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ABSTRACT 
 
We present the findings of analysis of elementary cellular automata (ECA) boundary conditions. Fixed and 
variable boundaries are attempted. The outputs of linear feedback shift registers (LFSRs) act as continuous 
inputs to the two boundaries of a one-dimensional (1-D) Elementary Cellular Automata (ECA) are 
analyzed and compared. The results show superior randomness features and the output string has passed 
the Diehard statistical battery of tests. The design has strong correlation immunity and it is inherently 
amenable for VLSI implementation. Therefore it can be considered to be a good and viable candidate for 
parallel pseudo random number generation.  
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1. INTRODUCTION 

 
Both LFSRs and CAs have been used extensively in a wide area of applications, particularly 
random number generation for Mont Carlo simulation, communications, gaming, cryptography 
and network security, to name a few, [1-8].  LFSRs, albeit simple in structure and design were 
proven to have comparatively weak statistical features when utilized in the production of pseudo 
random numbers (PRNs) for cryptographic applications, [2]. The weakness can be attributed to 
the linearity of the Exclusive-Or function used in the feedback network. Additionally, non-linear 
feedback shift registers have their problems as well [1]. On the other hand, a uniform 1-D CA, 
where one rule is implemented throughout the spatiotemporal evolution of the CA, have shown 
unique and useful characteristics, and have been suggested by [3,4] and others for use in random 
number generation. A notable impediment however, is the input to the boundaries of the CA, 
where, for practical realization restrictions, it is confined to a limited span length. For example, a 
necessary condition for an unbounded (bi-infinite) 1-D ECA to produce a pseudo random 
contiguous string of length ߦ ∈   is to have a span of ߦ + 2 cells long. Hence, a relatively long 
string of output will render the CA overly unsuitable. However, a shorter span ܭ ∈   implies a 
constant span length and therefore a fixed and limited number of cells. Hence, inputs are needed 
to feed the two extremities of the ECA. One approach attempted to solve this problem is to make 
the ECA evolve in a continuous loop (referred to as autonomous or periodic), in which case the 
peripheral cells (i.e. the last and the first extreme cells) are made adjacent to each other, as 
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depicted in figure 1. An alternative technique used earlier in the literature is to feed the peripheral 
cells with fixed inputs. Figure 2 depicts the various boundaries used from (2)ܨܩ.  
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Figure 1, ECA classical periodic boundary configuration 
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Figure 2, common elementary cellular automaton fixed boundary conditions. 
 
All these methods running under, for example, chaotic rule 30 on uniform one-dimensional ECAs 
have produced much shorter periods than the LFSR and drastically failed the well-established 
Diehard battery of tests [7]. This paper reports the findings of such fixed boundary conditions as 
well as the findings of a new method whereby a pair of uncorrelated LFSRs are used to generate 
the two boundary conditions. With this design the output string of the ECA evolving for time 
steps ܶ = 2௄, where ܭ is the span length, has shown at least comparable results when subjected 
to the Diehard battery of tests and produced attractive parallelism and enhanced the asymptotic 
complexity. The whole ECA span length output has been used in contrast to the single cell output 
of the previously published PRN sequence of Wolfram, [4].  This paper is arranged such that the 
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theoretical analysis and the proposed approach are included in the section called Preliminaries, 
while the results section discusses the improvement in the performance of the ECA. The 
conclusion finalizes the outcome of the paper.  
 
