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ABSTRACT 
 
We take some parts of a theoretical mobility model in a two-dimension grid proposed by Greenlaw and 
Kantabutra to be our model. The model has eight necessary factors that we commonly use in a mobile 
wireless network: sources or wireless signal providers, the directions that a source can move, users or 
mobile devices, the given directions which define a user’s movement, the given directions which define a 
source’s movement, source’s velocity, source’s coverage, and obstacles. However, we include only the 
sources, source’s coverage, and the obstacles in our model. We define SQUARE GRID POINTS COVERAGE 
(SGPC) problem to minimize number of sources with coverage radius of one to cover a square grid point 
size of p with the restriction that all the sources must be communicable and proof that SGPC is in NP-
complete class. We also give an APPROX-SQUARE-GRID-COVERAGE (ASGC) algorithm to compute the 
approximate solution of SGPC. ASGC uses the rule that any number can be obtained from the addition of 
3, 4 and 5 and then combines 3-gadgets, 4-gadgets and 5-gadgets to specify the position of sources to cover 

a square grid point size of p. We find that the algorithm achieves an approximation ratio of 
2

1021 2 




p
p . 

Moreover, we state about the extension usage of our algorithm and show some examples. We show that if 
we use ASPC on a square grid size of p and if sources can be moved, the area under the square grid can be 
covered in eight-time-steps movement. We also prove that if we extend our source coverage radius to 1.59, 
without any movement the area under the square gird will also be covered. Further studies are also 
discussed and a list of some tentative problems is given in the conclusion. 
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1. INTRODUCTION 
 
Mobile wireless tools have become ubiquitous because they are of low cost, easy to use and able 
to fulfill many of the needs of human life. In [1] and [2], types of wireless networks, the usage 
fields and the survey of wireless technologies on wireless sensor network are specified. There are 
varieties of wireless sensor applications for cooperated collecting, monitoring and tracking 
information. There are a lot of models, experiments and algorithms to solve wireless sensor 
problems proposed. In [3], So and Ye apply Voronoi diagram to solve some of the coverage 
problems. In [4] Gabriele and Giamberardino propose mathematical dynamic sensor networks on 
discrete time. There are a lot of models and complex mathematical equations proposed. In [5] 
contexts about the coverage problem in wireless sensor network are stated. The authors explain 
three groups of the problems which are the area coverage, the point coverage and the path 
coverage. In [6] Jain and Sharma modify the swarm optimization algorithm which is an algorithm 
for placing nodes in wireless sensor network in a discrete space and propose PSO algorithm. They 
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simulate the coverage area for some conditions to show that their algorithm is better than the 
swarm optimization algorithm. In [7], the authors define the coverage problems and experiment 
some cases of the problems by using techniques based on computational geometry, graph theory, 
Voronoi diagram and graph search algorithms. In [8], the authors explore the ways of shrinking 
some grids to increase the coverage area with the condition that sensors are allowed to move. 
Unlike most existing work, Greenlaw and Kantabutra model is the theoretical mobility model 
study wireless communication in a mobile environment from the perspective of complexity 
theory in a two-dimension grid, see [9], [10]. This model provides a framework factors that we 
commonly use in a mobile wireless network. Therefore, we choose this model. 
 
The outline of this paper is as follows: basic definitions and notations are stated in Section 2. Our 
SQUARE GRID POINTS COVERAGE (SGPC) problem is also defined in this section. Section 3 states 
the proof to show that SGPC is in the NP-complete class. Section 4 presents APPROX-SQUARE-
GRID-COVERAGE (ASGC), an approximation algorithm to compute an approximate solution to 
SGPC. Section 5 extends the approximation result in case that the sources can be moved and the 
sources radius are longer. Finally, conclusions and future studies are discussed in Section 6. 
 
2. DEFINITIONS AND NOTATIONS 
 
In this section, definitions and notations that we shall use are given: the grid, mobile wireless 
model, SQUARE GRID POINTS COVERAGE (SGPC) problem and source with coverage radius of 
one properties. Let N = {1, 2, 3,…} and let S denote a set and Sb the b-fold Cartesian product of S, 
that is, S×· · ·×S, where S is repeated b times. The basic definitions of the grid and our mobility 
model are given respectively as follows: 
 
2.1 The Grid 
 
Because we work on a two-dimensional grid, the position of a grid point will be on ),( yx , 
where yx, . However, we number the points in a square grid from the left to the right and 
from the top to the bottom. Thus, point (1, 1) is the top left point of a square grid. 
 
Definition 2.1.1 (Grid Points) A grid point is the point at the intersection between the equidistant 
interlocking perpendicular, vertical and horizontal axes. 
 
Definition 2.1.2 (Square Grid) A square grid is the set of grid points on a two-dimensional grid 
in which the number of points in every x and y axes are equal. 
 
Definition 2.1.3 (Covered Grid Point, Covered Area) A grid point is said to be covered by a 
source or sources if the point is within the coverage of the source or sources. We call the set of 
grid points covered by sources that are currently in range the covered area. 
 
Definition 2.1.4 (Square Grid Size) Let p . A square grid size of p is a square grid which 
has the number of grid points on width * length equal to p * p points. 
 
A square grid has four equal sides and the points along each side are the boundaries for our 
interested area. We name the points on the boundary as follows: 
 
Definition 2.1.5 (Boundary Grid Point) The boundary grid points of a square grid are the set of 
the grid points which make the border of a square grid. The boundary grid points of a square grid 
size of p are {(1, i), (i, 1), (p, i), (i, p)}, i and 1 ≤ i ≤ p. 
 
The boundary grid points are composed of corner points and side points. 
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Definition 2.1.6 (Corner Point) A corner point is the boundary grid point at the corner of a 
square grid size of p * p. The corner points are the set of four points {(1, 1), (1, p), (p, 1), (p, p)} 
which we call the top-left-corner-point, the top-right-corner-point, the bottom-left-corner-point, 
and the bottom-right-corner-point, respectively. 
 
