
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

DOI:10.5121/ijcsit.2015.7204 41

PREPROCESSING FOR PPM: COMPRESSING UTF-8

ENCODED NATURAL LANGUAGE TEXT

William J. Teahan1 and Khaled M. Alhawiti2

1 School of Computer Science, University of Wales, Bangor, UK.
2School of Computes and Information Technology, University of Tabuk, KSA.

ABSTRACT

In this paper, several new universal preprocessing techniques are described to improve Prediction by
Partial Matching (PPM) compression of UTF-8 encoded natural language text. These methods essentially
adjust the alphabet in some manner (for example, by expanding or reducing it) prior to the compression
algorithm then being applied to the amended text. Firstly, a simple bigraphs (two-byte) substitution
technique is described that leads to significant improvement in compression for many languages when they
are encoded by the Unicode scheme (25% for Arabic text, 14% for Armenian, 9% for Persian, 15% for
Russian, 1% for Chinese text, and over 5% for both English and Welsh text). Secondly, a new
preprocessing technique that outputs separate vocabulary and symbols streams – that are subsequently
encoded separately – is also investigated. This also leads to significant improvement in compression for
many languages (24% for Arabic text, 30% for Armenian, 32% for Persian and 35% for Russian). Finally,
novel preprocessing and postprocessing techniques for lossy and lossless text compression of Arabic text
are described for dotted and non-dotted forms of the language.

KEYWORDS

Preprocessing, PPM, UTF-8, Encoding.

1. BACKGROUND

1.1. Prediction by Partial Matching (PPM)

One of the most powerful text compression techniques is Prediction by Partial Match (PPM),
which was first introduced by Cleary and Witten [1]. A series of improvements have been applied
to the original PPM algorithm, such as the PPMC version by Moffat [2] and PPM* by Cleary &
Teahan [3]. The PPM text compression algorithm applies a statistical approach; it simply uses the
set of previous symbols to predict the upcoming symbol in the stream. Variants of the PPM
algorithm (such as PPMC and PPMD) are distinguished by the escape mechanism used to back-
off to lower order models when new symbols are encountered in the context. PPM has also been
applied successfully too many natural language processing (NLP) applications such as
cryptology, language identification, and text correction [4], [5].

1.2. Universal text preprocessing for data compression

Abel and Teahan [6] presented several universal text preprocessing techniques that they applied
prior to the application of various standard text compression algorithms. They found that in many
cases the compression performance was significantly improved by applying the text processing
techniques. In order to recover the original file during decoding, the decompression algorithm
was applied first, and then postprocessing was performed that reversed the effect of the pre-
processing stage.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

42

One method first described in [4] that they found effective for English text is to substitute
bigraphs with a single further unique symbol (essentially expanding the alphabet). This bigraph
substitution method (described in more detail in section 2), however, was only applied to English
ASCII text and its effectiveness for other languages, and other encoding schemes (such as UTF-8)
has not been explored previously.

1.3. UTF-8 encoding

UTF-8 has come to be the most popular character encoding method used on the Web and in
applications [7]. Figure 1 shows the percentage of websites using various character encodings and
clearly shows that UFT-8 is the most popular today.

Figure. 1 Percentage of websites that use various character encodings.

UTF-8 is a multi-byte variable width encoding scheme. It uses the ASCII code (0-127) to
represent a Latin character using a single byte, and then uses up to 4-bytes for other alphabets
although most alphabets require only two bytes per character. The importance of Unicode derives
from its compatibility with ASCII, thus it encodes English letters with single byte characters.
Unicode also derives importance from its compactness and efficiency in most scripts that require
more than one byte to encode, such as Arabic, Japanese and Chinese.

Surprisingly, considering UTF-8’s popularity as an encoding scheme, there have been very few
publications that have investigated the problem of finding the most effective compression of
UTF-8 text. Fenwick and Brierly [8] concluded that for UTF-8 text “accepted ‘good’ compressors
such as finite-context PPM do not necessarily work well”.