2. PRELIMINARIES 

 
For the purpose of this paper we will restrict our attention towards one dimensional binary 
cellular automaton, henceforth is referred to as Elementary Cellular Automaton (ECA). The cells 
are arranged on a linear finite lattice, with a symmetrical neighborhood of three cells and radius 
ݎ = 1. Each cell takes its value from the set  ܩ = {0,1, …  and since we defined the automaton {݌,
as an ECA, it implies that ݌ = 2. All cells are updated synchronously and the cells are restricted 
to local neighborhood interaction with no global communication. The ECA will evolve according 
to one uniform neighborhood transition function, which is a local function (rule) ݂:ܩଶ௥ାଵ →
ܶ where the ECA evolves after certain number of time steps ܩ ∈  . Out of a total of  ܲ௣మೝశభ rules 
we use rule 30 as suggested by Wolfram and adopt his numbering scheme [3, 4]. It follows that a 
one dimensional (1-D) ECA is a linear register of ܭ ∈  memory cells. Each cell is represented 
by ܿ௞௧  , where ݇ = ݐ and [ܭ:1] = [1,), that describes the content of memory location ݇ at time 
evolution step ݐ. Since ݌ = 2  then each cell takes one of two states from (2)ܨܩ. This implies the 
applicability of Boolean algebra to the design over (2)ܨܩ. A minimum Boolean representation of 
chaotic Rule 30 in terms of the relative neighborhood cells can be given by ܿ௞௧ାଵ = ܿ௞ାଵ௧ (ܿ௞௧ +
ܿ௞ିଵ௧ ) or ܿ௞௧ାଵ = ܿ௞ାଵ௧ + ܿ௞௧ + ܿ௞−ଵ௧ + (ܿ௞௧ ∙ ܿ௞−ଵ௧ ) mod2, where 2 ≤ ݇ ≤ ܭ − 2.  Figure 3 depicts 
the first logic expression.  
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Figure 3, illustration of Rule 30 operating on the present state of neighborhood at time step ݐ to produce the 
next state cell at time step ݐ + 1. 
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Furthermore, since the ECA is actually a finite state machine then the present state of the 
neighborhood ܿ௞ାଵ௧ , ܿ௞௧ , ܿ௞ିଵ௧  of cell ܿ௞௧  at time step ݐ and the next state ܿ௞௧ାଵ  at time step ݐ + 1, 
can be analyzed by the state transition table and the state diagram depicted in figure 4. 
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Figure 4, state machine analysis of Rule 30 
 

It can be seen from above that in order to evolve from the present time step t  to the next time 
step ݐ + 1, each cell at lattice  location ݇ would require the present state of itself ܿ௞௧  as well as the 
present state of the other two cells in its neighborhood ܿ௞ାଵ௧  and ܿ௞ିଵ௧ . Therefore, if the ECA of 
span length ܭ is allowed to expand freely leftwise and rightwise, as illustrated in figure 5, the 
number of cells required in one time step ݐ + 1 would be ܭ + 2. Hence, the span length needed 
for time evolution steps ܶ would be ܭ + 2ܶ. If the center cell of the seed is represented by 
ܿ௞଴ then the same cell will be represented by ்ܿ଴ after a total of ܶ time steps.  
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Figure 5, illustration of time evolution of a bi-infinite 1-D ECA 
 

Admittedly, since the role of the PRN generator is to stretch a seed into a concatenated sequence 
of numbers with certain high entropy, it can be shown that a cellular automaton is a viable 
platform that can perform this task quite efficiently. As a rudimentary, albeit illustrative example, 
let a bi-infinite ECA (i.e. without boundary conditions) running under rule 30 be used to stretch a 
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seed ܵ consisting of 13-bit, ܵ = 01100100001 = 321ு  by appending zeros to the least 
significant digits.  As depicted in figure 6, one configuration of the output could be 
1011110010100011110110011 or 17947B3H (when appending zeros at the least significant 
digits) by means of the concatenation scheme shown, or equivalently using bi-infinite ECA: 
321ு

௥௨௟௘ ଷ଴
ሱ⎯⎯⎯ሮ ுܤ17947 . When optimum complexity of the output string is desired the center bit 

only can be selected according to the scheme suggested by Wolfram, [4], in which case the size 
of the output string would be reduced drastically. In this case the output string would be 10001 or 
11H, when appending zeros at the least significant digits, i.e.  321ு

௥௨௟௘ ଷ଴
ሱ⎯⎯⎯ሮ 11ு. 

  
11K �

 
 

Figure 6, Simple time evolution of an unbounded 1-D ECA under GF (2). 
 

