
Systems, Distributed Operating System, Concurrent Systems and Computer
Supported Cooperative Work.

Journal of Web & Semantic Technology (IJWesT) Vol.2, No.2, April 2011

76