This paper presents universal UTF-8 preprocessing algorithms to be performed prior to the use of
the PPM compression scheme. The PPM algorithm itself is used unchanged (as a black- box
component), and only parameters such as the escape mechanism and the order of the model have
been adjusted. The impact of the text preprocessing algorithms are examined using different file
sizes and text genres from the Bangor Arabic Compression Corpus (BACC) [9] of Arabic text and
other corpora such as the Hamshahri corpus of Persian text [10], the HC corpus of Armenian text
[11], the HC corpus of Russian text [11], the LCMC corpus of Chinese text [12], the CEG corpus
of Welsh text [13], and the Brown [14] and LOB [15] corpora of American and British English
text respectively.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

43

Table 1. Bigraphs and their frequency for five different corpora.

2. BIGRAPH SUBSTITUTION FOR PPM (BS-PPM)

2.1. Bigraphs and languages

By its nature, languages contain words that have many repeated bigraph characters, with two
characters often appearing together in the same order such as “th” and “en” in English and “ ال”
and “من” in Arabic text. Usually, each language has common bigraphs that represent a significant
percentage of the text. For example, examining the most frequent 20 bigraphs over five different
languages using 500,000 words from various corpora (CCA [16], HC-Vietnamese [11], HC-
Armenian, Brown and LOB corpora) produces some interesting results as showed in Table 1.
The top 20 bigraphs take up almost 10% of the Vietnamese and English texts. For Arabic and
Armenian texts, the top ranked bigraphs take up significantly more at over 16% and 21%
respectively. Clearly, dealing with bigraphs for these texts is an important consideration.

Bigraphs can be employed to enhance the compression performance over standard PPM by using
preprocessing and postprocessing techniques before and after the compression and
decompression, as shown in Figure 2, as follows. (BS-PPM.).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

44

Figure.2. The use of preprocessing and postprocessing for compression.

2.2. Preprocessing and postprocessing

The preprocessing technique involves sequentially processing the text replacing the most frequent
bigraphs (i.e. sequence of two bytes) in the order that they appear, with unique single characters
for each. For most natural language texts, we have found that replacing the top 100 bigraphs
works best with the alphabet effectively expanding by 100 further characters as a result.

The postprocessing operation simply performs the reverse mapping, by replacing the new unique
characters with the original equivalent two byte bigraphs.

2.3. Experimental results for BS-PPM

Table 2 shows the results of BS-PPM (using order 4 PPMD) compared with other well-known
compression schemes such as ABC2.4 [17] and bzip2 [18] using UTF-8 encoded files from the
BACC for Arabic text, HC-Russian for Russian text, HC-Armenian for Armenian text,
Hamshahri corpus for Persian text, LCMC for Chinese text, CEG for Welsh text, and the Brown
and LOB corpora for American and British English text respectively.

Clearly, BS-PPM works very well on UTF-8 encoded texts in many languages, such as Arabic,
Persian, Armenian, Russian, Welsh, Chinese, and English since it records significant
improvements over other methods in terms of compression rate (in bits per character or bpc). In
all cases for these languages, BS-PPM significantly outperforms the other compression methods,
as it has the best results shown in bold font and also significantly outperforms standard PPM
itself. For example, for Arabic text, BS-PPM shows a 25.1% improvement over standard PPM.
For Armenian text, BS-PPM shows a 14.6% improvement over ABC2.4, 25% over Bzip2 and
30.8% over standard PPM.

