
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

DOI:10.5121/ijcsit.2015.7403 29

UNIQUE FUNDAMENTALS OF SOFTWARE

MEASUREMENT AND SOFTWARE METRICS IN

SOFTWARE ENGINEERING

Dr. K.P. Srinivasan

Associate Professor in Computer Science, C.B.M. College,

Kovaipudur, Coimbatore – 641 042, Tamil Nadu, India

ABSTRACT

The most important aim of software engineering is to improve software productivity and quality of software

product and further reduce the cost of software and time using engineering and management techniques.

Broadly speaking, software engineering initiative has been introduced during software crisis period to

describe the collection of techniques that apply engineering and management skills to the construction and

support of software process and products. There is no universally agreed theory for software measurement.

And the software metrics are useful for obtaining the information on evaluation of process and product in

software engineering. It helps to plan and carry out improvement in software organizations and to provide

objective information about project performance, process capability and product quality. The process

capability is extremely important for software industry because the quality of products is largely

determined by the quality of the processes. The make use of of existing metrics and development of

innovative software metrics will be important factors in future software engineering process and product

development. In future, research work will be based on using software metrics in software development for

the development of the time schedule, cost estimates and software quality and can be improved through

software metrics. The permanent application of measurement based methodologies is used to the software

process and its products to provide important and timely management information, together with the use of

those techniques to improve that software process and its products. This research paper mainly

concentrates on the overview of unique basics of software measurement and exclusive fundamentals of

software metrics in software engineering.

KEYWORDS

Software Quality, RBSM, PKM, PEPE, Software Industry, Software Measurement, SEM, Software Metrics,

Object Oriented Metrics, Software Development, Software Engineering, Computer Science.

1. INTRODUCTION

The software measurement is an important research subject in computer science [21-28].

According to eminent researchers Jacobson, I., and Seidewitz, E. (2014), “What is needed for

software, then, is an engineering discipline built on the experience of software craftsman,

capturing their understanding in a foundation that then can be used to educate and support a new

generation of practitioners” [14]. According to Pressman, R.S. (2001), the objective of software

engineering is to maintain accurate schedule and reduce cost, improve better quality products and

higher productivity and all these can be achieved through effective software management, which,

in turn, can be facilitated by the improved use of software metrics in software engineering [19].

According to Srinivasan, K.P., and Devi, T. (2014), “all the engineering systems are using the

measure and measurement systems in day-to-day activities for the production of quality products.

In case of software engineering, most of the organization produces their products without perfect

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

30

measurement system” [22] and “it is identified that software metrics research faced more

difficulties towards proving usefulness in industry, theoretical validity, empirical validity,

defining precise metrics, understanding, methodology of execution, execution time is more to find

the metrics values, metrics are executed only by experts, and accuracy on results” [26]. The

software metrics for software measurement proposed by important researchers are called C-K

software metrics [8], MOOD software metrics [2], L-K metrics [16], QMOOD software metrics

[5], Comprehensive software metrics (CM) [26] for object oriented design quality measurement,

Halstead metrics [11], McCabes metrics [19], and Program Keyword Metrics (PKM) [22] for

software coding measurement in software engineering. Recently, Srinivasan, K.P., and Devi, T.

(2014), proposed a set of six Result Based Software Metrics (RBSM) suite called Comprehensive

Metrics (Simple, Easy and Effective Results) for measuring Functionality, Understandability,

Effectiveness, Flexibility, Extendibility, and Reusability of software design in software

engineering [26]. And further, they also introduced a new kind of software metrics for software

coding phase in software engineering called “Program Keyword Metrics (PKM)” [22]. This

Program Keyword Metrics eliminates the important criticism called “ambiguity criticism” of most

referred “Halstead Metrics” [11] and “Lines Of Coding (LOC) metrics” [19] in software coding

(Program) measurement. And further they eliminated the main criticism of “accuracy on results”

in software measurement by “Keyword Metrics (KM) (RBSM)” in Software Engineering [22].

Since 1970, the researchers of software metrics have been facing the difficulties of proving their

validity using theoretical and empirical validations. There is a strong correlation between design

metrics and maintainability of software system. In order to improve software design in design

phase, design measurement based on software metrics is important and vital in software

development. This research paper mainly concentrates on the overview of unique fundamentals of

software measurement and basics of software metrics in software engineering for the

improvement of the usage of software metrics in software industries in the following Sections.

Section 2: The software measurement model of software engineering. Section 3: Characteristics

of software measure. Section 4: Broad types of software measurement in software industry.

