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ABSTRACT 

The semantic-based 3D models retrieval systems have become necessary since the increase of 3D models 

databases. In this paper, we propose a new method for the mapping problem between 3D model data and 

semantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, we 

focused on extracting invariant descriptors from the 3D models and analyzing them to efficient semantic 

annotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of terms 

commonly used to describe visually a set of objects using linguistic terms and are used as semantic 

concept to label 3D model. Second, spatial relationship representing directional, topological and 

distance relationships are used to derive other high-level semantic features and to avoid the problem of 

automatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, an 

ontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is used 

to find similar 3D models for a given query model. We adopted the query by semantic example approach, 

in which the annotation is performed mostly automatically. The proposed method is implemented in our 

3D search engine (SB3DMR), tested using the Princeton Shape Benchmark Database. 
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1. INTRODUCTION 

In recent years, 3D object databases have grown in both size and importance and 3D model is 

becoming more commonly available on the internet and domain-specific databases due to the 

fast advancement of tools for acquisition and storage of 3D models. Therefore, efficient content 

based 3D model retrieval (CB3DMR) systems become increasingly important. These systems 

allow users to find similar 3D shapes for a given query shape and database of 3D models. On 

the other hand, these systems are traditionally performed using Keywords and the geometry. 3D 

model semantic retrieval is an important and challenging task in the field of (CB3DMR). 

However, there are several systems that are manually annotated 3D models to include semantic 

information. It is thus necessary to develop content based 3D model retrieval systems for 3D 

models using their semantic content automatically annotated. Many researchers are encouraged 

to develop semantic based 3D model retrieval systems for 3D models [3].In this context, the 

challenge is to provide an efficient high-level semantic interpreting for computing 3D model 

similarity [4].  

The main problem of semantic based 3D shape systems is extracting model’s shape features 

with good properties and representing visual concepts. In this paper, shape descriptors are 

analyzed to represent visual concepts and to construct the Ontology-based 3D model retrieval 

system. We adopted the query by semantic example approach, in which the annotation is 

performed automatically. Shape descriptors are divided into four categories: measures, size, 

shape indexes, and moments of distribution descriptors. First, measures are extracted from each 

3D model, from convex hull and bounding box in the database and we compute invariant 3D 

shape indexes for characterizing 3D shapes. Each shape index describes an entire 3D shape. 
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With one single shape index is insufficient for identifying different properties. Then, the 

combination of shape indexes is often required. Four independent categories or properties of 

shape indexes may be considered to be of particular importance: Sphericity, Convexity, 

Compactness and Elongation.  Each property measures a different aspect and can vary without 

affecting the other properties [13].   

Sphericity and Compactness are represented by independent Shape indexes to reflect form and 

angularity at the corners on shape and to be more efficient discriminators than simple measures. 

Elongation is used to determine whether a 3D model has the flat or the elongated shape. Third 

category of shape indexes, calculated from convex hull, captures information about global 

convexity and measure the surface roughness.  Each Shape index is normalized between 0 and 1 

and has the advantage of being invariant to different transformations [14]. Shape indexes in 

each category are very easy to compute and efficient for broad retrieval of 3D shapes.  

Shape descriptors only cannot represent 3D model semantics. Spatial relationships that are 

usually defined according to the location of the measure in the 3D model, can overcome these 

limitations by describing   spatial   relationships   among   entities. Four points from convex hull 

are considered. During this process, moments of distribution descriptors are calculated.  

The second stage is to describe 3D model with semantic concepts. We used shape indexes that 

provide a set of terms commonly used to describe visually a set of objects using linguistic terms 

[15]. These terms are accurately quantified and are used as semantic concept to build our 

ontology. Therefore, a learning method is applied to the shape index category to label 3D model 

and to construct the visual terms ontology. For example, to label 3D model as “convex” we 

compute convexity shape indexes using different methods and k-mean algorithm is applied to 

learn the statistical properties of these shape indexes and to agglomerate clusters. After the 

labelling process, the labels and spatial concepts of the model are used in Ontology-Based 3D 

Model Retrieval to describe model information for interpreting its semantic content. 