For Persian text, BS-PPM showed an 8.7% improvement over ABC2.4, 17.7% over Bzip2 and
28% over standard PPM. For Russian text, BS-PPM showed a 14.5% improvement over ABC2.4,
26.3% over Bzip2 and 35.3% over standard PPM. Also, there was a significant improvement in
compression rates for both American and British English with BS-PPM recording a 14.6%
improvement over Bzip2 for the Brown corpus and 14.4% for the LOB corpus. This rep- resents
an 8.3% improvement over ABC2.4 for the Brown corpus and 8.4% for the LOB corpus, 33.5%
over gzip for Brown and 33.8% for LOB and 5.8% over standard PPM for Brown and 5.9% for
LOB.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

45

In order to examine the impact of bigraph coding using different order PPM models, Table 3
shows the results of both PPM and BS-PPM for orders 1 through 7. The results for order 4 from
Table 2 are repeated in the table for clarity. The best result for each row is shown in bold font.
For Arabic text, the best compression rate occurred when using order 7; for Armenian, Persian
and Chinese text, the best compression rate occurred when using order 5; for Russian text the best
compression rate was for order 6; and for Welsh and English text, order 4 produced the best
compression rate for both American and British texts and Welsh text as well.

Table 2. BS-PPM vs. other methods applied to various language texts.

Language Corpus Text

File
Size

(bytes)
Bzip2
(bpc)

ABC2.4
(bpc)

Gzip
(bpc)

PPM Order4
(bpc)

BS-PPM
Order4 (bpc)

Arabic BACC 50411735 1.45 1.43 2.14 1.79 1.34
Armenian HC 36700160 1.56 1.37 2.39 1.69 1.17
Chinese LCMC 4555457 2.65 2.57 3.47 2.49 2.46
English Brown 5998528 2.46 2.29 3.16 2.23 2.10
English LOB 5877271 2.43 2.27 3.14 2.21 2.08
Persian Hamshahri 41567603 1.53 1.38 2.22 1.75 1.26
Russian HC 52428800 1.52 1.31 2.45 1.73 1.12
Welsh CEG 6169422 2.55 2.34 3.19 2.30 2.14

Average 2.02 1.86 2.77 2.02 1.70

Table 3. Compression results over eight corpora and for different orders of PPM and BS-PPM.

Fil
e La

ng
ua

ge

PP
M

or

de
r

1

BS
-P

PM
 o

r-

de
r

1

PP
M

or

de
r

2

BS
-P

PM
 o

r-

de
r

2

PP
M

or

de
r

3

BS
-P

PM
 o

r-

de
r

3

PP
M

or

de
r

4

BS
-P

PM
 o

r-

de
r

4

PP
M

or

de
r

5

BS
-P

PM
 o

r-

de
r

5

PP
M

or

de
r

6

BS
-P

PM
 o

r-

de
r

6

PP
M

or

de
r

7

BS
-P

PM
 o

r-

de
r

7

BACC Arabic 2.42 2.03 2.17 1.68 2.04 1.45 1.79 1.34 1.66 1.30 1.51 1.28 1.44 1.27
H
C

Armenian 2.43 2.06 2.02 1.49 1.90 1.26 1.69 1.17 1.61 1.15 1.42 1.16 1.36 1.18
LCMC Chinese 4.03 3.72 3.01 2.86 2.66 2.58 2.49 2.46 2.46 2.44 2.47 2.45 2.49 2.46
English Brown 3.67 3.13 3.02 2.34 2.51 2.12 2.23 2.10 2.16 2.13 2.17 2.17 2.22 2.21
English LOB 3.66 3.11 2.99 2.32 2.48 2.1 2.21 2.08 2.14 2.11 2.15 2.15 2.19 2.18

Hamshahri Persian 2.29 1.92 2.09 1.53 1.96 1.3 1.75 1.26 1.60 1.17 1.42 1.17 1.33 1.18
H Russian 2.47 1.95 2.08 1.48 1.97 1.23 1.73 1.12 1.63 1.09 1.41 1.08 1.33 1.09

CE
G

Welsh 3.66 3.2 3.07 2.44 2.60 2.18 2.30 2.14 2.20 2.17 2.21 2.21 2.25 2.24

These results show that an impressive improvement in compression performance is possible for
natural language texts using the bigraph substitution method. The next section describes a new
method that also uses preprocessing techniques and also yields impressive improvements in
compression performance.