It follows that if the ECA is unbounded then for a string of T-bits formed by the concatenation of 
the center cell would require a seed of span length 2ܶ + 1 as can be deduced from the two 
figures. This condition will eventually lead to an unpractical span of the ECA. Hence, it is 
imperative that the ECA has to be bounded. The open literature is rich with research on fixing the 
size of the ECA and provides data for the extreme cells of the bounded ECA. Figure 2 gives a 
brief account of some common fixed boundary conditions. Figure 7 categorizes the boundary 
conditions to include the new boundary condition proposed in this paper using LFSR as a new 
source for boundary conditions. The miscellaneous category includes either some ad hoc 
permutations of the fixed boundaries or some fixed sequence of inputs. The autonomous 
category, commonly referred to as periodic, makes the extreme cells of the ECA adjacent, as 
illustrated in figure 2. The resultant ECA becomes circular as depicted in figure 8, and with time 
evolution it can be visualized as a cylinder. The expression for the extreme left and right cells at 
time step ݐ + 1 are respectively ܿ௄ିଵ௧ାଵ = ܿ଴௧(ܿ௄ିଵ௧ + ܿ௄ିଶ௧ ) and ܿ଴௧ାଵ = ܿ௄ିଵ௧ (ܿଵ௧ + ܿ଴௧). 
 

 
Figure 7, Categorization of a fixed span 1-D ECA boundary condition sources. 
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Figure 8, another illustration of the autonomous (periodic) boundary conditions. 
 

The proposed approach of using LFSRs as new source of boundary conditions is illustrated in 
figure 9. The next state of all cells of the ECA except the end cells is represented, for rule 30, by  
ܿ௞௧ାଵ = ܿ௞ାଵ௧ (ܿ௞௧ + ܿ௞ିଵ௧ ) for 2 ≤ ݇ ≤ ܭ − 2 while the next state of the two extreme cells are 
represented by ܿ௄ିଵ௧ାଵ = ଴௧ାଵ(ܿ௄ିଵ௧ܮ + ܿ௄ିଶ௧ ) for the left hand cell while ܿ଴௧ାଵ = ܿଵ௧(ܿ଴௧ + ܴ଴௧ାଵ) 
represents the next state of the right hand cell. Each of the two LFSRs have taps derived from a 
set of (ܮ − 1) primitive polynomials, where  is Euler’s totient function. It can be seen that the 
span lengths of the two registers can be different as well as the choice of the primitive 
polynomials. When the spans are different then different totient functions will be derived. The 
size of the registers spans and consequently the Euler’s totient functions can play a significant 
role in enhancing the complexity of the output pseudo random sequences derived from the 
elementary cellular automaton. It can be seen that for a total of ܶ ∈  time evolution of the ECA, 
the complexity of the output string is enhanced by a factor of  
(ܶଶ ∗ ݈݃݋ଶܶ ∗ ൫൫݈݃݋ଶܶ൯)ଶ൯ where ൫݈݃݋ଶܶ൯ is the totient function of each. The above 
expression assumes each LFSR is constructed from a number of memory elements ܰ = ݈݃݋ଶܶ 
for maximum complexity enhancement. 
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Figure 9, Block Diagram Representation of the Proposed ECA System, reversing the order of indexing, 

such that the most significant cell is the extreme left hand cell and vice versa for the extreme right hand cell 
which becomes the least significant cell. 
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3. ECA RULE SPACE 
 
In order to test the statistical properties of the new proposed design, we developed a suite of 
programs emulating the types of boundary conditions as classified in figure 7 for a range of spans 
for both the ECA and the LFSRs used as boundaries. We will include snapshots of results 
obtained for representative runs on the Diehard battery of tests [8], which has been adopted in this 
paper due to its well established stringent requirements on the statistical randomness of the output 
string. The rule space of the 1-D ECA where the alphabet ݌ ∈ (2)ܨܩ = 2 , consists of  ݌௣మೝశభ =
2ଶయ = 256 distinct rules. The numbering scheme adopted here is attributed to Wolfram, [3], so is 
the classifications of the rule space. Although Wolfram’s ECA rule classification is essentially 
based on the phenomenological observations of the space-time images it seems to be quite 
effective. Many other scholars researched the classification but their findings more or less agree 
with Wolfram’s classification. The rule space is divided roughly into four classes: 
 

I. Evolution leads to homogeneous fixed points. 
II. Evolution leads to periodic configurations.  
III. Evolution leads to chaotic, aperiodic patterns. 
IV. Evolution produces persistent, complex patterns of localized structures. 