2. RELATED WORK 

In recent years, several methods are proposed in the literature to describe 3D models. A survey 

of Content-based 3D model retrieval (CB3DMR) can be found in [1, 2]. In this paper, we 

present survey on the CB3DMR methods with high-level semantics. These methods are 

generally implemented including three categories to reduce the semantic gap:  (1) using 

machine learning methods to associate low-level features with high- level concepts, (2) 

introducing relevance feedback that is mostly combined with machine learning methods and (3) 

using ontology to define semantic concepts. In several works, the three methods are combined. 

The work presented in [29] introduces the classification and retrieval 3D model by integrating 

shape features and semantic information. The paper proposes a new type of shape feature based 

on 2D views and use Gaussian processes as supervised learning to mode the mapping from low-

level features to query concepts. In the paper [30], author explores a new framework for 3D 

model retrieval based on an off-line learning of the most salient features of the shapes. The 

proposed approach uses a large set of features, which can be heterogeneous, to capture the high-

level semantic concepts of different shape classes. Hou and al, in [10] Support Vector Machine 

(SVM) is used to cluster 3D models with respect to semantic information to organizing a 

database of shapes. Neural networks and SVM as learning methods are used in [9] for learning 

the concept. 

In order to reduce the semantic gap, authors in [4, 5, 16, 25 and 32] introduce relevance 

feedback processing combined with various feature representations for 3D model retrieval. 

Relevance feedback is effective in reducing the semantic gap and it is an interactive scheme 

that requires the user to label 3D models as relevant or irrelevant [31]. Authors in [5] present a 

relevance feedback algorithm based on machine learning techniques. This algorithm is 
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implemented in 3D shape retrieval system based on 3D Zernike descriptors and allows the user 

to mark the result as relevant or not to provide the degree of relevance. In paper [4] the author 

proposes a 3D model retrieval algorithm that is based on the manifold ranking algorithm to use 

a relevance-feedback framework. The method embodies feature distribution and multiple 

semantic classes to learn long-lived semantics. C. Zhang in [16] includes relevance feedback in 

content-based 3D models retrieval system combined with machine learning method. The hidden 

annotation is incorporated into the system with a set of region-based features and the active 

learning is used to improve the annotation efficiency. The algorithm proposed in [32] for 3D 

model retrieval combines SVM technique with active learning mechanism to learn from the 

most informative objects. The user marks these objects to separate the relevant models from 

irrelevant ones. Compared with others relevance feedback schemes, the authors obtain 

maximum information learning from the most informative samples. 

The main objective of the Network of Excellence AIM@SHAPE [33] is to capture the implicit 

semantics of digital shapes and ontologies can be used to encode, store and formalize the 

domain knowledge. In this context and to add semantics to geometry, Marios in [12] analyzes 

the 3D shape and can extract and combine knowledge and implicit information coded in the 

geometry of the digital content object and its sub-parties (volume, surface ...), then it allows the 

segmentation of 3D shapes based on semantics. Including the spatial relation ontology, author 

in [15] introduces visual concept ontology as a guideline to describe the specific knowledge of 

an application domain. To create the link between low-level features and the concept of queries, 

author in [7] uses machine learning methods and the high-level ontology to define the concepts 

of 3D objects [8]. The SCULPTEUR system developed in [6] uses class labels stored in domain 

ontology and a classifier agent automatically creates the link between 3D shape feature vectors 

and appropriate class labels. This method provides a potential training set for automatic 

classification. In the paper [11], author explores an ontology and SWRL-based 3D model 

retrieval system Onto3D. This ontology is used to infer 3D models semantic property through 

the rule engine and to retrieve the target models by request engine effectively to improve the 

retrieval accuracy. 