3. CHARACTER SUBSTITUTION FOR PPM (CS-PPM)

UTF-8 is a variable-length, byte-based encoding and, therefore, a bigraph-based substitution
method as described in the previous section may not be best suited for languages where two-byte
encoding is not the norm. This is illustrated by the results for Chinese texts, which in UTF-8
encoding often requires 3 or 4 bytes to encode each character. This suggests a character, rather
than a bigraph, substitution method might also yield impressive results.

3.1. Preprocessing and postprocessing

Unlike the bigraph substitution method just described, which replaces the top 100 bigraphs in the
text during the preprocessing stage, our character substitution method (called CS-PPM)
substitutes all the UTF-8 multi-byte or single-byte character sequences in the original text. Two
output files are produced as a result of the preprocessing; one contains a stream of UTF-8

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

46

characters (called the ‘vocabulary’ stream) and the other contains a list of symbol numbers (called
the ‘symbols’ stream).

Whenever a new character is encountered in the original text, this character is assigned a symbol
number equal to the current symbols count, which is then incremented. The symbols count is
initialised to 1 for the first character. When that same character is encountered later on in the text,
the symbol number assigned to it is written out to the symbols output file. At the same time, the
UTF-8 character-byte sequence for new characters is written out to a separate vocabulary output
file.

Both the vocabulary output file and the symbols output file need to be compressed during the
encoding stage. Therefore, two files also need to be decoded separately, with the vocabulary
output file requiring decoding first in order to define the reverse mapping between symbols and
UTF-8 characters during the post- processing stage.

We found the following method works well at encoding the two files. For encoding the
vocabulary output file, standard order 1 byte- based PPM is quite effective. For the symbols
output file, where the symbol numbers can get quite large for some languages, a similar technique
to word-based PPM [4] works well with the alphabet size being unbounded. Another finding is
that an order 4 model works best among the experimented languages.

3.2. Experimental Results for CS-PPM

Table 4 lists results for PPM and CS-PPM on Arabic text using files from the BACC corpus. In
all cases, there is a significant improvement in performance for CS-PPM over PPM, as shown in
column 4 of the table. The improvement is noticeable most for the largest files in the corpus with
almost 25% improvement for the file bookcollection1. Column 5 provides the percentage cost of
encoding the symbols output file and the last column provides the percentage cost of encoding the
vocabulary output file. The results show that the symbols output file consistently takes up 75 to
80% of the overall encoding cost.

Table 5 lists results for PPM and CS-PPM on various language texts, with results from
bookcollection1 from the BACC corpus repeated on the first row for comparison. The languages
for which CS-PPM is most effective are Arabic (23.3% improvement), Armenian (30.4%),
Persian (31.5%) and Russian (35.2%).

3.3. Character Substitution of Arabic for PPM (CSA-PPM)

In this section, we describe a third method that is tailored specifically for Arabic text. We call the
method Character Substitution of Arabic for PPM (CSA-PPM).

Unlike CS-PPM which produces two output files (symbol and vocabulary stream), one out- put
file is produced as a result of the pre-processing method of CSA-PPM. Since we can assume in
advance that we will be encoding Arabic text, we can directly substitute the characters with the
equivalent number of the UTF-8 scheme to eliminate the need for a vocabulary output file
altogether, which will decrease the size of the output compressed file, as shown in Table 6.
The savings from not having to encode the characters that make up the alphabet leads to
significant improvements for the small sized files. However, for large files, the improvements are
minimal when compared to the overall compressed file size.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

47

4. DOTTED (LOSSLESS) AND NON-DOTTED (LOSSY)
COMPRESSION OF ARABIC TEXT

Data compression is divided into two main categories, lossless and lossy compression. On the
other hand, text compression and, more specifically, the problem of natural language text
compression, is usually considered to be lossless compression since changing the text in natural
language will usually alter the meaning. Despite this, there have been a few papers that have
considered the problem, from the satirical paper [19] to the more recent paper [20].