Section 5: Properties of software measurement. Section 6: Principles of software measurement in

software engineering. Section 7: General activities of software measurement in software

engineering. Section 8: The importance of software metrics in software industry, Section 9: The

characteristics of software metrics in software engineering. Section 10: History of software

metrics in software engineering. Section 11: Generations of software metrics. Section 12: Types

of software metrics in software engineering. Section 13: Limitations of software metrics in

software industry and conclusion includes future directions of the research.

2. THE SOFTWARE MEASUREMENT MODEL OF SOFTWARE ENGINEERING

The structural model of software measurement is shown in Figure 1 describes the concepts of

software measurement and their related components [15]. Formally, the software metrics require

understanding of the basic concepts of software measurement activities and objects related with

measurement. The structural model of software measurement is called software measurement

framework. This framework describes the objects of software measurement called entities of

measurement, relationships, attributes, scales and that are used for validating software metrics

[15], [18]. The structural model of measurement given in Figure 1 defines an entity to possess

many attributes while an attribute can qualify many different entities and it defines that an

attribute can be measured in one or more units. The entities are the objects in the real world and

the software measurement is to capture their characteristics and manipulate them in a formal way.

For a given attribute, there is relationship of interest in the empirical world and it is to be captured

formally in the mathematical world. The relationship between entities and attributes is illustrated

in Figure 1. It suggests that an entity possesses several attributes, while an attribute can meet the

criteria many diverse entities. A software measure plans an empirical attribute to the proper and

mathematical world and a software measurement unit determines how to measure a software

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

31

attribute. Figure 1 implies that an attribute may be measured in one or more units and it implies

that the same unit may be used to measure more than one attribute. Scale types are to be

considered for software measurement units. The scale types are needed to understand the different

measurement scale types implied by the particular unit. A unit’s scale type determines the

admissible transformations of a particular unit.

Figure 1. The Structural Software Measurement Model [15]

In traditional measurement theory, units are only applicable to ratio and interval scale measures.

It is extended to the use of units in the structure model to allow for the scale points for ordinal

scale measures and used for nominal scale measures. Figure 1 illustrates a one-to-one

relationship between unit and scale type. In this model, different units direct to different scale

types and they do not affect the attribute. In software measurement, measuring an attribute is by

applying a specific measurement unit to a particular entity and attribute to obtain a value. This

value is often numerical, but it does not have to be. However, these values represent a nominal

scale measure and they are arbitrary labels and they cannot be summed or averaged. A measured

value cannot be interpreted unless it is to know to what entity it applies to, what attribute it

measures and in what unit. The software attribute has both an entity and a unit of measure. The

properties of values are defined over a set of permissible values. A set of permissible values are

finite or infinite, bounded or unbounded, discrete or continuous. Figure 1 shows that an

instrument may optionally be used to obtain the measured value of an attribute and it indicates

that there may be many different measurement instruments available for a particular unit.

Measurement instruments usually detect a single unit value of an attribute in a particular unit of

measurement and accumulate units into a value for a particular entity. However, instruments are

also used to classify entities. In case of scalar measures that are expressed in compound units, it is

usually not possible to measure the multidimensional attribute directly. There are multi-

dimensional software attribute derived from several other attributes and they are measured in a

compound unit constructed from relevant base units. The equation used to calculate the indirect

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

32

attribute value is derived from the nature of the multi-dimensional attribute not from any

empirical association among the attributes. In the properties of indirect measures, valid indirect

measures should not exhibit an unexpected discontinuity i.e., they should be defined in all

reasonable or expected situations.

3. CHARACTERISTICS OF SOFTWARE MEASURE IN SOFTWARE INDUSTRY

A software measure is a numerical value computed from a set of data. In order to examine the

details of software metrics, first consider the properties of a measure. The characteristics of

software measure are shown in Figure 2. • The measure should be robust. The calculation of the

software measure is repeatable and the final result is not sensitive to minor changes in

environment. The software measure is precise, and the process of collecting the data for the

measure is objective.• The measure should suggest a norm, scale, and bounds. There is a scale

upon which one can make a comparison of two measures of the same type [4].

 Figure 2. Characteristics of Software Measure

• The measure should be meaningful. The software measure relates to the software product, and

there should be an underlying principle for gathering data for the software measure. Frequently,

one measure alone is inadequate to real software measure the features of the design paradigm or

to achieve the objectives of the software project in software engineering. This suggests that a

suite of measures is essential to give the scope and range necessary to achieve the software

project's objectives. A suite of measures adds an additional consideration.

• A suite of measures should be consistent. If a minor value is enhanced for one type of

software measure in the matching set, then smaller is better for all other types of measures in the

suite. In addition, the data gathering software process that produced the data from which a

measure is computed should be carefully arranged.