 
Class III, the chaotic rules, is the only class that can be useful for pseudo random number, when 
used in a uniform or homogeneous configuration. The other three classes produce too short 
periodic patterns for such applications. Since the output string of any pseudo random number 
generator has to satisfy certain well established conditions, such as uniformity and very long 
periods, the rule space can be reduced to a small sub-space. For example, in order to satisfy the 
uniformity condition, i.e. the density of the zeros and ones in the output sequence have to be 
asymptotically the same, it follows that the minterms of the chaotic rules must be balanced. This 
means that the number of minters that are asserted must equal the number of miters that are 
deasserted, see figure 4. Consequently the rule space will be reduced to a sub-space of 
size  ଶయ!

ସ!(ଶయିସ)!
= 70. Furthermore, it has been found that sixteen rules out of this number are 

actually chaotic and can tentatively be considered suitable for pseudo random number generation. 
These rules are: 30,45,60,75,86,89,90,101,102,105,135.149,150,153,165,195. Some of these rules 
are linear where the logical expression of the rule depends only on the linear primitive, i.e. the 
Exclusive-Or primitive (mode 2). These are rules 60, 90, 102, 105,150, 153, 165, and 195. The 
remaining eight rules are: 30, 45, 75, 86, 89, 101, 135, and 149. These two groups can be further 
grouped into equivalence rules, [9], producing the following sub-groups with their group leaders: 
 

1. Non-linear group 30 consisting of the four rules: 30, 86, 135 and 149 
2. Non-linear group 45 consisting of the four rules: 45, 75, 89 and 101 
3. Linear group 60 consisting of the four rules: 60, 102, 153, 195 
4. Linear group 90 consisting of the two rules: 90, 165 
5. Linear group 105 consisting of the two rules: 105, 150 

Rule 86 is the reflection of rule 30 while rule 149 is the reflection of rule 135. Also rule 135 is the 
negation of rule 30. Likewise with group 45, rule 101 is the reflection of rule 45 while rule 89 is 
the reflection of rule 75. The dynamical behavior of the rules within any group is statistically 
similar although the time-space diagrams can be different in reflection or negation. Examples will 
be given to highlight this feature. It is apparent that when the rule is used in a uniform 
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configuration, i.e. using just one rule throughout the ECA time evolution, the linear rules will 
have lower complexities than the non-linear rules, and therefore will be less favorable for strong 
pseudo random number generation. We will, therefore pay more attention to the two non-linear 
groups and concentrate the efforts on the two rule leaders 30 and 45.  
 
4. SAMPLES 

 
The following will show the results of running the ECA on the two rules 30 and 40 for a variety 
of span length ܭ, time evolution ܶ, representative sample of seeds and the different boundary 
conditions quoted in figures 2 and 7. 
 