The Arabic language comprises 28 letters, fifteen of them that are dotted and thirteen of them
non-dotted, as shown in Table 7.

Dots above and below the letter give it a different pronunciation, such as one dot below
 which is equivalent to the ”ت“ which is equivalent to a B in English and two dots above ” ب “
letter T in English, and so on. In old Arabic texts, all letters were not originally dotted but, despite
some ambiguity as a result, this could still be easily identified by native Arabic readers familiar
with the Arabic language. Figure 4 below shows a sample ancient Arabic script that uses the non-
dotted form [21].

Due to the ambiguity of identifying the correct letter by non-native Arabic language learners,
since 820 A.D, these letters have become dotted [22]. We exploited this historical feature of the
language to improve the compression rate of Arabic in some cases by preprocessing the Arabic
text prior to compression with PPM and recovering it during the postprocessing stage after
decompression, as explained in more detail below.

Table 4. PPM vs. CS-PPM for the BACC.

File

Size
(bytes)

PPM
Order4
(bpc)

CS-PPM
(bpc)

Improv.
(%)

Percentage
of encoding
symbols (%)

Percentage
of encoding

vocabulary (%)
economic 15877 2.03 1.90 6.4 76.9 23.1
education 26892 2.06 1.96 4.9 76.0 24.0

sports 31609 1.95 1.77 9.2 78.2 21.8
culture 34683 2.03 1.88 7.4 76.8 23.2

artandmusic 42453 2.08 1.93 7.2 76.1 23.9
political 47403 1.99 1.74 11.7 78.4 21.6
articles 103625 1.94 1.76 9.3 78.2 21.8
press 547963 1.83 1.57 13.7 80.4 19.6

Novel1 857995 1.87 1.63 12.8 79.6 20.4
Novel2 908364 1.86 1.62 12.9 79.7 20.3
Novel3 1022265 1.86 1.61 13.4 80.0 20.1

bookcollection1 50411735 1.81 1.3 24.6 82.7 17.3
bookcollection2 199150079 1.78 1.4 23.3 83.2 16.8

Average 1.94 1.7 11.4 78.6 21.4

Table 5. Results for PPM and CS-PPM on various language texts.

Language Corpus
text file

Size
(bytes)

PPM
(bpc)

CS-PPM
(bpc)

Improve.
(%)

Percentage of
encoding

symbols (%)

Percentage of
encoding

Vocabulary (%)
Arabic bookcollection1 50411735 1.80 1.38 23.3 82.7 17.3

Armenian HC 36700160 1.69 1.18 30.4 85.3 14.7
Chinese LCMC 4555457 2.49 2.37 4.9 70.6 29.4
English Brown 5998528 2.23 2.15 3.5 73.1 26.9
English LOB 5877271 2.21 2.13 3.6 73.4 26.6
Persian Hamshahri 41567603 1.75 1.20 31.5 85.0 15.0
Russian HC 52428800 1.73 1.12 35.2 86.0 14.0
Welsh CEG 6169422 2.3 2.20 4.5 72.6 27.5

Average 2.03 1.72 17.3 78.6 21.4

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

48

4.1. Preprocessing Arabic text for lossy non-dotted compression

During the first stage, letters such as"ب ت ث ن ي" the dots to generate the lossy (non-dotted) are
normalized by removing version of the original text before it is compressed using PPM. For
example, “ي”becomes “ى” and letters such as “ج خ” are normalized to be “ج”, and letters such
as “ذ ز ش ض ظ غ ف ق” are normalized to be “د ر س ص ط ع ف”.