Definition 2.1.7 (Side Point) A side point is any boundary grid point which is not a corner point. 
Because there are four sides in a square, we name them the top-side-point, the bottom-side-point, 
the left-side-point, and the right-side-point. 
 
2.2 Mobile Wireless Model 
 
We shall focus on the mobility model M = (S, D, U, L, R, V, C, O) of Greenlaw and Kantabutra. 
There are eight necessary factors that we commonly use in a mobile wireless network. The set 
S is the set of sources or wireless signal providers. The set D is the set of directions that a source 
can move in a two-dimensional grid in one time step of the movement . The set U is the set of 
users or mobile devices, a user cannot communicate directly to the other users, it must 
communicate via a source or a series of sources. The vector L and R are the given directions 
which define a user’s movement and a source’s movement respectively. Sources in this model can 
move with different velocities. The vector V is a finite collection of numbers defines each 
source’s velocity. Because Greenlaw and Kantabutra define every users’ velocity to one, a user 
can move by one grid within a time, users do not have the set of velocities defined. Sources also 
have different coverages. The vector C  is a finite collection of numbers defines each source’s 
coverage. The set O is the set of obstacles which block a source signal, this model defines 
obstacles in a square shape. 
 
Since sources must communicate with each other, Greenlaw and Kantabutra also define the 
communication protocol used in the model.  
 
Definition 2.2.1 (Coverage Representation) A coverage of radius c in a two-dimensional grid is 
represented by the set of grid points within the source coverage and on its boundary. 
 
Definition 2.2.2 (Overlapping Coverage Area) Let s, s′ be a coverage or an obstacle in a two-
dimensional grid and s ∩ s′ = z. We say that s overlaps s′ if and only if |z| ≥ 2. z is called an 
overlapping coverage area. 
 
The manner in which they may communicate is specified as follows. Let 2k  and k N. 
 

 At a given instance in time any pair of sources with overlapping-coverage areas may 
communicate with each other in full-duplex fashion as long as the intersection of their 
overlapping-coverage area is not completely contained inside obstacles. We say that these 
two sources are currently in range, or communicable. A series ksss ,...,, 21  of sources 
are said to be currently in range if is  and 1is  are currently in range, or communicable, 
for 11  ki . 

 Two mobile devices cannot communicate directly with one another.  
 A mobile device 1D  always communicates with another mobile device 2D  through a 

source or series of sources as defined next. The mobile devices 1D  at location ),( 11 yx  and 
2D  at location ),( 22 yx  communicate through a single source s located at ),( 33 yx  if at a 

given instance in time the lines between points ),( 11 yx  and ),( 33 yx  and points ),( 22 yx  
and ),( 33 yx  are within the area of coverage of s, and do not intersect with any obstacle 
from O . The mobile devices 1D  at location ),( 11 yx  and 2D  at location ),( 22 yx  
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communicate through a series of sources 1s  at location ),( 11 ba , 2s  at location 
),( 22 ba ,…, and ks  at location ),( kk ba  that are currently in range if the line between 

points ),( 11 yx  and ),( 11 ba  is inside 1s ’s coverage area and does not intersect any obstacle 
from O  and the line between points ),( 22 yx  and ),( kk ba  is inside ks ’s coverage area and 
does not intersect any obstacle from O . 

 
Because we are interested in only how to lay the minimum number of sources with a coverage 
radius of one in order to cover grid points sorted in a square shape, we reduce M to be 3-tuples. 
So, our mobility model M′= (S, C, O) is three tuples. 
 
1. The set },...,,{ 21 msssS   is a finite collection of sources, where m N. The value m is the 

number of sources. Corresponding to each source si, for 1 ≤ i ≤ m. 
2. The vector },...,,{ 21 mcccC   is a finite collection of lengths. The value ci is the 

corresponding radius of the circular coverage of source si. This vector is called the 
coverages. In this paper all 1ic , unless stated otherwise. 

3  The set },,,,|),,,({ 121222112211 yyandxxNyxyxyxyxO   is a finite 
collection of rectangles in the plane. This set is called the obstacles. All coordinates xi, yi ≤ 
omax, where omax is a constant in N. 

 
Because our sources also need to have communication with others, we use the same 
communication protocol which is used in the model M 
 
2.3  Square Grid Points Coverage 
 
We are interested in laying the minimum number of sources with coverage radius of one to cover 
a square grid with the restriction that all sources must be currently in range. The SQUARE GRID 
POINTS COVERAGE problem is defined as follows: 
 

SQUARE GRID POINTS COVERAGE (SGPC) 
INSTANCE: A mobility model M′, a square grid size of p, and a variable k N. 
QUESTION: Can we lay at most k sources to cover a square grid size of p with the 
condition that all the sources must be communicable? 

 
In SGPC, we are given a square grid size of p with obstacles on some positions according to the 
given model M’. We are also given k sources with coverage radius of one. We try to find whether 
we can lay this k sources to cover all grid points with the condition that all sources must be 
communicable. Note: we focus on the sources that have the same coverage radius of one to cover 
a square and we can extend and vary the source coverage radius in the future work. 
 
2.4 Sources with coverage radius of one 
 
There are some properties of the sources with coverage radius of one. First of all, we note that a 
source radius of one centered on coordinate ),( yx can cover exactly 5 grid points, namely, points 
on coordinates (x+1, y), (x−1, y), (x, y+1), (x, y−1), and ),( yx . 
 
Observation 2.4.1 (Maximum Points, Single Source) A source with a coverage radius of one 
covers 5 grid points. 
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Suppose we have a source radius of one on coordinate ),( yx . Where can we place another source 
radius of one so that the two sources are currently in range (i.e., can communicate)? Obviously, 
the second source must be placed one unit apart in either x or y directions because the overlapping 
coverage area needs at least two grid points to communicate. Therefore, we can place another 
source radius of one on coordinate  (x + 1, y), (x + 1, y + 1), (x + 1, y − 1), (x − 1, y), (x − 1, y + 
1), (x − 1, y − 1), (x, y + 1), or (x, y − 1). 
 