4.1. Fixed Boundary Conditions 

 
The space-time images shown in tables 1and 2 illustrate the dynamical behavior of sub-group rule 
30 for span length ܭ = 15 and time evolution ܶ = 60 with fixed boundary conditions 00, 01, 10 
and 11. The initial seed consists of the center cell only being asserted while the rest are 
deasserted. The reflection property of rule 30 and 86 as well as rule 135 and rule 149 is quite 
obvious in the images. The negation feature is also apparent when examining the self similar 
shapes (or fractals), as these are being filled with the complement color. Another observation is 
that while the whole rule 30 sub-group belongs to class III, which is chaotic, the space-time 
patterns show that the cellular automaton evolves to class I, which is fixed point, when the two 
fixed boundaries are 00. It also evolves to class I when the two boundaries are similar and 11 for 
rules 135 and 149. However, when the fixed boundaries are dissimilar, the ECA evolves to class 
II, which is periodic configurations, with a short period of 2. The same is true for rules 30 and 86 
when the boundaries are 11. When the seed is changed to random input, most of the features 
captured in the previous tables 1 and 2 are repeated in tables 3 and 4. For example the ECA also 
exhibits evolution from rules that belong to class III to class I dynamics when the two boundaries 
are the same, i.e. 00 or 11. The dissimilar boundaries, i.e. 01 or 10 transforms the ECA into class 
II dynamics with very short periods. It is also observable that the reflection property is not as 
clear and identical as was the case with the center seed. It should be noted here that the behavior 
of the ECA can be very sensitive to the seed. For example the ECA with repetitive patterns of 
01in the seed will keep the ECA in the same state if the boundaries are 11. There are other seed 
patterns that cause either similar action or produce very short periods and transform the ECA into 
class II. The same approach has been attempted with rule 45 sub-group. The results are displayed 
in tables 5-8. Note that the same random seed was used for all the four fixed boundaries. Similar 
conclusions can be drawn with rule 45 sub-group. These rules also exhibit self similar (fractal) 
patterns but they are different from those encountered with rule 30 sub-group. The reflection 
property is again quite observable in the patterns of rule 45 and its reflection rule 101 as well as 
rule 75 and its reflection rule 89 when the fixed boundary conditions are the same, i.e. 00 or 11. It 
is also easy to observe that when the ECA under the rules of sub-group 45 is transformed into 
class II, the period is generally longer than those encountered with sub-group 30. This does not 
mean that sub-group 45 can produce better random results than sub-group 45. The inverse is 
actually true and will be observed when the ECA is run in the periodic configurations or with 
LFSR boundary conditions. Rule 30 has always shown somehow better random sequences than 
rule 45 and its sub-group. In summary, both groups can evolve to class I or II with short periods 
when the ECA is subjected to fixed boundary conditions. It is obvious that the dynamics of the 
ECA with the fixed boundary conditions, under all the different fixed boundary conditions cannot 
make such configurations viable for pseudo random number generation. Therefore running the 
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ECA with these boundary conditions for a longer time evolution will not produce any useful 
results. Hence, the ECA under these conditions cannot be of use for the applications in 
consideration in this paper. 

Table 1 
 

Rule 30 sub-group 
Center Seed 
= 15K , = 60T  

Fixed Boundary Conditions 
00 01 

Rule 30 Rule 86 Rule 135 Rule 149 Rule 30 Rule 86 Rule 135 Rule 149 

        
 

Table 2 
 

Rule 30 sub-group 
Center Seed 
= 15K , = 60T  

Boundary Conditions 
10 11 

Rule 30 Rule 86 Rule 135 Rule 149 Rule 30 Rule 86 Rule 135 Rule 149 
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Table 3 

 
Rule 30 sub-group 

Random Seed 
= 15K , = 60T  

Boundary Conditions 
00 01 

Rule 30 Rule 86 Rule 135 Rule 149 Rule 30 Rule 86 Rule 135 Rule 149 

        
 

Table 4 
 

Rule 30 sub-group 
Random Seed 
= 15K , = 60T  

Boundary Conditions 
10 11 

Rule 30 Rule 86 Rule 135 Rule 149 Rule 30 Rule 86 Rule 135 Rule 149 
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Table 5 

 
Rule 45 sub-group 

Center Seed 
= 15K , = 60T  

Fixed Boundary Conditions 
00 01 

Rule 45 Rule 101 Rule 75 Rule 89 Rule 45 Rule 101 Rule 75 Rule 89 

        
 

Table 6 
 

Rule 45 sub-group 
Center Seed 
= 15K , = 60T  

Fixed Boundary Conditions 
10 11 

Rule 45 Rule 101 Rule 75 Rule 89 Rule 45 Rule 101 Rule 75 Rule 89 
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Table 7 

 
Rule 45 sub-group 

Random Seed 
= 15K , = 60T  

Fixed Boundary Conditions 
00 01 

Rule 45 Rule 101 Rule 75 Rule 89 Rule 45 Rule 101 Rule 75 Rule 89 

        
 