4.2. Encoding and Decoding

During the encoding stage, the pre-processed (lossy) text is compressed using PPM. During the
decoding stage, the compressed text is decoded using PPM to produce the lossy version of the
original text.

Table 6. CS-PPM vs. CSA-PPM.

File name

Size
(Bytes)

CSA-PPM
Compressed output

(Bytes)

CS-PPM
Compressed output

(Bytes)

Difference
(Bytes)

economic 15877 3629 3681 -52
education 26892 6427 6516 -89

sport 31609 6856 6934 -78
culture 34683 8009 8097 -88

artandmusic 42453 10148 10246 -98
political 47403 10144 10238 -94
articles 103625 22683 22813 -130
press 547963 108083 108339 -256

novel1 857995 176215 176444 -229
novel2 908364 186302 186505 -203
novel3 1022265 206690 206902 -212

shortstories 1041952 201613 201859 -246
literature 19187425 3312444 3312864 -420
history 30714551 4403343 4403730 -387

bookcollection1 50411735 9370563 9371244 -681
Bookcollection2 199150079 32249015 32249566 -551

Table 7.Arabic letters.

Dotted Non-Dotted

 أ ح د ر س ط ع ك ل م ه و ى ب ت ث ج خ ذ ز ش ض ظ غ ف ق ن ي

Figure. 3.Sample of Arabic script prior to 820 A.D. (UmAlqura, 2014)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

49

4.3. Recovering the Lossless Version of the Text

In this stage, the lossy text is automatically corrected using a Viterbi-based algorithm [23] using
PPM character models [5] in order to try to recover the original text. This is done by finding the
most probable corrected sequence when a match occurs in the text from the list of corrections
shown in Table 8. The most probable sequence is selected which is the sequence that has the best
encoding according to a PPM character-based language model trained on text from the BACC
corpus as it is a large and representative corpus of contemporary Arabic language.

The Viterbi-based correction method will make mistakes, so these have to be encoded separately
to inform the decoder which of the dotted forms (zero, one or two) each character should take. In
our implementation, we directly encode the file position of the character that has been incorrectly
dotted, which requires log2 N bits, where N is the number of characters in the file. One further
bit is needed to encode the number of dots, either one or two dots, with the default form not
requiring correction being zero dots.

4.4. Experimental Results

To examine our new method, we conducted experiments using the CCA and the EASC [24]. This
is done by corpora while training the PPM-based corrector on the BACC.

As anticipated, lossy compression showed significant improvement over dotted compression by
over 7% for EASC and over 5% for CCA, respectively. When the lossy form of the text was
corrected using the Viterbi-based correction method in order to recover the original non-dotted
text, a small number of errors were discovered. These errors made up 0.66% of the EASC and
0.43% for the CCA. When the cost of encoding these errors was added in (see the last column in
Table 9), the lossless scheme still resulted in a significant improvement in compression (1.78 bpc
compared to 1.86 bpc for the EASC and 1.74 bpc compared to 1.83 bpc for the CCA).

In order to investigate this result further, 10-fold cross-validation was performed on the BACC
with the results shown in Table 9. The corpus was split into 10 equal parts (splits S1 through S10
as in the first column of the table). Training of the Viterbi-based corrector was then done on 9/10
of the corpus and testing on the other 1/10, and this was repeated 10 times using each split for
testing.

The non-dotted compression shows an improvement of 2 to 5% over the dotted texts. However, a
significant number of errors were made by the correction software as shown in column six of the
table and this resulted in a lossless compression result (as shown in the last column) worse than
the dotted compression result, shown in column three. The worse result is probably due to the
varied nature of the BACC with files covering a variety of subjects, such as economics,
education, sport, and culture, for example.

Table 8. List of corrections.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

50

Table 9. Dotted PPM vs. Non-Dotted PPM.