Observation 2.4.2 (Pair Communication) If two sources are not allowed to be centered on the 
same coordinate, source s with coverage radius of one centered on (x, y) can communicate with 
source s’ centered on coordinates (x + 1, y), (x + 1, y + 1), (x + 1, y −1), (x − 1, y), (x − 1, y + 1), 
(x − 1, y − 1), (x, y + 1), or (x, y − 1). 
 
Note: it follows from Observation 2.4.2 that any overlapping area between a pair of sources with 
coverage radius of one contains exactly two grid points. 
 
Observation 2.4.3 (Overlapping Coverage) Any overlapping area between a pair of sources 
with coverage radius of one contains exactly two grid points. 
 
From Observation 2.4.2, we also know that two sources are currently in range along an x-axis if 
there is at least one source centered on every y coordinate according to Proposition 2.4.4. 
 
Proposition 2.4.4 Let i, j, l ∈ N. Sources s, s′ ∈ S centered on (xi, y) and (xi+j , y), respectively. The 
two sources are currently in range along an x-axis if there is at least one source centered on 
every (xl, y), where xi < xl < xi+j . 
Proof. Suppose there is no source centered on (xl, y), xi < xl < xi+j. As a result, the sources on 
(xl−1, y) and (xl+1, y) cannot communicate because the overlapping coverage area is less than two 
grid points. Therefore, along an x-axis there must be at least one source centered on every x-
coordinate between s and s′ to make all the sources between s and s′ currently in range.           □ 
 
In this section, we give the definitions and notations that we shall use in this paper. Next, we will 
show the hardness of the problem. The  prove to show that the SQUARE GRID POINTS COVERAGE 
problem is in the NP-complete class is presented in the next section. 
 
3 SGPC IS NP-COMPLETE 
 
To solve SGPC, first, we try to find a polynomial time algorithm for solving the problem. 
However, we cannot find such an algorithm. In this section, we will show that SGPC is in NP-
complete class by making a reduction from an NP-complete problem called ONE-IN-THREE 3SAT 
in the case that no .,  iCci  contains a negated literal, see [11]. The definition of ONE-IN-
THREE 3SAT is defined as follows: 
 

ONE-IN-THREE 3SAT (3SAT) 
INSTANCE: Set U of variables, collection C of clause over U such that each clause 

.Cc has |c| = 3. 
QUESTION: Is there a truth assignment for U such that each clause in C has exactly one 
true literal? 
 

To prove that SGPC is in NP-complete class, we shall show how to construct an SGPC instance 
from a 3SAT instance. We introduce six gadgets: Odd-gadget, Even-gadget, Square-gadget, N-
odd-gadget, N-even-gadget and End-gadget as shown in Figure 1. The grey parts of the gadgets 
are the block of the obstacles.  
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Figure 1.Six gadgets 
 
We separate our building steps into three phases. In the first phase, we lay a row of Odd-gadgets 
or Even-gadgets equal to the number of variables, defined as |U|, along x-axes and switch laying 
the row of Odd-gadgets or Even-gadgets along y-axes equal to the number of clause, defined as 
|C|. Now, we have the switched rows of Odd-gadgets and Even-gadgets. We order each clause of 
3SAT and the ascending order of the variables from the left to the right. We shall match each 
clause in 3SAT with each row of the obstacles in the gadgets, and match each variable in 3SAT 
with each column of the gadgets. Next, if a variable is not in a clause, we will lay N-odd-gadget 
(N-even-gadget) over Odd-gadget (Even-gadget) along the column and the row of the gadgets 
which represent the variable and the clause. The N-odd-gadget (N-even-gadget) will block the 
hole in Odd-gadget (Even-gadget). We shall do this in every clause. From our building, there are 
holes only in the position of the gadget which represent the corresponding variable in a clause, so 
there are exactly three holes along the row of obstacles. The second phase is to make our number 
of grid points to be the multiple of three for reducing the possible cases for which we shall clarify 
them later. From the first phase, there are 1 + 6|U| of grid points along each row. We add an End-
gadget after every row of Odd-gadgets and Even-gadgets, then we have 3 + 6|U| = 3(1 + 2|U|) of 
grid points on every row. For each column, we have 1 + 3|C| of grid points. We include two more 
grid points under each column, then we have 3 + 3|C| = 3(1 + |C|) grid points along each column. 
Now the number of grid points in our every row and column are the multiple of three.  
 
Note: we do the second phase after the third phase, but we will keep in mind that the number of 
grid points along each row and column are the multiple of three. This means that at the end we 
will have two addition points under every column of grid points and we shall have an End-gadget 
after every row of the gadgets.  
 
In the third phase, we shall make our area square. All gadgets, except for the End-gadget, cover 7 
* 4 grid points. When we add a gadget to our area, we will extend 6 grid points in a row and 
extend 3 grid points in a column. Therefore, to make our area square, there are three cases 
possible. Let represent the number of the grid points along each row from the first and the second 
phase by h, and the number of the grid points along each column from the first and the second 

phase by v. If h = v, the grid points are already squared. If h > v, we shall add 
3

vh   = 2|U|−|C| 

gadgets under each column, the switched of Odd-gadgets and Even-gadgets under the first 
column and the Square-gadgets under all other the columns. Here, we will have a square grid size 

of p = h = 3(1+2|U|). In case v > h, if 6 mod (v−h) = 0, we shall add 
6

hv  of Square-gadgets after 

each row. Here, we will have a square grid size of p = v = 3(1+|C|). If 6 mod (v−h)   0, we shall 

add 1
6






  hv of the Square-gadgets after each row and add one Odd-gadget or Even-gadget 

under the first column of the gadgets, continue the switching, and add one Square-gadget under 
all other columns. After three phases, we shall have a square grid size of p = v + 3 = 3(|C| + 2). 
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This polynomial time construction is in O(p2). The left part of Figure 2 shows the reduction of a 
ONE-IN-THREE 3SAT instance to an instance of SGPC. The 3SAT instance used in the reduction is 
(u1 ∨ u2 ∨ u3)(u1 ∨ u4 ∨ u5)(u2 ∨ u3 ∨ u4)(u1 ∨ u3 ∨ u4)(u1 ∨ u2 ∨ u4). 
 

