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ABSTRACT 
 
In this paper, several new universal preprocessing techniques are described to improve Prediction by 
Partial Matching (PPM) compression of UTF-8 encoded natural language text. These methods essentially 
adjust the alphabet in some manner (for example, by expanding or reducing it) prior to the compression 
algorithm then being applied to the amended text. Firstly, a simple bigraphs (two-byte) substitution 
technique is described that leads to significant improvement in compression for many languages when they 
are encoded by the Unicode scheme (25% for Arabic text, 14% for Armenian, 9% for Persian, 15% for 
Russian, 1% for Chinese text, and over 5% for both English and Welsh text). Secondly, a new 
preprocessing technique that outputs separate vocabulary and symbols streams – that are subsequently 
encoded separately – is also investigated. This also leads to significant improvement in compression for 
many languages (24% for Arabic text, 30% for Armenian, 32% for Persian and 35% for Russian). Finally, 
novel preprocessing and postprocessing techniques for lossy and lossless text compression of Arabic text 
are described for dotted and non-dotted forms of the language.  
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1. BACKGROUND 

 
1.1. Prediction by Partial Matching (PPM) 

 
One of the most powerful text compression techniques is Prediction by Partial Match (PPM), 
which was first introduced by Cleary and Witten [1]. A series of improvements have been applied 
to the original PPM algorithm, such as the PPMC version by Moffat [2] and PPM* by Cleary & 
Teahan [3]. The PPM text compression algorithm applies a statistical approach; it simply uses the 
set of previous symbols to predict the upcoming symbol in the stream. Variants of the PPM 
algorithm (such as PPMC and PPMD) are distinguished by the escape mechanism used to back-
off to lower order models when new symbols are encountered in the context. PPM has also been 
applied successfully too many natural language processing (NLP) applications such as 
cryptology, language identification, and text correction [4], [5]. 
 
1.2. Universal text preprocessing for data compression  

 
Abel and Teahan [6] presented several universal text preprocessing techniques that they applied 
prior to the application of various standard text compression algorithms. They found that in many 
cases the compression performance was significantly improved by applying the text processing 
techniques. In order to recover the original file during decoding, the decompression algorithm 
was applied first, and then postprocessing was performed that reversed the effect of the pre-
processing stage. 
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One method first described in [4] that they found effective for English text is to substitute 
bigraphs with a single further unique symbol (essentially expanding the alphabet). This bigraph 
substitution method (described in more detail in section 2), however, was only applied to English 
ASCII text and its effectiveness for other languages, and other encoding schemes (such as UTF-8) 
has not been explored previously. 
 
1.3. UTF-8 encoding  

 
UTF-8 has come to be the most popular character encoding method used on the Web and in 
applications [7]. Figure 1 shows the percentage of websites using various character encodings and 
clearly shows that UFT-8 is the most popular today. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1 Percentage of websites that use various character encodings. 
 
UTF-8 is a multi-byte variable width encoding scheme. It uses the ASCII code (0-127) to 
represent a Latin character using a single byte, and then uses up to 4-bytes for other alphabets 
although most alphabets require only two bytes per character. The importance of Unicode derives 
from its compatibility with ASCII, thus it encodes English letters with single byte characters. 
Unicode also derives importance from its compactness and efficiency in most scripts that require 
more than one byte to encode, such as Arabic, Japanese and Chinese. 
 
Surprisingly, considering UTF-8’s popularity as an encoding scheme, there have been very few 
publications that have investigated the problem of finding the most effective compression of 
UTF-8 text. Fenwick and Brierly [8] concluded that for UTF-8 text “accepted ‘good’ compressors 
such as finite-context PPM do not necessarily work well”. 
 
This paper presents universal UTF-8 preprocessing algorithms to be performed prior to the use of 
the PPM compression scheme. The PPM algorithm itself is used unchanged (as a black- box 
component), and only parameters such as the escape mechanism and the order of the model have 
been adjusted. The impact of the text preprocessing algorithms are examined using different file 
sizes and text genres from the Bangor Arabic Compression Corpus (BACC) [9] of Arabic text and 
other corpora such as the Hamshahri corpus of Persian text [10], the HC corpus of Armenian text 
[11], the HC corpus of Russian text [11], the LCMC corpus of Chinese text [12], the CEG corpus 
of Welsh text [13], and the Brown [14] and LOB [15] corpora of American and British English 
text respectively. 
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Table 1. Bigraphs and their frequency for five different corpora. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. BIGRAPH SUBSTITUTION FOR PPM (BS-PPM) 