The main objective of this paper is to propose a new method in extracting semantic feature for 

3D Model that can get high-level semantic knowledge representation automatically from low-

level feature. It is the most important problem in content based 3D model retrieval. We used a 

learning method to the shape index category to label 3D model and, based on the resulting 

semantic annotation, spatial concepts are added to build the ontology-based 3D model retrieval 

using the web ontology language. 

3. PRE-PROCESSING 

To represent the 3D models, polygonal mesh is the most used. The main difficulty is that 3D 

models have the arbitrary topologies and are not normalized. In the pre-processing step, the 

challenge in computing an ideal shape feature is to remain unaffected by scale, rotation and 

translation transformation. Basically, there are two ways to address this challenge: 1) Develop a 

transformation-invariant descriptor or 2) Normalization. Using the first approach, we can 

extract transformation invariant information from the shape index. Consider, for example the 

case that we have a model represented by a triangular mesh, if we want to make the shape index 

“elongation” invariant to rotation, radius and main axis measures are used. Advantages of the 

shape indexes [14] are 1) they can be computed from measures and providing numerical 

information about the shape of objects, 2) they are invariants to translation, and rotation 

transformation, and 3) they are dimensionless. However, measures without dimension are 

considered shape indexes. 
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Normalization techniques obtain invariance by computing Shape indexes relative to a global 

reference frame presented by the object centroid. From the triangular mesh the object centroid 

is calculated as follows:     
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Where (mx, my, mz) is the coordinates of the object center, (xi, yi, zi) is the coordinates of the 

object vertex and N is the number of the vertex which constitutes the object. Using this 

equation (1), the size of each model is normalized. The object centroid is extracted directly 

from the model without any additional processing to the 3D model [17] and during the 

computation, the amount of the time consumption is smaller.  In addition, this method for 

normalization uses global shape information to match the whole object to whole object. 

4. 3D SHAPE FEATURES EXTRACTION 

Shape and size are fundamental 3D model properties providing important information about the 

visual appearance. In this section, we provide four categories of shape descriptors for 

characterizing 3D models: basic measures, size, shape indexes and moments of a distribution. 

These shape descriptors involved the comparison of the 3D model to its convex hull and its 

bounding box. 

4.1. Basic measures 

The extraction of the basic measure is the most important step to compute shape index and size 

descriptors. Using a combination of basic measures M, shape indexes SI can be built by 

defining them as algebraic combinations of the measures: SI=f(M). Therefore, the value and the 

computation time of shape indexes depend on the value of the measures [14]. 3D models are 

represented in PSB Database test as triangle meshes and these basic measures are extracted 

directly from the model.  

The main axis, and its length, best represents the shape and are used to compute visual 

concepts. To compute the main axis, we compute a reference frame for a 3D model and the 

inertia matrix of the point cloud and covariance matrix [18]. To compute the volume (2), 

polyhedron composed of each triangle mesh is obtained and the total volume of the 3D model is 

the sum of the signed volumes of all tetrahedrons [19]. 

 ( )321312231213132123
6

1
ZYXZYXZYXZYXZYXZYXV +−−++−=             (2) 

The surface area of 3D model is calculated as the sum of the surfaces area of the triangles with 

the following formula: 

( ) ( )∑ −−=
N

i

iiii VVxVVaSurfaceAre 0,2,0,1,
2

1
                                 (3) 

With V is a vector containing the coordinates of the vertices of the triangle i. Other measures 

(e.g. Ferret diameter, Small and large radii and main plan) can be calculated from convex hull 

and bounding box providing the efficient comparison between two 3D models.  

These measures are used in three steps: 1) as semantic concepts in ontology to define the spatial 

relationships, 2) to compute visual concepts and 3) as numerical descriptors to compute the 
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similarity among 3D models in our content based 3D model retrieval system (CB3DMR). We 

consider in our ontology that each measure is the entity. 