 
 

Figure 2. Reduction example 
 
Next, the NP-complete proof is stated. 
 
Theorem 3.1 If P  NP, the Square Grid Points Coverage is NP-complete 
 
Proof. We shall first show that SGPC is in NP. Given a mobility model M, a square grid size of 
p, a variable k, and a certificate which is a set of sources centered on some grid points in the 
square grid. We can verify the number of sources, the currently in range status among the sources, 
and the number of grid points that the sources cover in polynomial time of O(p2). Therefore, 
SGPC is in NP. 
 
Next, we shall show that is SGPC is NP-hard. We claim that there is a truth assignment for U that 

satisfies all the clauses in C in exactly 1 in 3 manner if an only if 





  1

3
2

3

2 pp  sources are 

currently in range and cover all grid points in a square grid size of p with the condition that the 
first column will have the number of sources equal to 















  ||1

3
22

3
7 Cpbp

i or 













  ||1

3
2

3
7 Cpp  and the other columns will have the number of 

sources equal ibp 2
3

7  or
3

7 p . The variable bi, bi ∈ N, is the number of the clauses that a variable 

ui ∈ U appears. 
 
→ Suppose there is a truth assignment for U that satisfies all the clauses in C in exactly 1 in 3 
manner, therefore, exactly one variable in a clause is assigned true. In order to find the 
corresponding answer we lay rows of connected sources over and under every obstacle to cover 
all grid points. Because the square grid size is equal to p, there are p sources in the rows, as stated 
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in Proposition 2.4.4. Because there are 
3
p rows, we shall use 

3

2p sources. However, these sources 

in the different rows cannot be communicable. From Proposition 2.4.4, we must have at least one 
source on every y-axis to make all the sources communicable, so we add two sources for 

connecting any pair of rows of connected sources. Because there are 





 1

3
p  rows of the 

obstacles, we shall use 





 1

3
2 p  sources for the connection. Therefore, we must use 







  1

3
2

3

2 pp sources to cover the square grid size of p.  For laying sources, we shall lay the two 

sources at a hole on a rows of obstacles. Because there are three holes in every row of the 
obstacles which represent the corresponding clause and three variables in 3SAT, only one hole 
will be used for the connection corresponding with only one truth assignment of a variable in a 
clause of 3SAT. If a variable is assigned true, we will put the two sources in every hole in the 
column that represent the variable, for the consistency assignment value to the variable in every 
clause. If a variable is assigned false, there are no two sources in any hole in the column that 
represent the variable. Let the number of the clause that a variable ui ∈ U appears in is equal to bi, 
bi  ∈ N. If 3SAT answer is “yes”, each column corresponding to a variable will has the number of 

sources equal to ibp 2
3

7  or
3

7 p when the variable is assigned true or false, respectively.  

 
However, the first column which has more holes than the number of clauses will have the number 

of sources equal to 













  ||1

3
22

3
7 Cpbp

i or 













  ||1

3
2

3
7 Cpp  when the variable is 

assigned true or false, respectively. (If 3SAT answer is “no”, we cannot make all sources currently 
in range, or the number of sources in a column that represent variable ui is not exactly equal to 

ibp 2
3

7  or
3

7 p , or the number of sources in the first column is not equal to 















  ||1

3
22

3
7 Cpbp

i or 













  ||1

3
2

3
7 Cpp , or we are using more than 






  1

3
2

3

2 pp  

sources to cover all grid points with the condition that all the sources are currently in range.) 
 

←We have 





  1

3
2

3

2 pp sources to cover a square grid size of p. To cover all grid points, from 

Proposition 2.4.4, we will use p  sources at the minimum to cover. So, there are 





 1

3
2 p  sources 

left and a source in a row of connected sources are not currently in range with the sources in the 

other rows. Because there are 1
3


p rows of obstacles, we will use exactly two sources to connect 

two rows of connected sources at the maximum. Because there are three holes in a row of 
obstacles, we can put two sources in any hole to connect two rows of connected sources. 
However, if we do not lay sources in every hole in the same column and do not lay no source in 
every hole in the same column, the number of source will not exactly equal 

to 













  ||1

3
22

3
7 Cpbp

i or 













  ||1

3
2

3
7 Cpp  for the first column and will not exactly 

equal ibp 2
3

7  or
3

7 p for the other columns. Thus, we must lay two sources in every hole in the 

same column or not lay any source in every hole in the same column. We will assign the 
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corresponding variable in a column to true if we lay two sources in every hole in the column, and 
will assign the corresponding variable in a column to false if we lay two sources in every hole in 
the column that we do not lay any source in every hole of the column.  Because we will lay two 
sources in one of three holes in a row of obstacles and we will lay two sources in every hole in the 
same column or do not lay any source in every hole in the same column, therefore these 
correspond to the truth assignment of 3SAT instance in exactly 1 in 3 manner.                              □ 
  
On the right part of Figure 2, an example of wrong answer of SGPC is shown. Although the 

answer use 





  1

3
33233*

3
33  sources with the condition that all sources are currently in range, 

the number of sources in the column which represented the variable u4 is not equal to 
3

33*7  

or 4*2
3

33*7  , b4 = 4, sources.  

 
In this section, we show that SGPC is NP-complete. Next, we shall show a way to manage SGPC. 
 
4. BOUND AND APPROXIMATION ALGORITHM FOR SGPC 
 
The approximation algorithm for SGPC is presented. The algorithm use the rule that any number 
can be reached through the addition of 3, 4 and 5 and then combine 3-gadgets, 4-gadgets and 5-
gadgets to specify the position of sources to cover a square grid point size of p and return the 
number of the sources used. In section 4.1, the lower bound number of communicable sources to 
cover a square grid size of p is shown and in section 4.2 APPROX-SQUARE-GRID-POINTS-
COVERAGE is presented. 
 