4. BROAD TYPES OF SOFTWARE MEASUREMENT IN SOFTWARE INDUSTRY

There are two broad types of software measurement in software industry called “direct” and”

indirect” software measurement methodology (Figure 3). An entity may be an object, such as a

software specification, or an event. A software attribute is a characteristic or property of the

entity, such as the length or functionality, or the duration of the testing. The software

measurement in software engineering is defined as the software process by which numbers (or)

symbols are assigned to attributes of entities in the actual world in such a way as to describe them

according to obviously definite rules [9], [10], [20]. Direct measurement of a software attribute is

a software measurement which does not depend on the measurement of any other attribute.

Indirect measurement of an software attribute is software measurement which involves the

measurement of one or more other attributes. Further, the two broad uses of measurements are

shown in Figure 4 and they are: "assessment” and “prediction” [21]. According to measurement

Characteristics of

Software Measure

 Norm, Scale, and Bounds

Measure should be Meaningful

Measure should be Robust

Measure should be Consistent

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

33

theory, predictive software measurement of an software attribute A will normally depend on a

mathematical model relating A to some active measures of attributes A1 , . . , An. Accurate

predictive software measurement is certainly dependent on careful assessment type measurement

of the attributes A1…, An. For predictive measurement, the model alone is not sufficient [9].

Additionally, it needs to define the procedures for determining model parameters and interpreting

the results.

Figure 3. Types of Software Measurement Methodology

Figure 4. Uses of Software Measurements in Software Industry

5. PROPERTIES OF SOFTWARE MEASUREMENT

The concept of properties within the context of measurement theory and notation of measurement

theory is called as relational system [7]. The definition of relational system, empirical relational

system and formal system are defined here. The two types of relational systems are called as the

empirical system and formal relational systems.

Relational System: A relational system in a measurement A is an ordered tuple (A, R1, …, Rn,

O1, …,Om) where A is a nonempty set of objects, and the Ri, i=1,…,n are ki- ary relations on A

and the Oj, j=1, …, m are closed binary operations.

Empirical Relational System: The empirical relational system is defined as: A = (A, R1 ,…, Rn ,

o1 ,…om). A = Non-empty set of empirical objects that are to be measured. Ri = ki-ary empirical

relations on A with i = 1… n. oj = binary operations on the empirical objects A that are to

be measured.

Formal Relational System: The formal relational system is defined as: B = (B, S1,…,Sn ,

•1,…•m). B = a non-empty set of formal objects. Si = ki -ary relations on B. •j = closed binary

operations B. The relational system, empirical relational system, representation conditions, scale

types are essential concepts of software measurement and software metrics [7].

6. PRINCIPLES OF SOFTWARE MEASUREMENT IN SOFTWARE ENGINEERING

The principles of software measurement are important in software metrics definitions. There are

14 principles defined for software process, software metrics and software measurement. The first

four measurement principles are for the software process and the principles from 5 to 14 for the

overall software measurement. The principles 5 and 6 are for the characteristics of software

metrics [6]. The principles 5 to 14 are for software measurement and the descriptions of 14

principles are illustrated in Table 1.

Prediction Measurement

Assessment Measurement

Broad Uses of Software

Measurement

Indirect Measurement

Direct Measurement

Broad Types of Software

Measurement

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

34

Table 1. Principles of Software Measurement

Principle 1: A measurement is a perfect instrument for characterizing, evaluating, prediction, and

providing inspiration for the various aspects of software construction. Principle 2: The

measurements must be taken on both the processes and products. Principle 3: There is a diversity

of uses for software measurement. The purpose of software measurement is obviously stated as

measurements used for observing the cost, effectiveness, reliability, correctness, maintainability,

and efficiency. Principle 4: Software measurement needs to be viewed from the suitable

viewpoint. Principle 5: The subjective as well as objective metrics are required for software

measurement. Many process, product and environment aspects can be characterised by objective

metrics. Other aspects cannot be characterised objectively yet, but they can at least be categorized

on a quantitative nominal scale to a reasonable degree of accuracy. Principle 6: In measurement,

mainly aspects of processes and products are too complicated to be captured by a single metric.

The definition of a set of metrics and the purpose for measurement needs to be defined. Principle

7: The development and maintenance environments must be prepared for measurement and

analysis. Planning is required and needs to be carefully integrated into the overall software

engineering process model. Principle 8: In general, software metrics cannot be used for other

environments as defined. Because of the differences among execution models, the models and

metrics must be tailored for the environment in which they will be applied and checked for

validity in that environment. Principle 9: The measurement process must be top-down rather than

bottom-up in order to define a set of operational goals, specify the appropriate metrics, and permit

valid contextual interpretation and analysis. Principle 10: For each environment, there exists a set

of metrics that provides the needed information for definition and interpretation purposes.