 

4.2. Size 

In order to characterize the size of 3D model it is interesting to extract different size  measures  

(diameter, length, width, height, volume and surface area) and shape indexes derived  from  

these  size  measures (diameter-height ratio,  diameter-diameter ratio…) .  

The measure equivalent spherical diameter (ESD) of an irregular shape can be used to define 

3D model size. Let SAch the convex hull surface area, the ESD is defined by: 

( )3
/**)3/4( ΠΠ= chSAESD                                     (4) 

ESD measure is the diameter of a sphere of equivalent volume that gets larger or smaller as the 

model does.  For irregular shape it is not possible to describe a 3D model using a single number 

that equates to the shape size. Therefore, the size S of a model is defined by combining 

different measures F(S) = {diameter, ESD, volume and surface area}. 

4.3. Shape indexes 

To describe the shape of 3D model, we defined a set of 3D shape indexes of each 3D model by 

combinations of the measures. Shape indexes tell a lot about the shape and the semantics of the 

3D model and are frequently used to quantify different aspects of 3D model shape (Figure 1). 

 

Figure 1.  Samples selected from PSB Database representing different aspects 

Several shape indexes have been proposed in the literature [14, 18, and 20]. In our prototypical 

3D Model Search System we compute several 3D shape indexes (Table 1) characterizing the 

‘‘Sphericity,’’ ‘‘Elongation,’’ ‘‘Convexity,’’ ‘‘Compactness’’ of 3D model.  These 3D shape 

indexes are computed from 3D model, convex hull and/or bounding box. Computations of these 

shape indexes quantified four independent properties: sphericity, Convexity, Compactness and 

Elongation. Each category contains several shape indexes computed by different methods. For 

example, to compute a sphericity shape index we can use volume and surface area, radii or 

main axis. To compute a compactness shape index we can also used entropy (with main axis), 

diameter, Surface area volume ratio or moments. However, each property can vary without 

affecting the other properties and their properties show that it is impossible to identify any 
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shape from a single aspect [14].  Therefore, it is necessary to use different aspects of 3D shape 

to semantic representation and to improve the retrieval accuracy. 

Table 1.  Several 3D shape indexes computed. 

ID SphericityR SphericiteVS Ellipticity Circularity Roundness Squareness ConvexSurf Complexity 

1 0,54267147 0,985590934 0,54267144 0,988374611 0,063894387 0,141580368 0,200955762 0,229430919 

2 0,67892352 0,971385016 0,6789235 0,985230381 0,04245953 0,184545374 0,211404529 0,14713483 

3 0,89086772 0,913193388 0,8908677 0,98395745 0,019090357 0,19346823 0,269052499 0,156475512 

4 0,992499913 0,984981198 0,9924999 0,957221798 0,072886105 0,041396828 0,061719714 0,099849517 

5 0,91332534 0,902407149 0,9133253 0,853145544 0,009782479 0,154164033 0,195353425 0,076064795 

6 0,90774369 0,954819278 0,9077437 0,927236837 0,018787851 0,187056513 0,219417881 0,10452385 

7 0,956289284 0,995019849 0,9562893 0,992403244 0,185916439 0,059433968 0,051039332 0,159952466 

ID ComplexBox Rectangularity ElongatAA ElongatR CompactECD Concavity Entropy CompactVS 

1 0,177309056 0,200955762 0,45732853 0,002195125 0,800054173 0,032341299 0,141735746 0,103187607 

2 0,139730475 0,211404529 0,32107648 0,003911803 0,761250095 0,019008841 0,14532065 0,082029291 

3 0,123140061 0,269052499 0,10913228 0,015102112 0,746788601 0,010633257 0,204601146 0,277581908 

4 0,074921354 0,061719714 0,007500087 0,244819579 0,542911769 0,025865605 0,20668771 0,019939768 

5 0,065544416 0,195353425 0,08667466 0,0194945 0,272626946 0,004625189 0,211576305 0,073316369 

6 0,097020323 0,219417881 0,09225631 0,018203112 0,42181934 0,01328418 0,211626012 0,064624109 

7 0,195422816 0,051039332 0,043710716 0,040474544 0,857495747 0,08292496 0,218833032 0,01862562 

The main problem is extracting 3d model’s shape index which represents well the aspect with 

good properties.  In this paper, a set of shapes indexes are analyzed to select efficient one in 

order to combine them in categories providing different aspects to semantic annotation.  