4.1 The lower bound number of sources with coverage radius of one covering a 
square grid 
 
When we lay a source on the boundary of a square grid, the source will cover some points outside 
our interested area. From the following propositions, the number of sources in our three gadgets 
are optimal. 
 
Proposition 4.1.1 When p >1, A source centered on a corner point of a square grid covers 3 grid 
points in the square grid. 
Proof: There are four corner points in a square grid. Suppose s  is an arbitrary source centered on 
(x, y). If s is centered on the top-left-corner-point, s will cover two points outside the square grid 
area, i.e. on the positions (x, y − 1) and (x − 1, y). When s is centered on the top-right-corner-
point, the bottom-left-corner-point and the bottom-right-corner-point, s will also cover two points 
outside the square grid area. Therefore, a source centered on a corner point of a square grid will 
cover 3 grid points of the square grid when p >1.                                                       □  
 
Proposition 4.1.2 A source centered on a side point of a square grid covers 4 grid points in the 
square grid when p > 2. 
Proof. There are four side points. Suppose s is an arbitrary source centered on (x, y). If s  is 
centered on one of the top side points, s will cover one point outside the square grid area on the 
position (x, y − 1). When s  is centered on outside the bottom side points, one of the left side 
points and one of the right side points, s will also cover one point outside the square grid area. 
Therefore, a source centered on a side point of a square grid covers 4 grid points in the square 
grid when p > 2.                                                         □ 
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Proposition 4.1.3 If we lay a source to cover a corner point of a square grid, the source will 
cover at most one point on a square grid size of one, cover at most three points on a square grid 
size of two and cover at most four points on a square grid size of p ≥ 3. 
Proof. If a corner point is on (x, y), a source with coverage radius of one must be centered not 
further than x ± 1 and y ± 1 coordinate. By considering laying a source on five possible 
coordinates to cover a corner point which are (x + 1, y), (x − 1, y), (x, y), (x, y + 1), (x, y − 1), it 
can be seen that the proposition holds.   
 
Proposition 4.1.4 At least one source is needed to cover a square grid point size of one. (a grid 
point) 
Proof. A grid point must be covered by a source.                                                                            □ 
 
Proposition 4.1.5 At least two sources are needed to cover a square grid size of two. 
Proof. Let x, x′, y, y′ ∈ N. From Proposition 3.1, a source with coverage radius of one centered on 
(x, y) position will cover five grid points which are (x + 1, y), (x − 1, y), (x, y), (x, y + 1), and (x, y 
− 1). There are four grid points in a square grid size of two which are (x′, y′), (x′ + 1, y′), (x′, y′ + 
1), (x′ + 1, y′ + 1). It is impossible to map all points of a source to the points on a square grid size 
of two. Therefore, we must use at least two sources with coverage radius of one to cover a square 
grid size of two.                                                                                                                     □         
      
Proposition 4.1.6 At least three communicable sources are needed to cover a square grid size of 
three. 
Proof. There are nine grid points in a square grid size of three. Suppose we can use less than three 
communicable sources. However, from [12] it is stated that two sources that are currently in range 
can cover (3*2) + 2 = 8 grid points at the maximum, so any pair of sources that are currently in 
range cannot cover a square grid size of three. Thus, we must use at least three communicable 
sources.                                                                                                                                              □ 
  

Theorem 4.1.7 At least 










 
3

22p  communicable sources are needed to cover a square grid size of 

p, p ≥ 4. 

Proof. Suppose we can use 










 
3

22p  − k, k ≥ 1 ∈ N, communicable sources with coverage radius 

of one to cover a square grid size of p. From [12] it is stated that m sources can cover 3m+2 grid 

points at the maximum, 










 
3

22p  − k sources that are currently in range will cover 

23
3

2*32
3

2*3
22












 























  kpkp  grid points which is the maximum. However, from the 

Proposition 4.3, to cover a corner point, a source will cover at most four points in a square grid 
when p ≥ 3. Because there are four corners in a square grid, there are at least four uninterested 

points covered by the communicable sources. Thus, 










 
3

22p  − k communicable sources can 

cover only  23
3

2*3423
3

2*3
22












 












  kpkp  grid points on a square grid. Suppose 

2
2

23
3

2*3 pkp












  where p is the size of a square grid, we have 
3

2
3

2 22 












 


ppk . We 
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know that 1
3

2
3

2 22















  pp . Therefore, k < 1 which contradicts the fact that k ≥ 1. Thus, we 

must use at least 










 
3

22p  connected sources with coverage radius of one to cover a square grid 

size of p ≥ 4.                                                                                                         □        
    
4.2 APPROX-SQUARE-GRID-COVERAGE (ASGC) 
 

 
 

Figure 3. 3-gadgets, 4-gadgets and 5-gadgets 
 

Because SGPC is in the NP-complete class, we cannot find a polynomial time algorithm to solve 
the problem. Therefore, in this section, we propose an algorithm called Approx-SQUARE-GRID-
COVERAGE (ASGC) to lay sources on a square grid size of p when p > 5. Because any number 
can be obtained from the addition of 3, 4 and 5, we introduce 3-gadgets, 4-gadgets and 5-gadgets 
which cover a square grid size of 3, 4 and 5 respectively, as shown in Figure 3. From Proposition 
4.1.6, the number of sources which coverage radius of one on the 3-gadget is optimal, i.e. three 

sources. From Theorem 4.1.7, to cover a square grid size of 4 and 5 we must use at least 
3

242  = 

6 and 
3

252  = 9 sources, respectively. Therefore, the six sources in a 4-gadget and the nine 

sources in a 5-gadget are optimal. We shall combine these three types of gadgets to cover any 
square grid size of p > 5. Because any number larger than five can be written through the addition 
of 3, 4 and 5, the functions in ASGC is classified into three cases according to three possible 
fractions of dividing p by 3. 
 