 
2.1. Bigraphs and languages  

 
By its nature, languages contain words that have many repeated bigraph characters, with two 
characters often appearing together in the same order such as “th” and “en” in English and “ ال” 
and “من” in Arabic text. Usually, each language has common bigraphs that represent a significant 
percentage of the text. For example, examining the most frequent 20 bigraphs over five different 
languages using 500,000 words from various corpora (CCA [16], HC-Vietnamese [11], HC-
Armenian, Brown and LOB corpora) produces some interesting results as showed in Table 1. 
The top 20 bigraphs take up almost 10% of the Vietnamese and English texts. For Arabic and 
Armenian texts, the top ranked bigraphs take up significantly more at over 16% and 21% 
respectively. Clearly, dealing with bigraphs for these texts is an important consideration. 
 
Bigraphs can be employed to enhance the compression performance over standard PPM by using 
preprocessing and postprocessing techniques before and after the compression and 
decompression, as shown in Figure 2, as follows. (BS-PPM.).  
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Figure.2. The use of preprocessing and postprocessing for compression. 
 
2.2. Preprocessing and postprocessing 

 
The preprocessing technique involves sequentially processing the text replacing the most frequent 
bigraphs (i.e. sequence of two bytes) in the order that they appear, with unique single characters 
for each. For most natural language texts, we have found that replacing the top 100 bigraphs 
works best with the alphabet effectively expanding by 100 further characters as a result. 
 
The postprocessing operation simply performs the reverse mapping, by replacing the new unique 
characters with the original equivalent two byte bigraphs.  
 
2.3. Experimental results for BS-PPM  

 
Table 2 shows the results of BS-PPM (using order 4 PPMD) compared with other well-known 
compression schemes such as ABC2.4 [17] and bzip2 [18] using UTF-8 encoded files from the 
BACC for Arabic text, HC-Russian for Russian text, HC-Armenian for Armenian text, 
Hamshahri corpus for Persian text, LCMC for Chinese text, CEG for Welsh text, and the Brown 
and LOB corpora for American and British English text respectively. 
 
Clearly, BS-PPM works very well on UTF-8 encoded texts in many languages, such as Arabic, 
Persian, Armenian, Russian, Welsh, Chinese, and English since it records significant 
improvements over other methods in terms of compression rate (in bits per character or bpc). In 
all cases for these languages, BS-PPM significantly outperforms the other compression methods, 
as it has the best results shown in bold font and also significantly outperforms standard PPM 
itself. For example, for Arabic text, BS-PPM shows a 25.1% improvement over standard PPM. 
For Armenian text, BS-PPM shows a 14.6% improvement over ABC2.4, 25% over Bzip2 and 
30.8% over standard PPM. 
 
For Persian text, BS-PPM showed an 8.7% improvement over ABC2.4, 17.7% over Bzip2 and 
28% over standard PPM. For Russian text, BS-PPM showed a 14.5% improvement over ABC2.4, 
26.3% over Bzip2 and 35.3% over standard PPM. Also, there was a significant improvement in 
compression rates for both American and British English with BS-PPM recording a 14.6% 
improvement over Bzip2 for the Brown corpus and 14.4% for the LOB corpus. This rep- resents 
an 8.3% improvement over ABC2.4 for the Brown corpus and 8.4% for the LOB corpus, 33.5% 
over gzip for Brown and 33.8% for LOB and 5.8% over standard PPM for Brown and 5.9% for 
LOB. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 2, April 2015 
 

45 

In order to examine the impact of bigraph coding using different order PPM models, Table 3 
shows the results of both PPM and BS-PPM for orders 1 through 7. The results for order 4 from 
Table 2 are repeated in the table for clarity. The best result for each row is shown in bold font. 
For Arabic text, the best compression rate occurred when using order 7; for Armenian, Persian 
and Chinese text, the best compression rate occurred when using order 5; for Russian text the best 
compression rate was for order 6; and for Welsh and English text, order 4 produced the best 
compression rate for both American and British texts and Welsh text as well. 
 

Table 2. BS-PPM vs. other methods applied to various language texts. 
 