4.4. Moments of a distribution 

Besides basic measures, size and shape indexes, moments of a distribution are also useful as 

descriptors to quantify the shape of the 3D model. A moment is a quantitative measure of the 

shape of a set of points. Mean, variance and Skewness moments are used to describe different 

aspects of a distribution such as how to characterize the asymmetry of distribution. To describe 

spatial relationships among entities, the centroid is calculated and four points from convex hull 

are considered (section 6.2). During this process, moments of a distribution are calculated [21] 

to compute numerical similarity (12 moments of the resulting four distributions). 

5. 3D SHAPE INDEXES ANALYSIS 

For efficient semantic annotation and 3D models classification and retrieval, 3D models can be 

represented with a set of effectiveness 3D shape indexes that encode the different aspects and 

properties of their shapes. There  are  many  shape  indexes that  can  be  computed  from  a  3D  

model. The main problems in this step is how  to  choose  among  a  large  set  of  shape  

indexes  the efficient one  that  allows  to  achieve  high-level performance. To solve this 

problem, our study concentrates on the evaluation of different shape  indexes in each categories 

to  see  which  one  that  gives  the  most  reliable  results  for  semantic representation and 3D 

model classification and retrieval. The first step to evaluate shape indexes is to study the values 

distribution of each shape index (Figure 2). Indeed, over the 3D shape indexes distribution 

shows a good separation of classes, the more 3D shape index is relevant to identify 3D models. 
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Figure 2. 3D shape indexes distributions  
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Figure 3. Sphericity histogram 

From distributions (Figure 2) and histogram (Figure 3), one can observes 3D shape indexes that 

strongly discriminate 3D models. The second step is to compute the weighted sum of the 

distances. The following formula is used to calculate the distances, which is used to determine 

the degree of similarity S between two 3D models: 
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Weights are calculated and normalized during learning by k-mean algorithm using precision, 

recall and F-measure that allow comparing the performances of 3D shape indexes. Therefore, 

for each 3D shape index, we compute the average recall (aR) and precision (aP) on the entire 

3D shape index: 

∑
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i SIn

SIr
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1 )(
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Where n(SI) is the number of models labelled by SI, r(SI) is the number of models initially 

labelled by SI and the system has returned with the same SI, w(SI) number of the unlabeled 

model by the SI and found by the system with the same SI. F-measure F is the weighted 

harmonic mean of precision and recall. The formula of F-measure is as follows: 

aPaR

aRaP
F

+
= 2       (8) 

When using average recall (aR) and precision (aP), it is important to specify the number of 

shape indexes for which at least one model was found. 

To test whether the shape index was sufficient unambiguously to identify, for example, 3D 

model sphericity aspect, we used histogram (figure 4) to spherical 3D model examples.  

 

 

Figure 4. Sphericity histogram 

 

6. SHAPE INDEXES SELECTED 

3D shape indexes are selected experimentally satisfying two conditions: using precedent study 

to determine the best one and if its property can varies without affecting the other 3D shape 

indexes properties. Therefore, the 3D shape indexes selected are considered independently. We 

see that for Sphericity shape index selected as example in figure (Figure 5). 
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Figure 5. Shape indexes properties variations 

To calculate the 3D model sphericity, we chose among several equations that use volume and 

surface area [20] and radii [14] as follow: 
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With V is the volume, S is the surface area and R the rayon. 