APPROX-SQUARE-GRID-POINTS-COVERAGE(p) 
1: if 3 mod p equal to 0 then 
2:           FRACTIONZERO(p) 
3: else if 3 mod p equal to 1 then 
4:           FRACTIONONE(p) 
5: else if 3 mod p equal to 2 then 
6:           FRACTIONTWO(p) 
7: end if 

 
Table 1. APPROX-SQUARE-GRID-POINTS-COVERAGE Pseudocode 

 
We shall call the series of grid points on the same y (x) axis “a row (column) of grid points,” and 
call the connected 3-gadgets where all sources are centered on the same y (x) axis “a row 
(column) of connected sources.” In case 0mod3 p , FRACTIONZERO shall be used. In this case, 
p can be written as the sum of 3’s. Therefore, we use only 3-gadgets to cover our square grid 
points by laying 3-gadgets along each three rows of grid points. Let the variables r and c 
represent the number of the row of grid points and the column of grid points respectively. 
FRACTIONZERO will lay the top-left-corner-point of the 3-gadgets on every other three rows of 
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grid points which have r = 1, 4, 7, ... , p − 2, and lay the top-left-corner-point on every other three 

columns which have c = 1, 4, 7, ... , p − 2, respectively. Therefore, there are 
3
p  rows and 

3
p  

columns to lay the 3-gadgets and we use 
33

*
3

*3
2ppp

 sources to cover the square grid points 

size of p. Because the sources in the different rows of connected sources are uncommunicable, we 
add two more sources to connect any two rows of connected sources. We center the two sources 

on (2, r) and (2, r + 1), respectively, and use 2
3

*21
3

*2 





 

pp  sources. However, we can 

delete one source in each row of connected sources that is in between the addition source while 
all the sources are still communicable and we shall delete the same kind of sources in every row 

of connected sources except the first and the last rows. Therefore, we can delete 2
3


p  sources. 

As a result, we uses 






 
















2

3
2

3
*2

3

2 ppp  
3

)1( 


pp  sources to cover a square grid point 

size of p and FRACTIONZERO takes O(p2) which is in time polynomial. The pseudocode of 
FRACTIONZERO is shown in Table 2. 
 

FRACTIONZERO(p) 
1: //lay 3-gadget along each three rows of grid points: 
2: r, c ← 1 
3: for r ← 1 to p − 2 do 
4:          for c ← 1 to p − 2 do 
5:                      lay 3-gadget on (c, r) 
6:                      c = c + 3, 
7:           end for 
8:           r = r + 3 
9: end for 
10: //add two sources to connect each two rows of connected sources and delete some   redundant 

sources 
11: for r ← 2 to p − 7 do 
12:           lay sources on (2, r) and (2, r + 1) 
13:           delete source on (2, r + 2) 
14:           r = r + 3 
15: end for 
16: lay sources on (2, r) and (2, r + 1) 

 
Table 2. Pseudocode of FRACTIONZERO 

 
The position of the 3-gadget and some example of laying the gadgets on some square grid are 
shown in Figure 4. Figure 4-A represents the 3-gadget. Figure 4-B shows a box represents a 3-
gadget. The end of the two arrows pointing out of the box represent the position of the points the 
3-gadget cover that are outside the boundary of the square grid size of 3 that a 3-gadget cover. 
Figure 4-C shows the position of laying 3-gadgets that cover a square grid size of 9. Figure 4-D 
and Figure 4-E show the sources position obtained from FRACTIONZERO to cover square grid size 
of 6 and 9 respectively. Two additional sources which connect any two row of connected sources 
are shown by the thick circles. The shaded source is the source that will be deleted, we will delete 
the same kind of the shaded sources in every row of connected sources except the first and the 
last rows.  
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Figure 4. The example of  laying 3-gadgets to cover a square grid size of 6 and 9. 
 
In case 1mod3 p , FRACTIONONE shall be used. This case p can be written as an addition of 
some 3s and a 4, so we use 3-gadgets and a 4-gadget. First, we lay 4-gadgets along a diagonal line 
in a square grid. Let the variable c represent the column number. FRACTIONONE will lay the top-
left-corner-point of 4-gadgets along a diagonal line in a square grid on the position (c, c) where c 
= (1, 4, 7, ... , p − 3) . We also vertically mirror every other 4-gadgets to make all the 4-gadgets 

communicable. In this part, we use 
3

1p of 4-gadgets. Because each 4-gadget has 6 sources, we 

use )1(26*
3

1







  pp sources. The positions of laying 4-gadgets will separate uncovered grid 

points into the left side and the right side of the communicable 4-gadgets. On the left side of the 
4-gadgets, we start laying the top-left-corner-point of one 3-gadget on row number equal to 5, we 

increase laying one gadget in every row until the row number is equal to p − 6 and have 
3

4p of 

3-gadgets laid in this row. Therefore, we use 



3

4

1

p

n
n  of 3-gadgets or use 




3

4

1
*3

p

n
n  sources. On 

the right side of the 4-gadgets, we start laying 
3

4p  of 3-gadgets on column number equal to 5, 

we increase column number by three and decrease one gadget in every row until there is only one 

3-gadgets in the last row. Therefore, we use 



3

4

1

p

n
n of 3-gadgets or use 




3

4

1
*3

p

n
n sources. The 

number of sources in the 3-gadgets laying on both side of the 4-gadgets are equal. As a result, we 

use 



 3

4

1
*3*2)1(2

p

n
np  

3
)2)(1( 


pp  sources to cover a square grid points size of p and 

FRACTIONONE takes O(p2) which is in time polynomial. The pseudocode of FRACTIONONE is 
shown in Table 3. 
 