Principle 11: The multiple mechanisms are needed for data collection and validation. The nature

of the data to be collected from principle 5 determines the appropriate mechanisms. Principle 12:

In order to evaluate and compare projects and to develop models needed historical experience

base. This experience base should characterise the local environment. Principle 13: The software

metrics must be associated with interpretations. Principle 14: The experience base should evolve

from a database into knowledge base to formalise the reuse of experience. These are the basic

principles for software measurement [6]. It is useful for the software measurement process,

metrics and measurement. The following section explains general activities of software

measurement in software engineering.

7. GENERAL ACTIVITIES OF SOFTWARE MEASUREMENT IN SOFTWARE

ENGINEERING

The general activities of software measurement [13], [21] are depicted in Figure 5. As per

measurement activity, first users must identify the attribute to be measured. Such an attribute

must bear certain significance for a person involved in the development process. In software

engineering context, a measure provides quantitative indication of the extent, amount, dimension

and capacity of some attributes of a product or process.

Principles Use / Applicable

Principles: 1-4 Software Process

Principles: 5-6 Software Metrics

Principles: 5-14 Software Measurement

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

35

Figure 5. General Activities of Software Measurement

In the next step, an empirical relation system must be established. After that, having established

an empirical relation system, a metric M should then map the empirical system into appropriate

formal that is mathematical relation system. Then the next step is the task of validating a software

measure in assessment sense and finally determining the scale type of measurement activity [13].

These are the activities that are essential in measurement. These activities are mostly used for

software measurement construction. These activities will help to analyze and improve the

measure and may guide software metrics researchers in the identification of new attributes and

development of corresponding measures.

8. THE IMPORTANCE OF SOFTWARE METRICS IN SOFTWARE INDUSTRY

Almost for the past four and a half decades, software measurements have been the subject of an

array of criticisms and software metrics have been proposed and given with inadequate theoretical

foundations, while others have been shown to be not useful. This section explains the importance

of software metrics in software industry. The software metrics are used for the development of

the Process Efficiency and to improve Product Effectiveness (PEPE). The process metric is to

improve the development of the software and product metric is an effort to increase its quality.

Software metrics are appreciated only when (i) they are clearly defined, (ii) easy to collect, (iii)

clearly understood, and (iv) it needs stand-alone metrics for measurement. In order to improve the

quality and productivity of software, organizations have to integrate the measurement and process

activity. Software measurement plays an increasingly important role in understanding and

controlling software development practices and products [16]. Better use of existing metrics and

development of improved metrics will help to achieve the goal of software engineering.

According to Pressman, R.S., (Pressman, R.S., 2001) software measurement and software metrics

are the key components of the software engineering discipline [19]. The software metrics are

quantitative measures of a product before and after implementation. And software metrics are

used to find the quality of a software process from software requirement analysis through design

to implementation. Assessing the object-oriented design metrics is to predict potentially fault-

prone classes and components in advance as quality indicators. In today’s software development

environment, object-oriented design and development is important and there is strong relationship

between the object-oriented metrics and the testability efforts in object-oriented system [1, 3].

The improvement of the management software process depends upon ability to identify, measure,

and control necessary parameters of the development process. This is achieved through effective

Identify the Attribute of Interest

Determining the Scale Type of the Measure

Establish an Empirical Relation System

Find a Measure, Mapping the Empirical Relation

System into Formal Numerical one

Validate the Measure

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

36

software metrics and the measurement of the essential parameters of software development.

Software metrics should be used in order to improve the productivity and quality of software,

because they provide critical information about reliability and maintainability of the system. In

general, software metric is a measure of some property of a piece of software or its specifications.

Therefore, software metrics suite is needed. Security estimation of software product must be a

mandatory element of software at an early phase of development life cycle. For security

estimation mechanism, there is a need to develop efficient security metrics for complexity

perspective to evaluate design complexity more accurately. The recent results indicate that

conscious implementation and application of software metrics can help achieve better

management results both in the product and process of the software development. The detection

of design defects using metrics is important for improving the quality of object-oriented software

systems. By automated correction of these defects at appropriate time, total cost of software

development is reduced because the manual detection of defective design is tedious and time-

consuming.

9. THE CHARACTERISTICS OF SOFTWARE METRICS IN SOFTWARE

ENGINEERING

There are several fundamental characteristics that are associated with software metrics in

software engineering and they are given in Figure 6. The characteristics of software metrics in

software engineering are simple, easy to understand; measurable, accountable, economical and

precise. They must be timely, robust, independent, reliable, valid and consistent, and easily

collected. The unambiguous software measurement is vital in software development process and

product. The standardized software measurement, software measures and software metrics in

software engineering have diverse challenges.