 
Language Corpus Text 

File 
Size 

(bytes) 
Bzip2 
(bpc) 

ABC2.4 
(bpc) 

Gzip 
(bpc) 

PPM Order4 
(bpc) 

BS-PPM 
Order4 (bpc) 

Arabic BACC 50411735 1.45 1.43 2.14 1.79 1.34 
Armenian HC 36700160 1.56 1.37 2.39 1.69 1.17 
Chinese LCMC 4555457 2.65 2.57 3.47 2.49 2.46 
English Brown 5998528 2.46 2.29 3.16 2.23 2.10 
English LOB 5877271 2.43 2.27 3.14 2.21 2.08 
Persian Hamshahri 41567603 1.53 1.38 2.22 1.75 1.26 
Russian HC 52428800 1.52 1.31 2.45 1.73 1.12 
Welsh CEG 6169422 2.55 2.34 3.19 2.30 2.14 

Average 2.02 1.86 2.77 2.02 1.70 
 

 
Table 3. Compression results over eight corpora and for different orders of PPM and BS-PPM. 

 
 

 
 
 
 

Fil
e   La

ng
ua

ge
 

PP
M

 
or

de
r 

1 

BS
-P

PM
 o

r-
 

de
r 

1 

PP
M

 
or

de
r 

2 

BS
-P

PM
 o

r-
 

de
r 

2 

PP
M

 
or

de
r 

3 

BS
-P

PM
 o

r-
 

de
r 

3 

PP
M

 
or

de
r 

4 

BS
-P

PM
 o

r-
 

de
r 

4 

PP
M

 
or

de
r 

5 

BS
-P

PM
 o

r-
 

de
r 

5 

PP
M

 
or

de
r 

6 

BS
-P

PM
 o

r-
 

de
r 

6 

PP
M

 
or

de
r 

7 

BS
-P

PM
 o

r-
 

de
r 

7 

BACC Arabic 2.42 2.03 2.17 1.68 2.04 1.45 1.79 1.34 1.66 1.30 1.51 1.28 1.44 1.27 
H
C 

Armenian 2.43 2.06 2.02 1.49 1.90 1.26 1.69 1.17 1.61 1.15 1.42 1.16 1.36 1.18 
LCMC Chinese 4.03 3.72 3.01 2.86 2.66 2.58 2.49 2.46 2.46 2.44 2.47 2.45 2.49 2.46 
English Brown 3.67 3.13 3.02 2.34 2.51 2.12 2.23 2.10 2.16 2.13 2.17 2.17 2.22 2.21 
English LOB 3.66 3.11 2.99 2.32 2.48 2.1 2.21 2.08 2.14 2.11 2.15 2.15 2.19 2.18 

Hamshahri Persian 2.29 1.92 2.09 1.53 1.96 1.3 1.75 1.26 1.60 1.17 1.42 1.17 1.33 1.18 
H Russian 2.47 1.95 2.08 1.48 1.97 1.23 1.73 1.12 1.63 1.09 1.41 1.08 1.33 1.09 

CE
G 

Welsh 3.66 3.2 3.07 2.44 2.60 2.18 2.30 2.14 2.20 2.17 2.21 2.21 2.25 2.24 

 
These results show that an impressive improvement in compression performance is possible for 
natural language texts using the bigraph substitution method. The next section describes a new 
method that also uses preprocessing techniques and also yields impressive improvements in 
compression performance. 
 
3. CHARACTER SUBSTITUTION FOR PPM (CS-PPM) 

 
UTF-8 is a variable-length, byte-based encoding and, therefore, a bigraph-based substitution 
method as described in the previous section may not be best suited for languages where two-byte 
encoding is not the norm. This is illustrated by the results for Chinese texts, which in UTF-8 
encoding often requires 3 or 4 bytes to encode each character. This suggests a character, rather 
than a bigraph, substitution method might also yield impressive results. 
 
3.1. Preprocessing and postprocessing 

 
Unlike the bigraph substitution method just described, which replaces the top 100 bigraphs in the 
text during the preprocessing stage, our character substitution method (called CS-PPM) 
substitutes all the UTF-8 multi-byte or single-byte character sequences in the original text. Two 
output files are produced as a result of the preprocessing; one contains a stream of UTF-8 
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characters (called the ‘vocabulary’ stream) and the other contains a list of symbol numbers (called 
the ‘symbols’ stream). 
 
Whenever a new character is encountered in the original text, this character is assigned a symbol 
number equal to the current symbols count, which is then incremented. The symbols count is 
initialised to 1 for the first character. When that same character is encountered later on in the text, 
the symbol number assigned to it is written out to the symbols output file. At the same time, the 
UTF-8 character-byte sequence for new characters is written out to a separate vocabulary output 
file. 
 