FRACTIONONE(p) 
1: // lay 4-gadget along diagonal line: 
2: c ← 1 
3: for c ← 1 to p − 3 do 
4:          lay 4-gadget on (c, c) 
5:          FLIP(4-gadget) 
6:          c = c + 3 
7: end for 
8: // lay 3-gadget along each three rows of grid points on the left of the 4-gadgets: 
9: cmax ← 1 
10: while cmax ≤ p − 6 do 
11:          for c ← 1 to cmax do 
12:                    lay 3-gadget on (c, cmax + 4) 
13:                    c = c + 3 
14:          end for 
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15:          cmax = cmax + 3 
16: end while 
17: // lay 3-gadget along each three rows of grid points on the right of the 4-gadgets 
18: cmin ← 5 
19: while cmin ≥ p − 2 do 
20:          for c ← cmin to p − 2 do 
21:                    lay 3-gadget on (c, cmin − 4) 
22:                    c = c + 3 
23:          end for 
24:          cmin = cmin + 3 
25: end while 

 
Table 3. Pseudocode of FRACTIONONE 

 
The position of the 3-gadgets and 4-gadgets and an example of laying the gadgets on a square 
grid size of 7 are shown in Figure 5. Figure 5-A represents a 4-gadget. Figure 5-B shows a box 
represents a 4-gadget. The end of the arrows pointing out of the box represent the position of the 
points the 4-gadget cover that are outside of the boundary of the square grid size of 4 that a 4-
gadget cover. Figure 5-C shows the position of laying 3-gadgets and 4-gadgets to cover a square 
grid size of 10. Figure 5-D shows the sources positions obtained from FRACTIONONE to cover 
square grid size of 7.  
 

 
 

Figure 5. Examples of laying 3-gadgets and 4-gadgets to cover square grids size of  10 and 7 
 
In case 2mod3 p ,  FRACTIONTWO shall be used. This case p can be written as an addition of 
some 3s and a 5, so we use 3-gadgets and a 5-gadget. First, we lays 5-gadgets along a diagonal 
line in a square grid. Let the variable c represent the column number. FRACTIONTWO lay the top-
left-corner-point of 5-gadgets along a diagonal line in a square grid on the position (c, c) where c 

= (1, 4, 7, ... , p − 4). In this part, we use 
3

2p of 5-gadgets. Since each 5-gadget has 9 sources, 

we use )2(39*
3

2


 pp  sources. The positions of laying 5-gadgets will separate uncovered grid 

points into the left side and the right side of the communicable 5-gadgets. On the left side of the 
5-gadgets, we start laying the top-left-corner-point of one 3-gadget on row number equal to 6, we 

increase laying one gadget in every row until the row number is equal to p − 7 and have 
3

5p of 

3-gadgets laid in this row. Therefore, we use 



3

5

1

p

n
n of 3-gadgets or use 




3

5

1
*3

p

n
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the right side of the 5-gadgets, we start laying 
3

5p  of 3-gadgets on column number equal to 6, 

we increase column number by three and decrease one gadget in every row until there is only one 

3-gadgets in the last row. Therefore, we use 



3

5

1

p

n
n  of 3-gadgets or use 




3

5

1
*3

p

n
n  sources. The 

number of sources in the 3-gadgets laying on both sides of the 5-gadgets are equal. As a result, 

we use 
3

)4)(2(*3*2)1(2 3
5

1


 





ppnp
p

n
 sources to cover a square grid points size of p and 

FRACTIONTWO will take O(p2) which is in time polynomial. The pseudocode of FRACTIONONE is 
shown in Table 4. 
 

FRACTIONTWO(p) 
1: // lay 5-gadget along diagonal line: 
2: for c ← 1 to p − 4 do 
3:          lay 5-gadget on (c, c) 
4:          c = c + 3 
5: end for 
6: // lay 3-gadget along each three rows on the left of the 5-gadgets 
7: cmax ← 1 
8: while cmax ≤ p − 7 do 
9:          for c ← 1 to cmax do 
10:                    lay 3-gadget on (c, cmax + 5) 
11:                    c = c + 3 
12:          end for 
13:          cmax = cmax + 3 
14: end while 
15: // lay 3-gadget along each three rows on the right of the 5-gadgets 
16: cmin ← 6 
17: while cmin ≥ p − 2 do 
18:          for c ← cmin to p − 2 do 
19:                     lay 3-gadget on (c, cmin − 5) 
20:                    c = c + 3 
21:          end for 
22:          cmin = cmin + 3 
23: end while 

 
Table 4. The Pseudocode of FRACTIONTWO 

 
The position of the 3-gadgets and 5-gadgets and some examples of laying the gadgets on some 
square grids are shown in Figure 6. Figure 6-A represents a 5-gadget. Figure 6-B shows a box 
represents a 5-gadget. The end of the arrows pointing out of the box represent the position of the 
points the 5-gadget cover that are outside of the boundary of the square grid size of 5 that a 5-
gadget cover. Figure 6-C shows the position of laying 3-gadgets and 5-gadgets to cover a square 
grid size of 11. Figure 6-D shows the source positions obtained from FRACTIONTWO to cover 
square grid size of 8. 
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Figure 6. Examples of  laying 3-gadgets and 5-gadgets to cover  square grids size of 11 and 8 
 
Next, we will show the approximation ratio of the algorithm. 
 

Theorem 4.2.1 APPROX-SQUARE-GRID-POINTS-COVERAGE is 












2

1021 2p
p -approximation 

algorithm for the SQUARE GRID POINTS COVERAGE problem when p>5 
 
Proof. We have already shown that AGPC runs in polynomial time. Let |*| S denote the minimum 
number of sources to cover a square grid size of p .  Let |A| denote the number of sources used to 
cover a square grid size of p obtained from AGPC. From considering all three cases in AGPC, we 

can conclude that 


3
1)( pp  |A| 

3
4))(2( 


pp . However, because the optimal number of 

sources must be less than or equal to the minimum number obtained from AGPC, so 

|*| S
3

1)( 


pp . It follows that 
3

22 p    |*| S    
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
3

22p
|*| S . Therefore, the 

approximation ratio is equal to 
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pp  or 
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p
p .                                  □ 

 
So far, we have proved that the SGCP is in NP-complete class and give an approximate algorithm 

with the approximation ration equal to
2

1021 2 



p
p . Next, we shall show some works that are 

extended from the result of the approximation algorithm that we have proposed in this section. 
 