File Size
(Bytes)

PPM of dotted
text (bpc)

PPM of
non-dotted
text (bpc)

Improve.
%

Number of
error

Error
%

PPM of non-dotted
text with dots
corrected (bpc)

EASC 630321 1.86 1.72 7.53 2301 0.66 1.78
CCA 6265790 1.83 1.73 5.46 15155 0.43 1.74

Table.10. Ten-fold cross-validation.

BACC Split Size (bytes) PPM of dotted

text
(bpc)

PPM of
non-dotted text

(bpc)

Improve.
%

Number of
errors

Error
%

PPM of
non-dotted text

with dots
corrected (bpc)

S1 31188787 1.76 1.69 3.98 129662 0.74 1.8
S2 31351880 1.70 1.65 2.94 101282 0.58 1.74
S3 31394336 1.71 1.65 3.51 107259 0.61 1.74
S4 31249486 1.82 1.74 4.40 229401 1.31 1.94
S5 31369255 1.69 1.64 2.96 101334 0.58 1.73
S6 31253465 1.71 1.65 3.51 95563 0.54 1.73
S7 30931867 1.77 1.71 3.39 171525 0.98 1.86
S8 31045940 1.64 1.6 2.43 103952 0.59 1.70
S9 31394039 1.75 1.67 4.57 138527 0.79 1.79

S10 31434684 1.75 1.67 4.57 155972 0.89 1.81

5. CONCLUSIONS

The PPM compression performance on UTF-8 encoded natural language text can be significantly
improved by applying preprocessing and postprocessing techniques that rely on adjusting the
alphabet (for example, by expanding or reducing the number of symbols). The BS-PPM, CS-
PPM, CSA-PPM and Non-Dotted PPM techniques described in this paper are all examples of
these adjustments with the first three working by expanding the alphabet and the last one working
by reducing the alphabet.

The results show that serious consideration should be made not only to further investigation of
text pre/postprocessing techniques, but also into mechanisms for incorporating their effect
directly into the compression algorithm itself (therefore obviating the need for performing the
pre/postprocessing separately). Improvements in performance of over 35% using straightforward
substitution techniques on UTF-8 text indicate that significant gains can still be made for the
well-researched PPM algorithm.

REFERENCES

[1] J.G.Cleary and I.Witten, “Data compression using adaptive coding and partial string matching,”

Communications, IEEE Transactions on, vol.32, no.4, pp.396–402, 1984.
[2] A.Moffat, “Implementing the PPM data compression scheme,” IEEE Transactions on

Communications, vol.38, no.11, pp.1917–1921, 1990.
[3] J.G.Cleary and W.J.Teahan, “Unbounded length contexts for PPM,” The Computer Journal, vol.40,

no.2 and 3, pp. 67–75, 1997.
[4] W.J.Teahan, “Modelling English text,” Ph.D. dissertation, University of Waikato, 1998.
[5] W.J.Teahan, S.Inglis, J. G. Cleary, and G. Holmes, “Correcting English text using ppm models,” in

Proceedings of the Data Compression Conference, 1998. DCC’98. IEEE, 1998, pp. 289–298.
[6] J.Abel and W. J.Teahan, “Universal text preprocessing for data compression,” IEEE Transactions on

Computers, vol. 54, no. 5, pp. 497–507, 2005.
[7] E.A.Jari, “Efficiency lossless data techniques for Arabic text compression,” International Journal of

Computer Science & Information Technology (IJCSIT), vol.6, No 5, October 2014.
[8] BuiltWith, “UTF-8 usage statistics,” 2012. [Online].Available:

http://trends.builtwith.com/encoding/UTF-8.

http://trends.builtwith.com/encoding/UTF-8.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015

51

[9] P.M.Fenwick and S.Brierley, “Compression of unicode files.” in Data Compression Conference,
1998, p. 547.

[10] W.J.Teahan and K.M.Alhawiti, “Designcompilation and preliminary statistics of compression corpus
of written Arabic,” Bangor University, Tech. Rep., 2013. [Online]. Available:
http://pages.bangor.ac.uk/ eepe04/index.html.