Figure 6. Characteristics of Software Metrics in Software Engineering

10. HISTORY OF SOFTWARE METRICS IN SOFTWARE ENGINEERING

The state of software metrics during the last decade is encouraging and currently, many

researchers are involved in the field of software metrics. The software metrics are being applied

Characteristics of

Software Metrics

Robust and Independent

Reliable and Valid

Measurable and Accountable

Economical and Precise

Simple and Easy to Understand

Metrics must be Timely

Consistent and Used Over Time

Easily Collected

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

37

and good results are obtained with criticisms. Figure 7 shows main metrics milestones in history

and Table 2 illustrates the main events (History) of software metrics in software engineering.

Figure 7. Milestones of Software Metrics

Table 2. Major Events of Software Metrics

Year Major Events Year Major Events

1970 Software Development Crisis. 2003 Empirical Validations.

1976 McCabe Software Metrics. 2004 Cohesion Metrics - Empirical Study

1977 Halstead Software Science

Equation Software Metrics.
2005 Empirical Validations – OOD Faulty

classes’ measurement.

1988 Weyuker’s (Most Referred)

Properties of Measures.
2006 Empirical Studies – New Software

Metrics.

1992 Methodology for Validation. 2007 Empirical Validations – OOD Faulty

classes measurement.

1994 C – K OOD Software Metrics.

(Most Cited Software Metrics)
2008 Procedure Based Metrics System

(PBMS) – Empirical Validations.

1995 MOOD OOD Software

Metrics Validations.
2009 Empirical Studies – New Software

Metrics.

1996 Property Based Validations. 2010 Empirical and new software metrics.

1997 New Coupling Software

Metrics.

2011 Many Journal Papers Published –

Total Class and System Metrics.

1998 Empirical Studies and Validity

of Software Metrics.

2012 Many Researchers and Scholars

Involved - Reviewed on Metrics.

2000 Cohesion Software Metrics. 2013 New Complexity, Coupling Metrics.

2001 Prediction on OOD faulty

classes in software

development.

2014 Program Keyword Metrics (PKM),

Result Based Software Metrics -

Comprehensive OOD Metrics.

2002 Bansiya-Davis OOD Metrics –

QMOOD Methodology.
2015 Few Developments in Software

Metrics – (Up to June 2015).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

38

Currently, software metrics researchers have introduced novel software metrics and validated

software metrics using empirical and theoretical techniques in software engineering. The present

states of software metrics in software engineering has been used in decisions-making as well as in

various product activities and more researchers are involved in empirical studies. The eminent

researchers direct the software professionals for evaluating software product effectiveness using

software metrics in software development [21-28]. The Table 2 and Table 3 shows that the

current state of software metrics is still not matured based on concepts, methodology, standards,

and new software metrics. At present, many researchers are involved in research on “cohesion”

and “coupling” software metrics research. They are also involved in proposing software metrics

for cohesion and coupling measurement. Some researchers are involved in empirical studies

finding “fault-prone classes” in “object-oriented design” environments using metrics. Few

researchers are involved in developing metrics tools for different environments and applied

metrics tools in different applications. The main milestones and events of software metrics show

that in the past history, many metrics had been proposed and validated by eminent researchers but

most of the metrics lacked in experimental study and few metrics were accepted and used.

Although there are many metrics in use and under active investigation, a few metrics are more

difficult to apply and execute. At present, the current state of software metrics is still not

satisfactory. As a result, the battle on software metrics is still continuing in software

measurement in software industry.

11. GENERATIONS OF SOFTWARE METRICS IN SOFTWARE ENGINEERING

In the software development crisis year 1970, the software engineers emerged to focus on

accurate time schedule and cost estimates, better quality software products and higher software

productivity. In the software management year 1990, the software management was ineffective

due to complexity of software development and software engineering had a few well-defined,

reliable measures of either process or the product to guide and evaluate development. In 2015, the

software metrics is used to improve the ability to identify and control essential parameters of the

software development process. It must be easy to understand, execute and bring out better results

of software metrics. In the result, establish the software metrics as important in software

engineering for software process and product. The categorized generation of software metrics

nomenclature [23] is shown in Figure 8. Further, Table 3 proposes the comparison of these

classifications and comparative study of first and second generation software metrics.

