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ABSTRACT

In this paper, we apply backstepping control method to derive new results for the adaptive controller and
synchronizer design for the Arneodo chaotic system (1980), when the system parameters are unknown.
First, we design an adaptive backstepping controller to stabilize the Arneodo system to its unstable
equilibrium at the origin. Next, we design an adaptive backstepping controller to achieve global chaos
synchronization of the identical Arneodo chaotic systems with unknown parameters. MATLAB simulations
have been detailed to illustrate the proposed adaptive backstepping controller and synchronizer design for
Arneodo chaotic system with unknown parameters.

KEYWORDS

Backstepping Control, Adaptive Control, Adaptive Synchronization, Chaos, Arneodo System.

1. INTRODUCTION

Chaos theory is the qualitative study of unstable aperiodic behaviour in deterministic nonlinear
dynamical systems. A chaotic system is popularly known as nonlinear dynamical system, which
is very sensitive to initial conditions. In 1963, Lorenz discovered that a very small difference in
the initial conditions led to large changes in his deterministic weather model [1]. Other classical
3-dimensional chaotic systems include Rössler system [2], Newton-Leipnik system [3], Chen
system [4] and Lü system [5].

The problem of controlling a chaotic system aims to find a state feedback control law to stabilize
the chaotic system around its unstable equilibrium points [6-7]. We use active control method [8-
9], when the system parameters are known and we use adaptive control method [10-12], when the
system parameters are unknown.

The problem of synchronizing chaotic systems aims to find a state feedback control law to
synchronize a pair of coupled chaotic systems known as master-slave systems or drive-response
systems.

The seminal paper on synchronization of chaotic systems was published by Pecora and Carroll in
1990 [13]. Afterwards, chaos synchronization has found applications in many fields such as
physics [14-15], chemistry [16], ecology [17], biology [18], cardiology [19], neural networks
[20], robotics [21-22], secure communications [23-24].
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Some commonly used methods for addressing chaos synchronization problem are active control
method [25-30], adaptive control method [31-35], sampled-data feedback method [36], time-
delay feedback method [37], sliding mode control method [38-44], backstepping control method
[45-48], etc.

In this paper, we derive new results for the adaptive backstepping controller and adaptive
backstepping synchronizer for the Arneodo chaotic system ([47], 1980) with unknown
parameters. The stability results have been established using Lyapunov stability theory.
MATLAB simulations have been detailed for the adaptive controllers derived in the paper.

2. SYSTEM DESCRIPTION

The Arneodo system ([47], 1980) is given by the 3-dimensional dynamics
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x x

x x

x ax bx x x
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=
= − − −







(1)

where 1 2 3, ,x x x are the states and ,a b are constant, positive parameters of the system.

Arneodo system (1) undergoes chaotic behaviour when the parameter values are

7.5a = and 3.8b = (2)

Figure 1 depicts the strange chaotic attractor of the Arneodo chaotic system.

Figure 1. Strange Attractor of the Arneodo System
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When the parameter values are taken as in (2) for Arneodo system (1), the system linearization
matrix at the origin is given by

0 1 0

 0 0 1

1

A

a b

 
 =  
 − − 

which has the characteristic polynomial

3 2( ) det( )p I A b a    = − = + + −

Since , 0,a b > it is immediate that the coefficients of ( )p  are not all positive. Hence, by
Routh-Hurwitz criterion, the matrix A has an unstable eigenvalue. Thus, it is immediate
that the Arneodo system (1) is unstable at the origin.

3. ADAPTIVE BACKSTEPPING CONTROL OF THE ARNEODO CHAOTIC

SYSTEM

3.1 Main Results

In this section, we design an adaptive backstepping controller for globally stabilizing the Arneodo
system (1980) with unknown parameters.

Thus, we consider the controlled Arneodo system
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(3)

where u is a backstepping controller to be designed using the states 1 2 3, ,x x x and estimates

ˆˆ( ), ( )a t b t of the unknown parameters ,a b of the system.

The parameter estimation errors are defined by

ˆ( ) ( )

ˆ( ) ( )
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b

e t a a t

e t b b t

= −

= −
(4)

Note that
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= −

= −






(5)

The main result for the adaptive backstepping controller design for the Arneodo system (3) is
described by the following theorem.
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Theorem 1. The Arneodo chaotic system (3) with unknown parameters and is globally and

exponentially stabilized for all values of 3(0)x ∈R by the backstepping controller

2
1 2 3 1

ˆˆ( ) ( 3) (5 ) 2u t a x b x x x= − + − − − + (6)

where ˆˆ( ), ( )a t b t are estimates of the unknown parameters ,a b and the parameter update law is
given by

1 2 3 1

1 2 3 2

ˆ (2 2 )

ˆ (2 2 )

a a

b b

a x x x x k e

b x x x x k e

= + + +

= − + + +



 (7)

with gains , 0.a bk k >

Proof. We establish the main result using Lyapunov stability theory [48].