5. EXTENSIONS 
 
We have proposed SGPC and show that the problem is in the NP-complete class. We also 
propose ASGC algorithm to give an approximation value of SGPC. In this section, we will show 
that if the sources can be moved by one grid within a time, the sources will cover a square area 
size of p within 8 time steps of movement. Moreover, we shall show that if we extend the radius 
of our sources coverage to 1.59, all the sources will cover the area under any square grid size of p. 
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5.1 Eight-Time Movement 
 
The mobility model of Greenlaw and Kantabutra is a theoretical mobility model. They defines the 
possible directions that a source’s movement in a two-dimensional grid in a time step: no 
movement, east, west, south, and north. We shall show that if a source move in eight-time-steps 
fashion: move to the north → south → south → north → east → west → west → east, 
respectively, the source will cover a square area size of p within 8 time steps of movement. 
 
Definition 5.1.1 (Square Area Size of p) A square area size of p is the area under a square grid 
size of p+1.  
 
Suppose source A with coverage radius of one is in a square grid size of three as shown in Figure 
7-A. After A move to the north with one step, move to the south with two steps, move one step to 
the north and one step to the west, move two steps to the east, the area that sources cover and do 
not cover in each steps are shown in  Figure 7-B, 7-C, 7-D, and 7-E, respectively. 
 

 
 

Figure 7.eight-time-steps fashion 
 
Observation 5.1.2 If we move a source with coverage radius of one centered on (x,y) over the 
square grid size of three which has its top-left-corner-point on (x-1,y) in eight-time-steps fashion, 
the source will cover the square area under the square grid size of three. 
 
Suppose we have three sources and a square area as shown in Figure 8. If the sources move three 
steps: move one step to the north and move two steps to the south, shown in Figure 8-B and 
Figure 8-C, respectively, the square area size of one will be covered. Note: these three steps 
movement is also be a part of the eight-time-steps fashion.  
 

 
 

Figure 8. Covering a square area size of one 
 
Observation 5.1.3 Suppose we have a square area size of one which have the top-left-corner-
point on (x,y) and three sources centered on (x,y+1),  (x,y-1), (x+1, y-1) respectively. If we move 
the three sources in eight-time-steps fashion, the square area size of one will be covered. It is also 
true if we rotate the three sources in the corresponding manner and move the sources in three 
steps in the corresponding manner. 
 
Theorem 5.1.4 If we move sources under ASPC according to eight-time-step fashion, the square 
area under a square grid size of p will be covered. 
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Proof: Because the location of sources to cover a square grid is systematically specified, by 
consideration all the spaces possible according to Observation 5.1.2 and 5.1.3, all the square area 
under the square grid will be covered.                                                                              □ 
 
5.2 Sources with coverage radius of 1.59 
 
In this section, we shall show that if we extend the radius of our sources coverage to 1.59, all the 
sources that we use according to ASGC will cover the area under any square grid size of p. 
 

 
 

     Figure 9. A) source with coverage radius of one. B) source with coverage radius of 2  
 

Let r . The grey part in Figure 9-B show that source with coverage radius of 1.414 can cover 
the square area size of two.  
 
Observation 5.2.1 Sources with coverage radius of 2 centered on a grid point will cover the 
square area size of two. 
 

 
 

Figure 10. A) The area that is not covered by the four sources with r = 1.5  

B) 59.15.15.0' 22 r  
 

Let consider 4 sources centered on )3,1(),,1(),3,(),,(  yxyxyxyx . If 5.1r there is an area 
that is not covered as shown in Figure 10. To cover the space, we must extend the sources 
coverage radius to 1.59 as show by r in Figure 10-B. 
 
Observarion 5.2.2 Given 4 sources centered on )3,1(),,1(),3,(),,(  yxyxyxyx . If all sources 
have radius equal to 1.59, the area under the rectangular with the top-left-corner-point on 

),( yx and the bottom-right-corner-point on )3,3(  yx  will be covered. 
 
Theorem 5.2.3 If all sources from ASGP that cover a square grid size of p have radius equal to 
1.59, the square area size of p-1 will be covered.  
Proof: Because the location of sources for covering a square grid is systematically specified, by 
considering all the spaces possible according to Observation 5.2.1 and 5.2.2, all the square areas 
under the square grid will be covered.                                                                                             □ 
 

6. CONCLUSIONS AND FUTURE WORKS 
 
In this paper, we propose an approximation algorithm to solve a SQUARE GRID POINTS 
COVERAGE (SGPC) problem which is in the NP-complete class. We try to minimize the number 
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of sources with coverage radius of one to cover all points in a square grid with the condition that 
all sources must be communicable. We know that any number can be written in an addition of 3, 
4 and 5, so we present APPROX-SQUARE-GRID-COVERAGE (ASGC) algorithm. The algorithm run 
in O(p2), where p is the size of the square grid. The algorithm also guarantees the approximation 

ratio of 
2

1021
2 



p
p .  Moreover, we state about the extension usage of our algorithm and show two 

examples. We prove that if our sources under ASPC algorithm for covering a square grid size of p 
can move, in eight-time-steps movement, the area under the square gird will be covered. We also 
prove that if we extend our source coverage radius to 1.59, without any movement the area under 
the square gird will also be covered.  
 
For future research, we conclude our article with a list of open problems.  
 

 We may vary the radius of sources. 
 We may work on some other types of the grid. 
 We may extend the area into k-dimension. 
 We may define the movement steps from a starting position to make the coverage area 

and guarantee the time and the battery consumption. 
 We may include more objects to our model for more realistic. (Adding some obstacles to 

block the wireless signal.) 
 We may add movement and velocity to each source to have mobility as in real world. 
 We may improve the algorithm. (better the time bound, tighter with a better analysis) 
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