Figure 8. Generations of Software Metrics in Software Engineering

This nomenclature is proposed based on the vast literature survey made on software metrics. It

will be useful for the researchers in order to understand and find the different stages of software

metrics. At present stage, the software metrics nomenclature classification is quite possible for the

development of software metrics field [23]. Based on the literature survey and analysis of

software metrics studies, the generations (or) groups (or) phases (or) stages of software metrics

are introduced in this research paper for betterment of future software engineering research and

software industry. In wide spectrum, before 1990, the main focus of software metrics was the

Software Metrics and

Measurement Field

First Generation (Group) Software Metrics

(Before 1990)

Second Generation (Group) Software

Metrics

(After 1990)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

39

complexity of the code and procedural oriented languages and after 1990, the main focus of

software metrics was the object-oriented languages and software development approaches.

Accordingly, the categorization of software metrics can be grouped as first generation software

metrics (1970-1990) and second generation software metrics (1991-2015).

Table 3. First and Second Generations Software Metrics

Description / Study First Generation Second Generation

Metrics Defined by Eminent individuals Research Scholars and

Groups

Clear Definitions Lack of clear definitions Defined - Safely reaching

Definitions for all

Approach

Mainly procedural All software development

Measuring for all Phases Mainly coding All phases of software

Tested Tested by experts Tested by any individuals

Used in Software Industry Used by experts Used by any individuals

Theoretical Validations No Few - Safely reaching

Empirical Studies Very limited Comprehensive

Experimental Study Few Not satisfactory

Final Results on Metrics

(Accuracy on Results)

Yield different results Result Based Software

Metrics (RBSM) – PKM -

Safely reaching

Measurement Attributes Very limited All attributes

Improved Quality in

Software Industry

Tested Satisfactory

Safely reaching

Applications Limited All applications

Statistical Approach Very limited Mostly and Clear

Methodology of Execution No QMOOD Methodology -

PBMS Methodology

Single (Total) Metrics No Total Class and System

Metrics ((TCM and TSM)

Criticisms More criticisms Constructive criticisms

Illustrations in Table 3 are useful to recognise the difficulties faced by the metrics research

community at each stage of four decades. Based on the illustrations given in Table 3 it is

concluded that software metrics is difficult to understand and metrics execution takes more time

and costly. In order to control these difficulties referred and problems faced, Srinivasan, K.P., and

Devi, T., introduced the procedural based metrics system for object-oriented design quality

assessment [26] and a new kind of keyword metrics for coding [22]. The Procedure Based

Metrics System has been proposed for easy execution and understanding, and the execution of

each step possibly reduce the confusions and gets the results for decision making.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

40

12. TYPES OF SOFTWARE METRICS IN SOFTWARE ENGINEERING

Software plays an important role in today’s life and to determine quality of the software. The

types or classification of software metrics [21] are shown in Figure 9.

Figure 9. Types of Software Metrics in Software Engineering

The classification of software metrics is important for understanding. In general, software metrics

may be broadly classified as either product metrics or process metrics and it is shown in Figure

10. The product software metrics are software measures of the product at any stage of its software

development. The software process metrics are used for the measures of the software

development process. The project metrics is not required in main classification because software

engineering is mainly concerned with process and product and any metrics in software

measurements may come under only these classifications. When the software developers use the

project metrics in software engineering, such types of software metrics are called “project

software metrics”.

Figure 10. Types of Software Metrics Based on Process and Product

Another way of classification of software metrics is as objective and subjective software metrics

and it is shown in Figure 11. A distinction is sometimes made between ``objective" and

``subjective" measures and is based on the way the measures are defined and collected. Objective

software measures are defined in a totally unambiguous way, while subjective software measures

may leave for interpretation. As a consequence, subjective software measures are supposed to be

of lower quality than objective software measure. However, there are cases in which objective

software measures cannot be composed.

Figure 11. Types of Software Metrics Based on Metrics Condition on Results

Software Metrics

Objective Metrics

Subjective Metrics

Software Metrics

Process Based Software Metrics

Product Based Software Metrics

Types of Software

Metrics

 Based on Metrics Condition on Results

Metrics Based on Computation

Based on Process and Product Metrics

)

Metrics Based on Software Development

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

41

The metrics can be categorized based on computation as “primitive metrics or computed metrics”

(Mills, E.E., 1988, SEI) [17] and it is shown in Figure 12. “Primitive software metrics” are those

that can be directly observed. “Computed software metrics” are those that cannot be directly

observed but are computed in some manner from other software metrics.

Figure 12. Types of Software Metrics Based on Computation

The software metrics can be classified based on software development model as Procedural

Metrics (PM), Object-Oriented Metrics (OOM), and Web Metrics (WM) (Figure 13). The

primary objective of object-oriented metrics is the same as that of the conventional software

metrics. In object-oriented environment, software is a collection of discrete objects that

encapsulate their data as well as the functionality to model real world called objects. Each object

has attributes and method. In order to improve the object-oriented design, software measures or

metrics are needed. The scales for measurement are vital in natural world. This may involve using

the data in other calculations and subjecting them to statistical analyses.