First, we define a Lyapunov function candidate

2
1 1

1
,

2
V z= (8)

where 1 1.z x=

Differentiating 1V along the solutions of the Arneodo system (3), we get

2
1 1 1 1 2 1 1 1 2( )V z z x x z z x x= = = − + +  (9)

Secondly, we choose the second Lyapunov function candidate as

( )2 2 2
2 1 2 1 2

1 1

2 2
V V z z z= + = + (10)

where 2 1 2.z x x= +

Differentiating 2V along the solutions of the Arneodo system (3), we get

2 2
2 1 2 2 1 2 3(2 2 )V z z z x x x= − − + + + (11)

Finally, for the systems (3) and (5), we consider the Lyapunov function candidate

( )2 2 2 2 2 2 2 2
2 3 1 2 3

1 1 1 1

2 2 2 2a b a bV V z e e z z z e e= + + + = + + + + (12)

where 3 1 2 32 2z x x x= + + .



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

147

Differentiating V along the solutions of the systems (3) and (5), we obtain

2 2 2 2
1 2 3 3 1 2 3 1

ˆˆ(3 ) (5 ) 2 a bV z z z z a x b x x x u e a e b = − − − + + + − + − + − − 
 (13)

Substituting the backstepping controller (6) into (13), we obtain

( )2 2 2
1 2 3 3 1 2

ˆˆa b a bV z z z z e x e x e a e b= − − − + − − − 

i.e.

( ) ( )2 2 2
1 2 3 3 1 3 2

ˆˆa bV z z z e z x a e z x b= − − − + − + − −  (14)

Substituting the parameter update law (7) into (14), we get

2 2 2 2 2
1 2 3 a a b bV z z z k e k e= − − − − − (15)

which is a negative definite function.

Hence, by Lyapunov stability theory [48], the proof is complete.

3.2 Numerical Results

For numerical simulations, we have applied the fourth order Runge-Kutta method (MATLAB)

with the step-size 810h −= to solve the Arneodo system (3) with the adaptive backstepping
control law (6) and the parameter update law (7).

The parameters of the Arneodo system (3) are taken as in the chaotic case, i.e.

7.5,   3.8a b= =

For the adaptive and update laws, we take 6ak = and 6.bk =

Suppose that the initial values of the estimated parameters are

ˆˆ(0) 15,   (0) 6a b= =

The initial state of the controlled Arneodo system (3) is taken as

1 2 3(0) 25,   (0) 16,   (0) 30x x x= = − =

When the adaptive control law (6) and the parameter update law (7) are used, the state trajectories
of the controlled Arneodo system converge exponentially to the equilibrium at the origin as
shown in Figure 2.

The time-history of the parameter estimates ˆˆ( ), ( )a t b t is shown in Figure 3.
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The time-history of the parameter estimation errors ( ), ( )a be t e t is shown in Figure 4.

Figure 2. Time Responses of the Controlled Arneodo Chaotic System

Figure 3. Time-History of the Parameter Estimates ˆˆ( ),  ( )a t b t
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Figure 4.  Time-History of the Parameter Estimation Error ,a be e

4. ADAPTIVE BACKSTEPPING SYNCHRONIZATION OF IDENTICAL ARNEODO

CHAOTIC SYSTEMS

4.1 Main Results

In this section, we derive new results for the adaptive backstepping synchronization of identical
Arneodo systems (1980) with unknown parameters.

As the master system, we take the Arneodo dynamics described by

1 2

2 3

2

3 1 2 3 1

x x

x x

x ax bx x x

=
=
= − − −







(16)

where , ( 1, 2,3)ix i = are the state variables and ,a b are unknown system parameters.

The system (16) is chaotic when the parameter values are taken as
7.5,   3.8a b= =
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As the slave system, we consider the controlled Arneodo dynamics described by

1 2

2 3

2

3 1 2 3 1

y y

y y

y ay by y y u

=
=
= − − − +







(17)

where , ( 1, 2,3, 4)iy i = are the state variables and , ( 1, 2,3, 4)iu i = are the nonlinear controllers

to be designed.

The synchronization error is defined by

,   ( 1, 2,3, 4)i i ie y x i= − = (18)

Then the error dynamics is obtained as

1 2

2 3

3 1 2 3 1 1 1( )

e e

e e

e ae be e y x e u

=
=
= − − − + +







(19)

We use backstepping control method to find an adaptive synchronizer ( )u t which uses the

states of the master and slave systems and also the estimates ˆˆ( ), ( )a t b t of the unknown
parameters , .a b

We define parameter estimation errors as

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

= −

= −
(20)

Note that

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

= −

= −






(21)

The main result for the adaptive backstepping synchronizer design for the Arneodo systems (16)
and (17) is described by the following theorem.

