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ABSTRACT

This paper explores the application of artificial neural networks for online identification of a multimachine
power system. A recurrent neural network has been proposed as the identifier of the two area, four machine
system which is a benchmark system for studying electromechanical oscillations in multimachine power
systems. This neural identifier is trained using the static Backpropagation algorithm. The emphasis of the
paper is on investigating the performance of the variants of the Backpropagation algorithm in training the
neural identifier. The paper also compares the performances of the neural identifiers trained using variants
of the Backpropagation algorithm over a wide range of operating conditions. The simulation results
establish a satisfactory performance of the trained neural identifiers in identification of the test power
system.
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1. INTRODUCTION

With a continuously increasing demand for electric power worldwide, there is an impending need
of augmenting the power carrying capacity of the existing power grid. The existing power grid
requires to be “smartened up” to improve the reliability, security and efficiency of the electric
power system. Continuous monitoring and intelligent control of the grid activities is the key to a
smart grid. The conventional controllers require acceptable approximate mathematical models of
the power systems and the involved uncertainties but with increasing complexities in the
contemporary power grid, it is becoming tedious and time consuming to generate such models.
Artificial neural networks (ANNs) have been known to have the capability to learn the complex
approximate relationships between the inputs and the outputs of the system and are not restricted
by the size and complexity of the system [1]. The ANNs learn these approximate relationships on
the basis of actual inputs and outputs. Therefore, they are generally more accurate as compared to
the relationships based on assumptions. This imparts immense potential to the ANNs for use in
identification and control of the modern power systems. ANNs have been proposed for detection
of power system harmonics [2-4], fault section estimation [5-6], fault diagnostics of power plant
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[7] and in protection strategies [8-9]. Applications of ANNs in reactive power transfer allocation
[10] and ATC estimation [11] have been reported. Stability issues like damping of oscillations
[12-14], prediction of loadability margins [15] and voltage contingency screening [16] have been
successfully addressed by ANN based solutions. ANNs have the potential of application for real-
time control [17]. Accurate system identification is of immense importance in power system
operation and control. The capabilities of the ANNs make them a suitable choice for this
application. Multilayer feedforward artificial neural networks using Backpropagation algorithm
for training have been proposed for successful online model identification of synchronous
generator [18] and a UPFC equipped single machine infinite bus system [19]. A neural network
based estimation unit has been proposed to estimate in real time, the parameters for an interfacing
scheme for grid-connected inverters and simultaneously estimating the grid voltage [20]. The
authors have employed neural network for system identification for predictive control of a
multimachine power system operating under widely varying operating conditions and subjected to
transient conditions [21].

The work undertaken proposes to use a recurrent neural network for online identification of a
multimachine power system. Since the Backpropagation algorithm has been successfully
employed to train system identifiers as already reported in literature [18-19], this work aims to
investigate the training performance of some of the variants of the Backpropagation algorithm in
training the proposed neural identifier. The testing performances of the neural identifiers trained
using variants of the Backpropagation algorithm are also compared to establish the accuracy of
the differently trained identifiers.

This paper is organized as: Section 2 presents a brief overview of the recurrent neural networks
including the types of architecture for training such networks. Section 3 describes the system
under consideration and outlines the objectives of this work. Section 4 presents the architecture of
the proposed neural identifier. Section 5 discusses the training of the proposed identifier and
presents a brief overview of the variants of the Backpropagation algorithm used for training the
proposed neural identifier in this work. The simulation results of training and testing the proposed
identifier and the discussions are presented in section 6 followed by the conclusions in section 7.

2. RECURRENT NEURAL NETWORKS

Neural networks are broadly classified as static networks and dynamic networks. In case of static
networks, the output of the network is dependent only on the current input to the network and is
calculated directly from the input passing through the feedforward connections. There are no
delay elements and no feedback elements present in the static networks. In dynamic networks, the
output of the network depends on the current input as well as on current and/or previous inputs
and outputs i.e. states of the network. These networks therefore, are said to possess memory and
can be trained to learn sequential or time varying patterns [22], making them more powerful than
the static networks. Dynamic networks are further divided into two categories: those having only
feedforward connections with delays at the input layer only/or distributed throughout the network
and those having feedback or recurrent connections.