Figure 13. Types of Software Metrics Based on Software Development Model and Applications

The main objective of object-oriented metrics is to understand the quality of the product to assess

the effectiveness of the process, and to improve the quality of work in a project. In literature,

researchers have used these metrics names for their convenience and now it takes another form of

classification of metrics. Software metrics may be broadly classified as either product software

metrics or process software metrics. The classifications of software metrics are carried out by

different people by different way. The above are the main types of software metrics used in

Software Engineering Metrics (SEM) literature.

13. LIMITATIONS OF SOFTWARE METRICS IN SOFTWARE INDUSTRY

There are advantages on software measurement identified with criticisms; it can also lead to some

limitations in software industry and organization. It is generally felt that the programmers are

averse to software measurement and metrics and they give resistance to software measurement

and use of software metrics. The main limitations of software metrics in software industry are as

follows: � The automation of software metrics is difficult task and the convention for software

metrics will be difficult to implement for different environment. � Software metric executions (at

present) are time-consuming and expensive and sometimes bring out delusive conclusions. � It is

difficult to understand software metric results, especially, if they involve in different

environments and development methodologies. � The accurate measurement of metrics requires

certified specialists on software metrics in industry.

Software Metrics

Procedural (PM)

Object-Oriented (OOM)

Web Metrics (WM)

Software Metrics

Primitive Metrics

Computed Metrics

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

42

14. CONCLUSION

The metrics are used for the development of the process efficiency and product effectiveness in

software engineering. The software metrics can help the software professionals to make

unambiguous software attributes of software processes and products more visible [21-28].

Further, measurement includes quantitative evaluations of software and usually metrics can be

used directly to determine achievements of quality goals quantitatively. The current software

management is ineffective due to software development which is extremely complex. An attempt

has been made to concentrates on the overview [1-28] of the software measurement model of

software engineering , characteristics of software measure, broad types of software measurement

in software industry, properties of software measurement in software engineering, principles of

software measurement in software engineering, general activities of software measurement in

software engineering, the importance of software metrics in software industry, the characteristics

of software metrics in software engineering, history of software metrics in software engineering,

generations of software metrics in software engineering, types of software metrics in software

engineering, limitations of software metrics in software industry. This research can be further

extended based on concepts and methodology of software measurement and metrics in software

engineering.

REFERENCES

[1] Abdullah, Khan, M.H., and Srivastava, R.,2015, ”Testability Measurement Model for Object Oriented

Design (TMMODD),” International Journal of Computer Science & Information Technology, Vol.

7, No. 1, February, pp. 153-163.

[2] Abreu, F.B., and Melo, W., 1996, “Evaluating the Impact of Object-Oriented Design on Software

Quality,” Proceedings of the 3rd International Software Metrics Symposium, IEEE, Berlin, Germany,

March.

[3] Anbumani, K., and Srinivasan, K.P., 2005, “A Set of Object-Oriented Design Metrics,” Journal of

The Institution of Engineers (India), IE(I), Journal – CP, Volume 86, May, pp. 1-9.

[4] Archer C. and Stinson M.,1995, Object-Oriented Software Measures, Technical Report, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, April.

[5] Bansiya, J., and Davis, C.G., 2002, “Hierarchical Model for Object-Oriented Design Quality

Assessment,” IEEE Transactions on Software Engineering, Vol. 28, No. 1, January, pp. 4-17.

[6] Basili, V.R., and Rombach, H.D., 1988, “The TAME Project: Towards Improvement-Oriented

Software Environment,” IEEE Transactions on Software Engineering, Vol. 14, No. 6, pp. 758-773.

[7] Briand, L.C., Morasca, S., Basili, V.R., 1996, “Property-Based Software Engineering Measurement,”

IEEE Transactions on Software Engineering, Vol. 22, No.1, January, pp. 68-85.

[8] Chidamber, S.R., and Kemerer, C.F., 1994, “A Metrics Suite for Object-Oriented Design,” IEEE

Transactions on Software Engineering, Vol. 20, No. 6, June, pp. 476-493.

[9] Fenton, N., 1994, “Software Measurement: A Necessary Scientific Basis,” IEEE Transactions on

Software Engineering, Vol.20, No.3, March, pp. 199-206.

[10] Fenton, N.E., and Pfleeger, S.L., 2004, Software Metrics: A Rigorous and Practical Approach,

Thomson Asia, Singapore.

[11] Halstead, M.H., 1977, Elements of Software Science, Elsevier, New York.