Theorem 2. The identical Arneodo chaotic systems (16) and (17) with unknown parameters and

is globally and exponentially stabilized for all values of 3(0), (0)x y ∈R by the backstepping
controller

1 1 1 2 3
ˆˆ( ) ( 3 ) (5 ) 2u t a y x e b e e= − + − − − − − (22)
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where ˆˆ( ), ( )a t b t are estimates of the unknown parameters ,a b and the parameter update law is
given by

1 2 3 1

1 2 3 2

ˆ (2 2 )

ˆ (2 2 )

a a

b b

a e e e e k e

b e e e e k e

= + + +

= − + + +



 (23)

with gains , 0.a bk k >

Proof. We establish the main result using Lyapunov stability theory [48].

First, we define a Lyapunov function candidate

2
1 1

1
,

2
V z= (24)

where 1 1.z e=

Differentiating 1V along the solutions of the error system (19), we get

2
1 1 1 1 2 1 1 1 2( )V z z e e e e e e= = = − + +  (25)

Secondly, we choose the second Lyapunov function candidate as

( )2 2 2
2 1 2 1 2

1 1

2 2
V V z z z= + = + (26)

where 2 1 2.z e e= +

Differentiating 2V along the solutions of the error system (19), we get

2 2
2 1 2 2 1 2 3(2 2 )V z z z e e e= − − + + + (27)

Finally, for the systems (19) and (21), we consider the Lyapunov function candidate

( )2 2 2 2 2 2 2 2
2 3 1 2 3

1 1 1 1

2 2 2 2a b a bV V z e e z z z e e= + + + = + + + + (28)

where 3 1 2 32 2z e e e= + + .

Differentiating V along the solutions of the systems (19) and (21), we obtain

[ ]2 2 2
1 2 3 3 1 1 1 2 3

ˆˆ( 3 ) (5 ) 2 a bV z z z z a y x e b e e u e a e b= − − − + + − − + − + + − −  (29)

Substituting the backstepping controller (22) into (29), we obtain

( )2 2 2
1 2 3 3 1 2

ˆˆa b a bV z z z z e e e e e a e b= − − − + − − − 
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That is,

( ) ( )2 2 2
1 2 3 3 1 3 2

ˆˆa bV z z z e z e a e z e b= − − − + − + − −  (30)

Substituting the parameter update law (23) into (30), we get

2 2 2 2 2
1 2 3 a a b bV z z z k e k e= − − − − − (31)

which is a negative definite function.

Hence, by Lyapunov stability theory [48], the proof is complete.

4.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two
systems of differential equations (16) and (17) with the adaptive control law (22) and the
parameter update law (23).

We take the parameter values as in the chaotic case, viz.

7.5,   3.8a b= =

We take the positive gains as 6ak = and 6.bk =

Suppose that the initial values of the estimated parameters are

ˆˆ(0) 2,   (0) 5a b= =

We take the initial values of the master system (16) as

1 2 3(0) 3,   (0) 8,   (0) 1x x x= = = −

We take the initial values of the slave system (17) as

1 2 3(0) 5,   (0) 10,   (0) 9y y y= = − =

Figure 5 shows the chaos synchronization of the identical Arneodo systems.

Figure 6 shows the time-history of the synchronization error 1 2 3, , .e e e

Figure 7 shows the time-history of the parameter estimates ˆˆ( ), ( ).a t b t

From this figure, it is clear that the parameter estimates converge to the original values
7.5a = and 3.8b = , respectively.

Figure 8 shows the time-history of the parameter estimation errors  , .a be e
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Figure 5. Adaptive Synchronization of the Arneodo Systems

Figure 6. Time-History of the Synchronization Error 1 2 3, ,e e e
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Figure 7. Time-History of the Parameter Estimates ˆˆ( ), ( )a t b t

Figure 8.  Time-History of the Parameter Estimation Error ,a be e
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5. CONCLUSIONS

In this paper, we have applied backstepping control method to derive new results for the adaptive
stabilization and synchronization of the Arneodo system (1980) with unknown system
parameters. First, an adaptive controller law was designed via backstepping control method for
stabilizing the Arneodo system (1980) to its unstable equilibrium at the origin. Next, an adaptive
synchronizer law was designed via backstepping control method for synchronizing identical
Arneodo systems. The main results derived in this paper were proved using Lyapunov stability
theory. Numerical simulations using MATLAB have been provided to validate and demonstrate
the effectiveness of the proposed adaptive backstepping control and backstepping synchronization
schemes for the Arneodo chaotic system.
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