The recurrent neural networks have the capability to predict the future values based on the values
at the preceding instants. The nonlinear autoregressive network with exogenous (independent)
inputs i.e. NARX, is a recurrent dynamic network defined by
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Where y(k) and u(k) are the outputs and inputs at the kth instant and ny and nu are the number of
time steps for which the current output is regressed on the output and input respectively. A
diagram showing the implementation of the NARX model using a feedforward neural network to
approximate the function f in (1) is given in Figure 1.

Two different architectures have been proposed to train a NARX network [22]. First is the
parallel architecture as shown in Figure 2, where the output of the neural network is fed back to
the input of the feedforward neural network as part of the standard NARX architecture. In
contrast, in the series-parallel architecture as shown in Figure 3, the true output of the plant (not
the output of the identifier) is fed to the neural network model as it is available during training.
This architecture has two advantages [22]. The first is a more accurate value presented as input to
the neural network. The second advantage is the absence of a feedback loop in the network
thereby enabling the use of static backpropagation for training instead of the computationally
expensive dynamic backpropagation required for the parallel architecture. Also, assuming the
output error tends to a small value asymptotically so that , the series parallel

model may be replaced by a parallel model without serious consequences if required.

Figure 1. Implementation of NARX model

Figure 2. Parallel architecture of training a NARX model
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Figure 3. Series-Parallel architecture of training a NARX model

3. SYSTEM DESCRIPTION

The two area, four machine system with active power flowing from Area 1 to Area 2 [23],
proposed to study the electromechanical oscillations of a multimachine power system is taken as
the test system for the work undertaken. In spite of the small size of the system, its behaviour
mimics the behaviour of a large power system in actual operation. Each area comprises of two
900 MVA machines and the two areas are connected by a 220 kV double circuit line of length
220 km. The load voltage profile is improved by installing additional 187 MVAr capacitors in
each area. The system under study is equipped with PSS and has a UPFC installed between bus
11 and bus 12 with bus 11 common to the shunt and series converters and the other side of the
series converter connected to bus 12 as shown in Figure 4.

Figure 4. 2-Area system equipped with UPFC

The effective utilization of the UPFC in the system requires implementation of various control
schemes, many of which require the system to be identified. In this work, the active power at bus
12, corresponding to a specific value of the quadrature component of the series voltage
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injected by the UPFC is to be predicted under various operating conditions. This next step value
of is predicted using the values of and at some preceding instants.

Objectives

i. To design a neural identifier to predict the next step value of on the basis of the

values of and at preceding time instants.

ii. To investigate the performances of the variants of the Backpropagation algorithm for
training the neural identifier.

iii. To investigate the performances of the neural identifiers trained using the variants of the
Backpropagation algorithm.

iv. To propose the most suitable of the considered variants of the Backpropagation
algorithm for online application for the system under consideration.

4. ARCHITECTURE OF THE NEURAL IDENTIFIER

A neural identifier that predicts the next step value of on the basis of the values of and

at four preceding instants is proposed. As the objective clearly requires a dynamic neural

network, the NARX model is used. A two layer neural network with sigmoidal hidden layer
neurons and linear output layer neurons can identify any system with any degree of accuracy,
subject to the availability of sufficient number of hidden neurons [24]. Therefore, the NARX
model is implemented using the two layer feedforward neural network. Since the true value of the
output for the preceding instants are available, the series parallel architecture is used. As the

values of and at four preceding instants are to be used, the total number of inputs to the

neural network is eight as shown in Figure 5. The number of sigmoidal neurons in the hidden
layer has been fixed at thirteen using trial and error approach and the output layer has one linear
neuron.

Figure 5. Architecture of the proposed neural identifier
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The system under consideration is modelled and simulated using MATLAB / SIMULINK to
generate data for training and testing the proposed neural identifier. The operation of the system is
simulated by applying restricted within the range +0.1 pu and -0.1 pu (restricting the

quadrature component of the series injected voltage to 10% of the nominal line-to-ground
voltage) and sampling the input, and output, at the rate of 32 samples per second. The

neural network is presented with the following inputs

And

for predicting For linear input neurons, the output of the input neurons is same as

the input given by

The output of the hidden layer (layer 1), consisting of 13 sigmoidal neurons is given by

Where, is the weight matrix between input and hidden layers and is the bias to

the hidden layer neurons. Similarly, the output of the output layer (layer 2), comprising of one
linear neuron is given by

Where, is the weight matrix between hidden and output and layers and is the bias to

the output layer neurons.