[12] Harrison, R., Counsel, S.J. and Nithi, R.V., 1998, “An Evaluation of the MOOD Set of Object-

Oriented Software Metrics,” IEEE Transactions on Software Engineering, Vol.24, No.6, June,

pp.491-496.

[13] Hitz, M., and Montazeri, B., 1996, “Chidamber and Kemmerer’s Metrics Suite: A Measurement

Theory Perspective,” IEEE Transactions on Software Engineering, Vol.22, No4, April, pp.267-271.

[14] Jacobson, I., and Seidewitz, E.., 2014, “Real Software Engineering,” CSI communications, Vol. 38,

Issue. 5, August, pp. 7 – 9.

[15] Kitchenham, B., Pfleeger, S.L., and Fenton, N., 1995, “Towards a Framework for Software

Measurement Validation,” IEEE Transactions on Software Engineering, Vol. 21, No.12, December,

pp. 929-943.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015

43

[16] Lorenz, M., and Kidd, J., 1994, Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs,

New Jersey.

[17] Mills, E.E., 1988, SEI Curriculum Module SEI-CM-12-1.1, Software Engineering Institute, December.

[18] Morasca, S.R., Briand, L.C., Basili, V.R., Weyker, E,J., and Zelkowitz, M.V., 1997, “Comments on

‘Towards a Framework for Software Measurement Validation,” IEEE Transactions on Software

Engineering, Vol. 23, No.3, March, pp.187-189.

[19] Pressman, R.S., 2001, Software Engineering a Practitioner’s Approach, 5
th

 Edition, McGraw Hill,

India.

[20] Shneiderman, B., 1980, Software Psychology, Human Factors in Computer and Information Systems,

Winthrop Publishers, Inc, Cambridge, Massachusetts.

[21] Srinivasan, K.P., 2013, “Design and Development of a Procedure Based Metrics System for Object

Oriented Design Quality Assessment,” Ph. D. Thesis, School of Computer Science and Engineering,

Bharathiar University, Coimbatore, India.

[22] Srinivasan, K.P., and Devi, T., 2014, “A Novel Software Metrics and Software Coding Measurement

in Software Engineering,” International Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 4, Issue 1, January, pp. 303-308.

[23] Srinivasan, K.P., and Devi, T., 2012, “Introducing First and Second Generations Nomenclature in

Software Metrics in Software Engineering,” Proceedings of National Conference on Advances in

Computer Applications, Bharathiar University, Coimbatore, pp. 12-22. [ISBN: 978-93-80769-18-9].

[24] Srinivasan, K.P., and Devi, T., 2009, “Design and Development of a Procedure to Test the

Effectiveness of Object-Oriented Design,” International Journal of Engineering Research and

Industrial Applications, Vol.2, No.6, pp. 15-25.

[25] Srinivasan, K.P., and Devi, T., 2011, “Design and Development of a Procedure for new Object-

Oriented Design Metrics,” International Journal of Computer Applications, Vol.24, No.8, pp. 30-35.

[26] Srinivasan, K.P., and Devi, T., 2014, “A Complete and Comprehensive Metrics Suite for Object-

Oriented Design Quality Assessment,” International Journal of Software Engineering and Its

Applications (Scopus Indexed Journal), Vol. 8, No. 2, February, pp.173-188. (This Paper is

recognized as “Quality Paper” by SERSC, Republic of Korea and Published Free of Cost).

[27] Srinivasan, K.P., and Devi, T., 2014, “A Comprehensive Review and Analysis on Object-Oriented

Software Metrics in Software Measurement,” International Journal on Computer Science and

Engineering, Vol. 6, No.7, July, pp.247-261.

[28] Srinivasan, K.P., and Devi, T., 2014, “Software Metrics Validations Methodologies in Software

Engineering,” International Journal of Software Engineering and Applications, Vol. 5, No. 6,

November, pp.87-102. (This Paper is recognized as “Excellent and candidate for Best Paper”).

Author

Dr. K.P. SRINIVASAN received his Master of Computer Applications Degree from

Bharathiar University, Coimbatore, India in 1993. He completed his M. Phil. Degree in

Computer Science from Department of Computer Science and Engineering, Bharathiar

University, Coimbatore, India in 2001 and Ph. D. Degree in Computer Science from

School of Computer Science and Engineering, Bharathiar University, Coimbatore, India in

2014. Presently, he is working as an Associate Professor in Computer Science in C.B.M.

College (Government Aided and Co-Educational Institution), Kovaipudur, Coimbatore

under Bharathiar University, Coimbatore, India since 1997. He has published five conference papers and

eight journal papers. He has received the best paper award from a conference and “quality paper” and

“Excellent and candidate for Best Paper” recognitions from a reputed journals. His current research

interests are in the areas of Software Engineering and Database Systems.