Both the vocabulary output file and the symbols output file need to be compressed during the 
encoding stage. Therefore, two files also need to be decoded separately, with the vocabulary 
output file requiring decoding first in order to define the reverse mapping between symbols and 
UTF-8 characters during the post- processing stage. 
 
We found the following method works well at encoding the two files. For encoding the 
vocabulary output file, standard order 1 byte- based PPM is quite effective. For the symbols 
output file, where the symbol numbers can get quite large for some languages, a similar technique 
to word-based PPM [4] works well with the alphabet size being unbounded.  Another finding is 
that an order 4 model works best among the experimented languages. 
 
3.2. Experimental Results for CS-PPM 

 
Table 4 lists results for PPM and CS-PPM on Arabic text using files from the BACC corpus. In 
all cases, there is a significant improvement in performance for CS-PPM over PPM, as shown in 
column 4 of the table. The improvement is noticeable most for the largest files in the corpus with 
almost 25% improvement for the file bookcollection1. Column 5 provides the percentage cost of 
encoding the symbols output file and the last column provides the percentage cost of encoding the 
vocabulary output file. The results show that the symbols output file consistently takes up 75 to 
80% of the overall encoding cost. 
 
Table 5 lists results for PPM and CS-PPM on various language texts, with results from 
bookcollection1 from the BACC corpus repeated on the first row for comparison. The languages 
for which CS-PPM is most effective are Arabic (23.3% improvement), Armenian (30.4%), 
Persian (31.5%) and Russian (35.2%). 
 
3.3. Character Substitution of Arabic for PPM (CSA-PPM) 

 
In this section, we describe a third method that is tailored specifically for Arabic text. We call the 
method Character Substitution of Arabic for PPM (CSA-PPM). 
 
Unlike CS-PPM which produces two output files (symbol and vocabulary stream), one out- put 
file is produced as a result of the pre-processing method of CSA-PPM. Since we can assume in 
advance that we will be encoding Arabic text, we can directly substitute the characters with the 
equivalent number of the UTF-8 scheme to eliminate the need for a vocabulary output file 
altogether, which will decrease the size of the output compressed file, as shown in Table 6. 
The savings from not having to encode the characters that make up the alphabet leads to 
significant improvements for the small sized files. However, for large files, the improvements are 
minimal when compared to the overall compressed file size. 
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4. DOTTED (LOSSLESS) AND NON-DOTTED (LOSSY) 
COMPRESSION OF ARABIC TEXT 
 

Data compression is divided into two main categories, lossless and lossy compression. On the 
other hand, text compression and, more specifically, the problem of natural language text 
compression, is usually considered to be lossless compression since changing the text in natural 
language will usually alter the meaning. Despite this, there have been a few papers that have 
considered the problem, from the satirical paper [19] to the more recent paper [20]. 
 
The Arabic language comprises 28 letters, fifteen of them that are dotted and thirteen of them 
non-dotted, as shown in Table 7. 
 
Dots above and below the letter give it a different pronunciation, such as one dot below 
 which is equivalent to the ”ت“ which is equivalent to a B in English and two dots above ” ب “
letter T in English, and so on. In old Arabic texts, all letters were not originally dotted but, despite 
some ambiguity as a result, this could still be easily identified by native Arabic readers familiar  
with  the Arabic language. Figure 4 below shows a sample ancient Arabic script that uses the non-
dotted form [21]. 
 
Due to the ambiguity of identifying the correct letter by non-native Arabic language learners, 
since 820 A.D, these letters have become dotted [22]. We exploited this historical feature of the 
language to improve the compression rate of Arabic in some cases by preprocessing the Arabic 
text prior to compression with PPM and recovering it during the postprocessing stage after 
decompression, as explained in more detail below. 
 

Table 4. PPM vs. CS-PPM for the BACC. 
 