Table 8 
 

Rule 45 sub-group 
Random Seed 
= 15K , = 60T  

Fixed Boundary Conditions 
10 11 

Rule 45 Rule 101 Rule 75 Rule 89 Rule 45 Rule 101 Rule 75 Rule 89 

        
 

4.2. Periodic and LFSR Boundary Conditions 
 

Using the same initial random seed and for the same span length and time evolution, i.e. 
ܭ = 15 , ܶ = 60 , the ECA was run under the two sub-groups of rules 30 and 45 and the space-
time images of these runs are displayed in tables 9 and 10, respectively. As previously observed, 
the negation property is quite noticeable in contrast to the reflection property. For example, rule 
30 and its reflection rule 86 do not show clearly the action of reflection. However, the two rules 
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show different outputs as far as the patterns are concerned. The same thing applies to the ECA 
bounded by the LFSR inputs. The span length of the LFSR uses was just 7-bit producing a 
maximum cycle length of 2଻ − 1 = 127 bit. Although the seed and the rule are the same but the 
space-time images are quite different. It should be clear that the difference is due to the effect of 
the boundary inputs that will propagate at the full speed, or speed of light, as some scholars would 
like to call. As the ECA evolves more inputs are injected into the ECA making the effort of 
reckoning the inputs from the LFSR an exhaustive process. The data was subjected to a cycle 
catcher program and it was found that all these runs did not show any repeated cycles even for 
time evolution of = 100 . The ECA was then run for longer time evolution and different span 
lengths. The amount of data collected for each run has to comply with the requirement of the test 
suite. The Diehard battery of test suite was selected in this research due to its popularity and 
stringent tests in academia and beyond. The amount of data required should exceed 80Mbit. The 
Diehard suite package transforms the data into binary data and then run the test suite on the 
binary data for the 15 tests. The last three tables, 11, 12 and 13 show the findings of the test suite. 
Table 11 shows the results for the periodic boundary conditions and for span lengths, 32, 33, 64, 
128, 256 and 512 bit. The best results are, as expected with the longest span length of 512 
although it passed 8 out of a total of 15 tests. Some of the tests could not be passed, e.g. tests 2, 4 
and 8. Table 12 shows the results of running the ECA with LFSR boundaries. The two extreme 
boundary cells were generated from two different and uncorrelated LFSRs of span length 15-bit 
each. The improvement is clear. The ECA have passed 10 tests at a span length of 256-bit and 
failed 5 tests as compared to the periodic boundary conditions that passed 9 and failed 6. It is 
even better than the results of the periodic boundary conditions with double the size of the span 
length, 512-bit. The LFSR span lengths were increased such that they match the span length of 
the ECA. This configuration had shown superior results and new configuration have passed all 
the tests even down at span length of just 27-bit long. The results are displayed in table 13. The 
space-time images of the LFSR bounded ECA still show the standard rule 30 fractals but the 
effect of the perturbations of the boundaries from the large cycles of the two LFSRs is expected 
to have reduced the correlations of the cites. The output data is composed of the concatenation of 
all the states of the cellular automaton during its entire time evolution. It seems that the injection 
of the uncorrelated inputs from the two uncorrelated LFSRs cause to break the correlation that 
normally exists due to the local action of the local rule. Each bit from a boundary entry will 
propagate at full speed and meet the effect of the propagation of the other boundary at half the 
ECA span length. As there is a continuous stream of uncorrelated data being injected the global 
dependence of the cells will be highly reduced. However, the local dependence will continue to 
show in the shape of the usual fractals. It is expected that the complexity enhancement achieved 
in this configuration will make the design a viable scheme for the generation of cryptographically 
strong pseudo random numbers.   
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Table 9 
 

Rule 30 sub-group 
Random Seed 
= 15K , = 60T  

Periodic Boundary Conditions LFSR boundaries 
Rule 30 Rule 86 Rule 135 Rule 149 Rule 30 Rule 86 Rule 135 Rule 149 

        

 
Table 10 

 
Rule 4 sub-group 

Random Seed 
= 15K , = 60T  

Periodic Boundary Conditions LFSR boundaries 
Rule 45 Rule 101 Rule 75 Rule 89 Rule 45 Rule 101 Rule 75 Rule 89 
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Table 11, Diehard tests results for 1-D ECA of variable spans and with autonomous boundaries. 