5. TRAINING OF THE NEURAL IDENTIFIER

Identification requires setting up a suitably parameterized identification model and adjustment of
these parameters of the model to optimize a performance function based on the error between the
outputs from the plant and the identification model [22]. It is assumed that the weight matrices of
the neural network proposed as the identifier exists, for which, both plant and the identifier have
the same output for any specified inputs, for the same initial conditions [22].

The system under consideration is simulated at different operating conditions for a wide range of
the steady state active power flow level in the tie-line flowing between the two areas to generate
data for training. The training data set consists of 1288 data points spread over a wide range of
operation. This training dataset is employed in training the proposed neural identifier offline
through simulation to make it learn the forward dynamics of the plant. During training the
weights and biases of the network are iteratively adjusted to minimize the network performance
function. The performance function used for the neural identifier under consideration is the mean
square error, mse, given by
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Where, N is the size of the training dataset, and are the target and predicted value of the

output of the neural network when the input is presented and is the error (difference

between the target and predicted value) for the input. The performance index V in (7) is a

function of weights and biases, and can be given by

The performance of the neural network can be improved by modifying till the desired level of

the performance index, is achieved. This is achieved by minimizing with respect to

and the gradient required for this is given by

where, is the Jacobian matrix given by

and is the error for all the inputs. The gradient in (9) is determined using backpropagation,

which involves performing computations backward through the network. This gradient is then
used by different algorithms to update the weights of the network. These algorithms differ in the
way they use the gradient to update the weights of the network and are known as the variants of
the Backpropagation algorithm.

This work compares the performance of the basic implementation of the Backpropagation
algorithm i.e. Gradient descent algorithm with other variants in order to investigate the potentials
of these algorithms for online applications in power system identification. A brief overview of the
different algorithms considered in this work is given under:

i) Gradient Descent algorithm (GD): The network weights and biases, is modified in a

direction that reduces the performance function in (8) most rapidly i.e. the negative of the
gradient of the performance function [25]. The updated weights and biases in this algorithm are
given by

Where, is the vector of the current weights and biases, is the current gradient of the

performance function and is the learning rate.
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ii) Scaled Conjugate Gradient Descent algorithm (SCGD): The gradient descent algorithm
updates the weights and biases along the steepest descent direction but is usually associated with
poor convergence rate as compared to the Conjugate Gradient Descent algorithms, which
generally result in faster convergence [26]. In the Conjugate Gradient Descent algorithms, a
search is made along the conjugate gradient direction to determine the step size that minimizes
the performance function along that line. This time consuming line search is required during all
the iterations of the weight update. However, the Scaled Conjugate Gradient Descent algorithm
does not require the computationally expensive line search and at the same time has the advantage
of the Conjugate Gradient Descent algorithms [26]. The step size in the conjugate direction in this
case is determined using the Levenberg-Marquardt approach. The algorithm starts in the direction
of the steepest descent given by the negative of the gradient as

The updated weights and biases are then given by

Where, is the step size determined by the Levenberg-Marquardt algorithm [27]. The next

search direction that is conjugate to the previous search directions is determined by combining the
new steepest descent direction with the previous search direction and is given by

The value of is as given in [26], by

Where is given by

iii) Levenberg-Marquardt algorithm (LM): Since the performance index in (8) is sum of
squares of non linear function, the numerical optimization techniques for non linear least squares
can be used to minimize this cost function. The Levenberg-Marquardt algorithm, which is an
approximation to the Newton’s method is said to be more efficient in comparison to other
methods for convergence of the Backpropagation algorithm for training a moderate-sized
feedforward neural network [27]. As the cost function is a sum of squares of non linear function,
the Hessian matrix required for updating the weights and biases need not be calculated and can be
approximated as

The updated weights and biases are given by
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Where, μ  is a scalar and  I  is the identity matrix.

iv) Automated Bayesian Regularization (BR): Regularization as a mean of improving network
generalization is used within the Levenberg-Marquardt algorithm. Regularization involves
modification in the performance function. The performance function for this is the sum of the
squares of the errors and it is modified to include a term that consists of the sum of squares of the
network weights and biases. The modified performance function is given by

Where SSE and SSW are given by

Where, is the total number of weights and biases, in the network. The performance index

in (19) forces the weights and biases to be small, which produces a smoother network response
and avoids over fitting. The values of α and β are determined using Bayesian Regularization in an
automated manner [28-29].