[11] A.AleAhmad, H.Amiri, E.Darrudi, M. Rahgozar, and F. Oroumchian, “Hamshahri: A standard
Persian text collection,” Knowledge-Based Systems, vol.22, no.5, pp.382–387, 2009.

[12] H.Christensen, “HC Corpora,” 3013. [Online]. Available:
http://www.corpora.heliohost.org/download.html

[13] A.M. McEnery and Z. Xiao, “The Lancaster corpus of Mandarin Chinese: A corpus for monolingual
and contrastive language study,” Religion, vol. 17, pp. 3–4, 2004.

[14] N.Ellis, C. O’Dochartaigh, W. Hicks, M. Morgan, and N. Laporte, “Cronfa electroneg o gymraeg
(ceg): A 1 million word lexical database and frequency count for Welsh,” 2001.

[15] W.N. Francis and H. Kucera, “Brown corpus manual,” Brown University Department of Linguistics,
1979.

[16] S.Johansson, “The LOB corpus of British English texts: presentation and comments,” ALLC journal,
vol. 1, no. 1, pp. 25–36, 1980.

[17] L.Al-Sulaiti and E. Atwell, “The design of a corpus of contemporary Arabic.” International Journal of
Corpus Linguistics, vol.11, no.2, 2006.

[18] M.Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” 1994.

[19] J.Seward, “bzip2,” 1998. [Online]. Available: http://www.bzip.org.
[20] I.H. Witten, T. C. Bell, A. Moffat, C. G. Nevill-Manning, T.C.Smith, and H.Thimbleby, “Semantic

and generative models for lossy text compression,” The Computer Journal, vol. 37, no. 2, pp. 83–87,
1994.

[21] E.C¸elikel C¸ ankaya, V. Palaniappan, and S. Latifi, “Exploiting redundancy to achieve lossy text
compres- sion,” Pamukkale University Journal of Engineering Sciences, vol. 16, no. 3, 2011.

[22] UmAlqura, “Letter by Prophet Muhammad peace be upon him,” 2014. [Online]. Available:
http://uqu.edu.sa/page/ar/39589.

[23] M.K. Baik, History of Arabic Language. Dar Sa’ad Aldin, Damascus, 1992, vol. 1.
[24] A.J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm,” Infor- mation Theory, IEEE Transactions on, vol.13, no.2, pp. 260–269, 1967.
[25] M.El-Haj, U.Kruschwitz, and C.Fox, “Using Mechanical Turk to create a corpus of Arabic

summaries,” in Proceedings of the Seventh conference on International Language Resources and
Evaluation, 2010.

Authors

William J. Teahan I am currently a Lecturer in the School of Computer Science at
the University of Wales at Bangor. My work involves research into Artificial
Intelligence and Intelligent Agents. Ongoing research has also specifically focused
on applying text compression-based language models to natural language
processing (NLP), text categorization and text mining. Before I came to Bangor, I
was a research fellow with the Information Retrieval Group under Prof. David
Harper at The Robert Gordon University in Aberdeen, Scotland from 1999-2000; an
invited researcher in the Information Theory Dept. at Lund University in Sweden in
1999; and a Research Assistant in the Machine Learning and Digital Libraries Labs
at the University of Waikato in New Zealand in 1998. At Waikato, I completed my
Ph.D. in 1998 on applying text compression models to the problem of modelling
English text.

Khaled M. Alhawiti I am currently the dean of the School of Computers and
information technology at the University of Tabuk in Saudi Arabia. My work
involves research into natural language processing. I have been working with Dr.
Teahan since 2011 on applying text compression models to the problem of
modelling Arabic text and other NLP applications for Arabic.

http://pages.bangor.ac.uk/
http://www.corpora.heliohost.org/download.html
http://www.bzip.org.
http://uqu.edu.sa/page/ar/39589.