 
File 

Size 
(bytes) 

PPM 
Order4 
(bpc) 

CS-PPM 
(bpc) 

Improv. 
(%) 

Percentage 
of encoding 
symbols (%) 

Percentage 
of encoding 

vocabulary (%) 
economic 15877 2.03 1.90 6.4 76.9 23.1 
education 26892 2.06 1.96 4.9 76.0 24.0 

sports 31609 1.95 1.77 9.2 78.2 21.8 
culture 34683 2.03 1.88 7.4 76.8 23.2 

artandmusic 42453 2.08 1.93 7.2 76.1 23.9 
political 47403 1.99 1.74 11.7 78.4 21.6 
articles 103625 1.94 1.76 9.3 78.2 21.8 
press 547963 1.83 1.57 13.7 80.4 19.6 

Novel1 857995 1.87 1.63 12.8 79.6 20.4 
Novel2 908364 1.86 1.62 12.9 79.7 20.3 
Novel3 1022265 1.86 1.61 13.4 80.0 20.1 

bookcollection1 50411735 1.81 1.3 24.6 82.7 17.3 
bookcollection2 199150079 1.78 1.4 23.3 83.2 16.8 

Average 1.94 1.7 11.4 78.6 21.4 

 
Table 5. Results for PPM and CS-PPM on various language texts. 

 
 

Language Corpus 
text file 

Size 
(bytes) 

PPM 
(bpc) 

CS-PPM 
(bpc) 

Improve. 
( %) 

Percentage of 
encoding 

symbols ( %) 

Percentage of 
encoding 

Vocabulary ( %) 
Arabic bookcollection1 50411735 1.80 1.38 23.3 82.7 17.3 

Armenian HC 36700160 1.69 1.18 30.4 85.3 14.7 
Chinese LCMC 4555457 2.49 2.37 4.9 70.6 29.4 
English Brown 5998528 2.23 2.15 3.5 73.1 26.9 
English LOB 5877271 2.21 2.13 3.6 73.4 26.6 
Persian Hamshahri 41567603 1.75 1.20 31.5 85.0 15.0 
Russian HC 52428800 1.73 1.12 35.2 86.0 14.0 
Welsh CEG 6169422 2.3 2.20 4.5 72.6 27.5 

Average 2.03 1.72 17.3 78.6 21.4 
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4.1. Preprocessing Arabic text for lossy non-dotted compression 
 

During the first stage, letters such as"ب ت ث ن ي" the dots to generate the lossy  (non-dotted) are 
normalized by removing version of the original text before it is compressed using PPM.  For 
example,  “ي”becomes “ى” and letters such as “ج خ” are normalized to be  “ج”, and letters such 
as “ذ ز ش ض ظ  غ ف ق” are normalized  to  be “د ر س ص ط ع ف”. 
 
4.2. Encoding and Decoding 

 
During the encoding stage, the pre-processed (lossy) text is compressed using PPM. During the 
decoding stage, the compressed text is decoded using PPM to produce the lossy version of the 
original text. 

Table 6. CS-PPM vs. CSA-PPM. 
 

 
File name 

Size 
(Bytes) 

CSA-PPM 
Compressed output 

(Bytes) 

CS-PPM 
Compressed output 

(Bytes) 

Difference 
(Bytes) 

economic 15877 3629 3681 -52 
education 26892 6427 6516 -89 

sport 31609 6856 6934 -78 
culture 34683 8009 8097 -88 

artandmusic 42453 10148 10246 -98 
political 47403 10144 10238 -94 
articles 103625 22683 22813 -130 
press 547963 108083 108339 -256 

novel1 857995 176215 176444 -229 
novel2 908364 186302 186505 -203 
novel3 1022265 206690 206902 -212 

shortstories 1041952 201613 201859 -246 
literature 19187425 3312444 3312864 -420 
history 30714551 4403343 4403730 -387 

bookcollection1 50411735 9370563 9371244 -681 
Bookcollection2 199150079 32249015 32249566 -551 

 
Table 7.Arabic letters. 

 
Dotted Non-Dotted 

  أ ح د ر س ط ع ك ل م ه و ى ب ت ث ج خ ذ ز ش ض ظ غ ف ق ن ي
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. 3.Sample of Arabic script prior to 820 A.D. (UmAlqura, 2014) 
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4.3. Recovering the Lossless Version of the Text 
 

In this stage, the lossy text is automatically corrected using a Viterbi-based algorithm [23] using 
PPM character models [5] in order to try to recover the original text. This is done by finding the 
most probable corrected sequence when a match occurs in the text from the list of corrections 
shown in Table 8. The most probable sequence is selected which is the sequence that has the best 
encoding according to a PPM character-based language model trained on text from the BACC 
corpus as it is a large and representative corpus of contemporary Arabic language. 
 