S32 S33 S64 S128 S256 S512
T_1 0.4913 0.6089 0.4871 0.5683 0.5976 0.7166
T_2 1 1 1 1 1 1
T_3 0.759 0.7895 0.5035 0.4525 0.643 1
T_4 1 1 1 1 1 1
T_5 1 1 0.4973 0.5195 0.5777 0.7068
T_6 1 1 0.804 0.7769 0.4856 0.7756
T_7 1 1 0.999 1 1 1
T_8 1 1 1 1 1 1
T_9 1 1 0.6235 1 0.431 0.3777

T_10 1 1 0.4376 0.6587 0.489 0.5068
T_11 1 1 0.5549 0.5016 0.457 0.4066
T_12 1 1 1 0.019 1 1
T_13 0.3985 0.4106 0.337 1 0.2194 0.375
T_14 1 1 1 0.3576 1 1
T_15 1 0.8809 1 1 0.8697 0.8524

3 pass                         
12 fail

4 pass                             
11 fail

8 pass                            
7 fail

8 pass                            
7 fail

9 pass                            
6 fail

8 pass                            
7 fail

P_
V

A
LU

ES

Summary
 

 
Table 12, Diehard tests results for 1-D ECA of variable spans and with two LFSRs as boundaries of 

span15-bit each. 
 

S27 S28 S29 S30 S64 S128 S256
T_1 0.8893 0.5869 0.6834 0.005 0.2502 0.5655 0.5638
T_2 1 1 1 1 1 1 1
T_3 0.402 0.2845 0.52 0.485 0.681 0.0795 0.144
T_4 0.997 1 1 1 1 1 1
T_5 1 1 1 1 0.4418 0.5753 0.4226
T_6 1 1 1 1 0.8211 0.6235 0.7855
T_7 1 1 1 1 0.8848 0.992 1
T_8 1 1 1 1 1 1 1
T_9 1 1 1 1 0.4273 0.0373 0.5168

T_10 1 1 1 1 0.2837 0.00035 0.0049
T_11 1 1 1 1 0.2291 0.1859 0.0362
T_12 1 1 1 1 1 1 1
T_13 1 0.0537 0.6473 0.4943 1 0.1131 0.0442
T_14 1 1 1 1 1 1 1
T_15 1 1 1 1 1 1 0.9056

3 pass                       
12 fail

3 pass                      
12 fail

3 pass                         
12 fail

3 pass                          
12 fail

8 pass                             
7 fail

9 pass                               
6 fail

10 pass                                 
5 fail

P_
V

A
L

U
E

S

Summary
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Table 13, Diehard tests results for ECA of variable spans and with 2LFSRs for boundaries of same as the 

ECA spans. 
 

S27 S28 S32 S64 S128
T_1 0.242 0.43 0.3046 0.2398 0.2695
T_2 0.0744 0.4376 0.1128 0.5284 0.2123
T_3 0.8442 0.6365 0.3417 0.3317 0.5543
T_4 0.4688 0.47 0.4323 0.2713 0.0628
T_5 0.52235 0.4697 0.5166 0.4421 0.5454
T_6 0.4755 0.32 0.5486 0.5584 0.4654
T_7 0.6092 0.485 0.3151 0.4642 0.6849
T_8 0.5581 0.5083 0.4601 0.5009 0.6135
T_9 0.2253 0.6181 0.6947 0.5722 0.5413

T_10 0.8818 0.2469 0.9452 0.728 0.0897
T_11 0.7111 0.3404 0.1944 0.7524 0.5147
T_12 0.456 0.423 0.9646 0.9847 0.1522
T_13 0.3026 0.1387 0.2413 0.1063 0.3202
T_14 0.2085 0.6276 0.1753 0.3521 0.4801
T_15 0.343 0.5539 0.7578 0.4428 0.4845