6. SIMULATION RESULTS AND DISCUSSION

6.1. TRAINING

The neural network proposed in section 4 was trained using the training set and the training
algorithms described in section 5. A Pentium (R) Dual-Core CPU T4400 @2.20 GHz was used to
train the proposed neural identifier. Table 1 summarizes the results of training the proposed
network using the four training algorithms discussed in the earlier section. Each entry in the table
represents 50 different trials, with random initial weights taken for each trial to rule out the
weight sensitivity of the performance of the different training algorithms. The network was
trained in each case till the value of the performance index in (8) was 0.0001 or less.

Table 1 Statistical comparison of different training algorithms

S. No. Training Algorithm
Average
Time (s)

Ratio
Maximum
Time (s)

Minimum
Time (s)

Std Dev.

1. Gradient Descent Very slow in converging

2.
Scaled Conjugate
Gradient Descent

280.8473 47.865 911.5366 114.2788 180.7087

3. Levenberg Marquardt 5.8675 1 9.4187 2.9393 1.6995

4.
Bayesian

Regularization
7.6748 1.308 14.4054 3.1373 1.9246
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The Gradient Descent algorithm was very slow in converging for the required value of the
performance index. The average time required for training the network using the Levenberg-
Marquardt algorithm was the least whereas, maximum time was required for training the network
using the Scaled Conjugate Gradient Descent algorithm. The training algorithm employing
Bayesian Regularization continuously modifies its performance function and hence, takes more
time as compared to the Levenberg-Marquardt algorithm but this time is still far less than the
Scaled Conjugate Gradient Descent method. From Table 1, it can be established that the
Levenberg-Marquardt algorithm is the fastest of all the training algorithms considered in this
work for training a neural network to identify the multimachine power system. Since the training
time required for different training algorithms have been compared, the conclusion drawn from
the results for the offline training may also be extended to online training. Therefore, it can be
assumed that similar trend of training time required by the different training algorithms will be
exhibited during online training of the proposed neural identifier for continuous updating of the
offline trained identifier.

6.2. TESTING

The neural networks trained using the training algorithms listed in Table1 were tested on the same
CPU. The test datasets consisted of data points not included in the training set. The system under
consideration was simulated at two such operating points for which no data point was included in
the training set. The operation of the multimachine power system under consideration at these two
operating points was simulated using MATLAB/SIMULINK for a period of 13 seconds each.
This period also included a 3-phase short circuit fault at point A at t=10 s for a duration of 200 ms
with the circuit breakers auto reclosing after 12 cycles. The data during these two simulations was
sampled at the rate of 32 samples per second to form two test sets: Test Set I and Test Set II,
corresponding to the two operating points. As the Gradient Descent algorithm was too slow to
converge for the desired value of the performance index, the neural networks that were trained
using the rest of the three training algorithms listed in Table 1 were tested using these two test
sets.

Test Set I: Test Set 1 consists of 417 data points generated at such an operating point at which the
active power flow in the system at steady state is 399 MW, which is within the range of the active
power flowing in the system at the steady state at the operating points considered for generating
the training set. The first four data points are used to predict the output at the next instant.
Therefore, the number of predicted outputs for this test set is 413. A three-phase short circuit fault
is simulated at t=10 s which corresponds to the sample point number 321 in the test set. The
actual output for the system after autoreclosure of the circuit breaker is available in the sample
point number 329 of the test set.  The actual values of the output power and the values predicted
for the same using different neural networks during a part of the steady state and transient period
are shown in Figures 6 and 7 respectively.
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Figure 6. Actual and predicted values of output power during steady state for test set I

Figure 6 clearly shows that the predictive quality of all the neural networks is satisfactory during
the steady state period. The effect of the 3-phase short circuit fault on the system is captured in
the sample point 322 of the actual output power as shown in Figure 7. However, the