The compactness of 3D model is provided by entropy shape index calculated from main axis 

[18] and by volume surface area ratio: 
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λ is the object’s eigenvalues along the main axes  
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The convexity shape indexes are computed by comparing the volume and surface area of the 

convex hull to the corresponding 3D model [20]:  

chS

S
nv =1Co      

chV

V
nv =2Co       (13) 

The elongation shape indexes of a 3D model are computed by comparing the lengths Lmax ,Lmid , 

and Lmin of the three edges of its bounding box. 

7. FROM SHAPE DESCRIPTORS TO SEMANTICS 

To find a concept representing the 3D model semantic information is not an easy task. The first 

criterion is to consider how human beings would describe objects. The system presented in this 

paper reduces the semantic gap including two main processes: One is automatically generating 

semantic concepts from 3D model shape indexes considered low-level visual features. Before 

this process, the problem of shape indexes is solved computing the efficient one in each 

category and efficient 3D shape indexes are selected experimentally (section 6). The other is 

spatial relationships combining directional, topological and distance relations. The system 

mainly use the following features : size as the more important visual feature, shape indexes to 

measure geometric aspects of 3D shape (e.g. sphericity, convexity,…) and spatial relationships 
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among the entities to derive again high-level semantic features. High-level semantic features 

are derived from size and shape indexes by using machine learning techniques and from spatial 

relationships using ontology to improve the semantic retrieval accuracy. The K-means 

algorithm is employed to obtain the clustering.  

7.1. Size and Shape indexes  

To describe object size, we cluster volume, surface area, diameter and ESD to construct the 

following visual terms [15] that are commonly used: Long, big, small, short, large, wide, high, 

thick and narrow. The shape of object has many meanings and shape indexes provide a set of 

terms commonly used to describe visually a set of objects using linguistic terms[15] like: round, 

angular, rectangular, symmetric, smooth, irregular, convex,... . Each shape index gives a set of 

visual concepts [22]. Table 2 shows an example of sphericity Concepts and Class Limits. 

Table 2.  Sphericity and Roundness Concepts in Class Limits 

sphericity Concepts Class Limits Geometric Mid-Point 

Very high sphericity 0.894-0.949 0.949 

High sphericity 0.775- 0.894 0.837 

Moderate sphericity 0.632-0.775 0.707 

Low sphericity 0.447-0.632 0.548 

Very low sphericity 0.000-0.447 0.316 

Roundness Concepts Class Limits Geometric Mid-Point 

Angular 0-0.125 0.09 

Sub- angular 0.125- 0.250 0.18 

Sub-rounded 0.250-0. 500 0.35 

Rounded 0. 500-1 0.71 

 
The number of visual concepts is defined by fixing the parameter K using k-mean algorithm in 

evaluation shape indexes step experimentally. The four categories representing different aspects 

are used in content based 3D model retrieval numerically to identify models.  

  

Figure 6. Other concepts to describe models 

To increase the knowledge base, all other shape indexes are directly added (e.g. rectangular, 

symmetric, smooth, irregular) giving each one a set of visual concepts or combining them to 

include other concepts (Figure 6).  Combining shape indexes, we can describe a 3D model by 
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several other concepts (e.g. discoid, very oblate spheroid, oblate spheroid blade). In this 

context, we exploit a diagram introduced by T. Zingg in 1935 [22] to plot the relative 

dimensions of the long, short, and intermediate axes of an object (Figure 6). Therefore, a set of 

new visual concepts are included. 

7.2. Spatial Relationships 

Shape indexes describing geometrical aspects of 3D shapes are not sufficient to represent the 

semantic information of 3D model ignoring the spatial relationships. The second process to 

reduce the semantic gap is to use the spatial relationship representing directional, topological 

and distance relationships to derive high-level semantic features. Therefore, four points from 

convex hull are considered: centroid (P1), the closest point to centroid (P2), the farthest point to 

centroid (P3), and the farthest point to P3 (P4).  In the first step, the center of gravity is located. 

Then, we calculate other points using Euclidean distance. 