15 pass                                
0 fail

15 pass                                 
0 fail

15 pass                                        
0 fail

15 pass                                         
0 fail

15 pass                                          
0 fail

P_
V

A
L

U
E

S

Summary

 
 
5. CONCLUSIONS 

 
The string of contiguous stream data collected from evolution of the 1-D ECA for the center cell 
of various boundary conditions were tested by the 15 Diehard battery of tests. The various fixed 
boundary conditions failed the diehard tests almost completely and were considered unworthy 
reporting. The autonomous boundary conditions (i.e. periodic) have shown far better statistical 
properties than the fixed boundary conditions. However, it still falls far below the minimum 
requirements of the diehard tests for reliable considerations in producing dependable pseudo 
random numbers even for long spans of the ECA (512-bit). When the boundaries were fed from 
LFSRs results did not improve significantly until the span of the LFSRs were comparable to that 
of the ECA. The results steadily improved up to the upper bound when the two spans were 
comparable. It can be concluded that the new approach can produce good pseudo random 
numbers even at modest size of the ECA (i.e. 27-bit). More in depth study of the results show that 
the new approach produced superior p-values than the best of the autonomous results. It is easy to 
expect that the fixed boundary conditions cause an ECA running under Rule 30, which is in group 
III (i.e. the chaotic class) to evolve into Group I or II (i.e. point attractors or limit cycles with 
extremely small periods), according to Wolfram’s ECA classification, [4]. Therefore, such 
boundary conditions preclude these ECAs from achieving strong pseudo random number 
generators. The autonomous (periodic) boundary conditions, on the other hand gave better results 
which is indicative of better distribution during ECA evolution. However, the periods of this type 
were far lower than the maximum length obtainable from LFSRs. The proposed design has an 
added favorable feature when considering the initial seeds. It is clear that all the possible 2௄  K-
tuples can be used as seeds including the all 0’s and all 1’s that usually yield quiescent states. 
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This is not possible with any other known boundary conditions including the autonomous type. 
All the tests were performed using a single one as the initial seed. This is admittedly not the case 
in a practical situation. Some patterns were observed during the initial evolution of the ECA but 
did not persist. Although these initial patterns did not negatively impact the diehard tests it was 
found that avoiding the use of trinomials for the LFSRs and replace them with primitive 
polynomials of better distribution of the coefficients managed to remove these patterns. One 
salient feature of the design is the almost total destruction of the cross-correlation between 
different cells. This strong correlation is an inherent feature of LFSRs that can be observed as 
maximum and constant between any two cells of the LFSR and as linear patterns on the diagonal 
ridge between the outputs of the LFSR cells. An immediate consequence is the ability to use the 
ECA as a parallel source of pseudo random numbers that can be considered a strong candidate for 
parallel data compaction (signature analysis) in VLSI testing [8]. This is justified since the 
structure as depicted in figure 9 presents a simple memory-based and inherently parallel design 
that is amenable to large scale integration. Inspection of rule 30 reveals that the function is 
surjective. Since reversibility implies bijection, it follows that the proposed system is not clear cut 
reversible. Hence analytical techniques may not be available to adequately and inversely describe 
the spatiotemporal data evolution in at most polynomial time. For a LFSR of span 
ܵ, there are 2ே − 1 N-tuple words as seeds. The two LFSRs are uncorrelated and running 
independently and synchronously, hence the effective input computational complexity from these 
registers to the ECA would be 2ே − 1ଶ. The 1-D ECA of span K can be initialized with a total of 
2௄  K-tuple words as initial seeds. There are a total of 2ଶయrules, which is the rule space of a1-D 
ECA.  Thus the computational asymptotic complexity of the system is ((2ே − 1)ଶ ∗ 2ଶయ ∗
2௄) ≅ (2ଷ௄) for ܭ ≅ ܰ, as compared to 2N for the LFSR and (2௄) for a 1-D ECA with 
autonomous boundary conditions. 
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