The Viterbi-based correction method will make mistakes, so these have to be encoded separately 
to inform the decoder which of the dotted forms (zero, one or two) each character should take. In 
our implementation, we directly encode the file position of the character that has been incorrectly 
dotted, which requires log2 N bits, where N is the number of characters in the file. One further 
bit is needed to encode the number of dots, either one or two dots, with the default form not 
requiring correction being zero dots. 
 

4.4. Experimental Results 
 

To examine our new method, we conducted experiments using the CCA and the EASC [24]. This 
is done by corpora while training the PPM-based corrector on the BACC. 
 
As anticipated, lossy compression showed significant improvement over dotted compression by 
over 7% for EASC and over 5% for CCA, respectively. When the lossy form of the text was 
corrected using the Viterbi-based correction method in order to recover the original non-dotted 
text, a small number of errors were discovered. These errors made up 0.66% of the EASC and 
0.43% for the CCA. When the cost of encoding these errors was added in (see the last column in 
Table 9), the lossless scheme still resulted in a significant improvement in compression (1.78 bpc 
compared to 1.86 bpc for the EASC and 1.74 bpc compared to 1.83 bpc for the CCA). 
 
In order to investigate this result further, 10-fold cross-validation was performed on the BACC 
with the results shown in Table 9. The corpus was split into 10 equal parts (splits S1 through S10 
as in the first column of the table). Training of the Viterbi-based corrector was then done on 9/10 
of the corpus and testing on the other 1/10, and this was repeated 10 times using each split for 
testing. 
 
The non-dotted compression shows an improvement of 2 to 5% over the dotted texts. However, a 
significant number of errors were made by the correction software as shown in column six of the 
table and this resulted in a lossless compression result (as shown in the last column) worse than 
the dotted compression result, shown in column three. The worse result is probably due to the 
varied nature of the BACC with files covering a variety of subjects, such as economics, 
education, sport, and culture, for example. 
 

Table 8. List of corrections. 
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Table 9. Dotted PPM vs. Non-Dotted PPM. 
 

File Size 
(Bytes) 

PPM of dotted 
text (bpc) 

PPM of 
non-dotted 
text (bpc) 

Improve. 
% 

Number of 
error 

Error 
% 

PPM of non-dotted 
text with  dots 
corrected (bpc) 

EASC 630321 1.86 1.72 7.53 2301 0.66 1.78 
CCA 6265790 1.83 1.73 5.46 15155 0.43 1.74 

 
Table.10. Ten-fold cross-validation. 

 
BACC Split Size (bytes) PPM of dotted 

text 
(bpc) 

PPM of 
non-dotted text 

(bpc) 

Improve. 
% 

Number of 
errors 

Error 
% 

PPM of 
non-dotted text 

with  dots 
corrected (bpc) 

S1 31188787 1.76 1.69 3.98 129662 0.74 1.8 
S2 31351880 1.70 1.65 2.94 101282 0.58 1.74 
S3 31394336 1.71 1.65 3.51 107259 0.61 1.74 
S4 31249486 1.82 1.74 4.40 229401 1.31 1.94 
S5 31369255 1.69 1.64 2.96 101334 0.58 1.73 
S6 31253465 1.71 1.65 3.51 95563 0.54 1.73 
S7 30931867 1.77 1.71 3.39 171525 0.98 1.86 
S8 31045940 1.64 1.6 2.43 103952 0.59 1.70 
S9 31394039 1.75 1.67 4.57 138527 0.79 1.79 

S10 31434684 1.75 1.67 4.57 155972 0.89 1.81 
 
5. CONCLUSIONS  

 
The PPM compression performance on UTF-8 encoded natural language text can be significantly 
improved by applying preprocessing and postprocessing techniques that rely on adjusting the 
alphabet (for example, by expanding or reducing the number of symbols). The BS-PPM, CS-
PPM, CSA-PPM and Non-Dotted PPM techniques described in this paper are all examples of 
these adjustments with the first three working by expanding the alphabet and the last one working 
by reducing the alphabet. 
 
The results show that serious consideration should be made not only to further investigation of 
text pre/postprocessing techniques, but also into mechanisms for incorporating their effect 
directly into the compression algorithm itself (therefore obviating the need for performing the 
pre/postprocessing separately). Improvements in performance of over 35% using straightforward 
substitution techniques on UTF-8 text indicate that significant gains can still be made for the 
well-researched PPM algorithm. 
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