From these points, we can compute polygons [23], lines, plans and angles. This set of entities 

allows the description of model independently of their size, rotation, translation or line type 

[23]. Angles allow computing various directions and to describe the directional relationships 

using the following concepts: Left, Right, Up, Down or Touch, and Front to describe 

topological relationships. The distances can be computed from a point to point, line to line, 

point to line, point to plan and line to plan. To describe the distance relationship between two 

entities, usually the following concepts are used: very near, near, far, far away. 

Based on the spatial relationships and their properties, we build the ontology-based 3D model 

retrieval using the web ontology language (OWL) [24]. 

8. ONTOLOGY BASED 3D MODEL RETRIEVAL  

8.1. Ontology 

Low-level  descriptors  for  the  measure,  size ,  shape  and  spatial relationships of  each  3D 

model are  extracted.   These descriptors are associated with high-level concepts to reduce the 

semantic gap and to form a vocabulary structured in ontology.   This ontology, independent of 

the application domain, is used as a guide for describing the models of a domain of expertise, as 

in [24] since experts often use and share a generic visual vocabulary to describe objects of their 

domain [15]. Our ontology is structured in two parts: 1) the first part is content based ontology 

containing numerical data for interpreting 3D model content. In this paper, the query by 

example is adopted to query the ontology. This query is reformulated to exploit SPARQL 

engine, then, allows the user to query Database using semantic concepts and provides a 

numerical similarity among models. 2) Concerning the second part, used for semantic based 3D 

Model retrieval, the goal is to encode generic visual concepts used by humans to describe real 

world objects and to develop a rich set of 3D model semantic representation for interpreting its 

semantic content. Therefore, an Ontology-Based 3D Model Retrieval independent of the 

application domain is proposed. 

8.2. Reasoning 

To augment the knowledge base with new concepts, a combination of semantic concepts is 

often required. The ontology facilitates the inference the spatial relation; therefore, other 

semantic property can be inferred by rule engine. The implicit rules are defined using OWL 

properties such as similarity owl: SameAs. 

 
<RDF:Description rdf:about="#sphericity"> 

<owl:sameAs rdf:resource="#3Dcircularity "/> 

</ Rdf: Description> 
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We  can  define  other  explicit  rules  to  infer  spatial  relationships  based  on  other 

relationships.  For example, if a 3D model is nearly circular but not compact it must be ragged 

or star-like. Another example, if a 3D model is angular and has rounded edges then it is sub-

angular (section 7). 

8.3. Query by semantic concepts 

In content based 3D model retrieval, a 3D model is directly chosen as a query in the database. 

As explained in section 8.1, Visual concepts are used for annotation with Ontology-Based 3D 

Model Retrieval purpose. Our approach combines query by example with the query by semantic 

concepts QBSC for semantic 3D model indexing and retrieval purposes transforming a query 

3D model into a set of visual concepts.  The QBSC retrieval system combines 3D models 

database M = {M1,..., MD} and a vocabulary V = {l1, ..., lv } of semantic labels . All database 

3D models are annotated with a label composed of words from V.  The elements composing 

annotations are structured using the logical operators {or, and}) to query a database. The result 

of retrieval is the sub-set of the indexed 3D models with associated annotations and numerical 

values. Therefore, retrieval can be based on the semantic description of the query 3D model. 

For example, the query “Sphericity = high and Roundness = angular” retrieves the 3D models 

annotated as containing angular with highSphericity.  

SPARQL engine admits the use of numeric values to compute the similarity on the retrieved 

models that are semantically similar. The query can easily be adapted to obtain the distance 

between any pair of 3D models. Therefore, the similarity between two models in this step is 

measured using a distance between their 3D shape indexes, measures, size, and moments of a 

distribution. 