Figure 7. Actual and predicted values of output power during transient period for test set I

circuit breakers operate and an improved system performance is reflected in subsequent samples.
As the neural networks have been trained to use the information at four preceding instants to
predict the next step output, the effect of decrease in the actual output in sample 322 is reflected
immediately in the values predicted by neural networks trained using SCG and LM methods of
training in sample 323. The output power predicted by the neural network trained using the BR
method also shows a downward trend in sample 323 but the minimum value of output power
predicted by this neural network is in sample 324. Figure 7 clearly shows that the values predicted
using the neural network trained using the LM method follow the actual values closely in the
transient period. The effect of autoreclosure of the circuit breakers on the power level is visible in
sample number 329 of the actual output power. The increased value of the actual output power in
sample 329 due to the autoreclosure of the circuit breakers is reflected in the values predicted by
all the three neural networks in the subsequent instant. The predictive quality of the three trained
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neural networks is investigated by comparing the average absolute error in the predicted values.
Table 2 shows the average absolute error along with the maximum error and the minimum error
in the values predicted by the trained neural networks.

Table 2 Performance of trained neural networks on test set I

S. No.
Training

Method

Average Absolute

Error for entire set

Maximum

Error

Minimum

Error

1. SCG 0.0117 1.0689 1.4809e-5

2. LM 0.0103 0.9960 1.0254e-5

3. BR 0.0171 1.8511 7.0297e-6

The average absolute error is the least for the neural network trained using the LM method. The
maximum error for every neural network is reported in the transient period and is least for the
network trained using the LM method. The neural network trained using the BR method follows
the actual values satisfactorily but has slightly higher values of average absolute error and
maximum error associated with it as compared to the first two methods. However, the BR method
imparts generalization to the network and the neural network trained using BR reported the least
minimum error for this test set.

Test Set II: This test set also consists of 417 data points sampled during simulation of the system
at an operating point for which the active power flowing in the system at steady state is 156 MW,
which is outside the range of active powers flowing at steady state corresponding to the operating
points considered for generating the training set. For the same reasons as for Test Set I, the
number of predicted values in Test Set II is also 413. In this case too, a 3-phase short circuit fault
of duration 200 ms is simulated at t=10 s. Figures 8 and 9  show the actual and predicted output
values for a section of steady state and transient period of the system respectively,  at the
operating point under consideration.

Figure 8. Actual and predicted values of output power during steady state for test set II
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Figure 9. Actual and predicted values of output power during transient period for test set II

It is clear from Figure 8 that the actual power output values and the values predicted using the
different neural networks in steady state are in close proximity even at this operating point. The
decrease in the actual value for the active power immediately after the 3-phase short circuit fault
is captured in sample 321 of Figure 9. This information is used by all the neural networks for
making predictions for the next instant and all the neural networks successfully predict the
decrease in the active power with the minimum power value predicted for sample 322. Similarly,
the effect of autoreclosing of the circuit breakers is also predicted successfully by the three neural
networks. The average absolute error along with the minimum and maximum errors in the values
predicted by the trained neural networks are given in Table 3.

Table 3 clearly shows that the average absolute errors even at such an operating point for which
the steady state active power flowing in the system is outside the range of the active powers
flowing at operating points considered for generation of training data set are following the same
trend as reported in case of Test Set I.

Table 3 Performance of trained neural networks on test set II

S. No.
Training
Method

Average Absolute
Error for entire set

Maximum
Error

Minimum
Error

1. SCG 0.0092 0.7465 9.9872e-6

2. LM 0.0078 0.5507 1.2711e-5

3. BR 0.0105 0.6905 2.8250e-6

7. CONCLUSION

A neural network has been proposed to predict the next step value of the output power on the
basis of the values of the control input and output power at preceding time instants. The proposed
neural network is trained using different variants of the Backpropagation algorithm.
Investigations in to the training performance of the different algorithms establish that the
Levenberg-Marquardt algorithm is the fastest to converge. Comparison of the predictions made
by the different neural networks reveal that the neural network trained using the Levenberg-
Marquardt algorithm gives the most accurate predictions. The availability of fast computing
machines in current times and the accurate predictions reported in this work clearly establish the
scope for online application of neural networks for identification of multimachine power systems.
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The fast convergence teamed with good predictive quality makes Levenberg-Marquardt algorithm
the most suitable choice of all the variants considered in this work for training a neural network
for this application.
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