9. EXPERIMENTAL RESULTS  

In this section, we evaluate content and semantic approaches for improving performance of 3D 

model retrieval in our (SB3DMR) system. To evaluate the content approach, first, several shape 

indexes are compared to select the best one as the feature vector in both the machine learning 

algorithm (section 5) and the (CB3DMR) system. Second, shape indexes selected (SID), 

measures (MD), moments of distribution (MDD), spatial descriptors (SD) and the combinations 

of them (SIMMSD) are also evaluated comparing the retrieval results of the single descriptors 

and combined descriptors. We tested our descriptors on the Princeton Shape Benchmark 

Database (PSB) [28] using L1 (Manhattan) as similarity measure. 

 

Figure 7: The precision-recall curves of our descriptors 
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As shown in figure 7, and for  the single  shape  descriptors,  shape index  and spatial 

relationship are  the  best  among  all  the  single  shape  descriptors. But, the combination of all 

descriptors performs better and it is effective in improving retrieval performance.  

The average times that are used to compute all shape descriptors is 0,114 seconds for a model, 

using the Princeton Shape Benchmark Database (Table 3). 

Table 3. Time to compute all descriptors 

Example  model 
Number of 

edges 

number  of 

polygons 

Number of 

vertices 
Time 

1 1638 546 341 0,128405697 

2 648 228 100 0,131520481 

3 1476 492 298 0,085323701 

4 1224 408 216 0,234916242 

5 40626 13542 7056 0,80845978 

Query by example approach (QBE) is used to query Database and we can directly retrieval 

models as shown in Figure 8 and 9. The 12 most similar models are extracting and return to do 

a user by 2D images. To visualize the 3D models in the 3D space, the user clicks the button or 

image. 

 

 

Figure 8. query model 

  
SID SD 
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MD MDD 

Figure 9. Models found examples for different descriptors 

We also   compared   our combined descriptor (SIMMSD) to four existing methods:   shape 

distribution (D2) [26], volume area ratio [19], 3D Harmonics [27] and 3D Moments descriptor.  

The figure 10 shows the Recall and Precision graphs for each method that our proposed 

descriptor performs well. 

 

Figure 10: The precision-recall curves of our descriptor compared with other methods 

In the second stage, semantic-based 3D model retrieval system (SB3DMR) is used to evaluate 

our semantic approach. QBSC is used to query knowledge base transforming a query 3D model 

(QBE) into a set of visual concepts. The result is the sub-set of the 3D models semantically 

selected exploiting SPARQL engine. In our system, size, shape index and spatial descriptors are 

associated with high-level semantic concepts and measures are considered entities to compute 

relationships. Other shape index concepts are directly added (e.g. Rectangularity, Ellipticity…) 

or inferred using rule engine. Moments of distribution descriptors are only used in CB3DMR 

system and Color descriptors are not implemented neither the texture descriptors in both 

approaches CB3DMR and SB3DMR. 
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Figure 11: The precision-recall curves to compare our descriptors 

The Recall and Precision is used also to evaluate the performance of semantic approach 

(SSIMMSD) compared to our content approach (Figure 11). The proposed approach 

performance is linked to the semantic gap reduced in two steps: In the first one using efficient 

shape indexes to annotate 3D models and in the second one using QBSC to query knowledge 

base structured in ontology containing a number of concepts analyzed and integrated directly or 

inferred using rule engine. 

10. CONCLUSION 

A new approach for semantic based 3D model retrieval is introduced in this paper. First, 

invariant descriptors are extracted and analyzed to efficient semantic annotation and to improve 

the retrieval accuracy. Shape descriptors selected are used as feature vector in machine learning 

to label 3D model and semantic concepts are structured in ontology to infer other concepts. 

Second, spatial relationships are extracted to increase the knowledge base and the QBSC is 

used to reduce the semantic gap exploiting SPARQL engine to retrieve 3D model. The new 

approach is tested with a large 3D database using the SB3DMR system developed, which 

allows us to show the relevance of our method. To improve our system, it is interesting to 

increase our knowledge base by other concepts to 3D model interpreting. Soon, the ontology 

will be enriched with color concepts. 
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