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Abstract: 

For communication and storage efficiency, image data should be substantially Compressed. The 

compression ratio is limited by noise, which degrades the correlation between pixels. Noise can occur 

during image capture, transmission or processing, and may be dependent on or independent of image 

content. This work proposes a novel algorithm which reduces noise in colour images. Simulation results 

proved that 86% efficiency has been achieved, while considering 415 pixels. 
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1. Introduction 

The appearance of the wavelet filtering has been applied in image denoising for many years. 
While the performance is not very significant. The wavelet transform is a linear operator, 

Wavelet signal denoising appears to be a natural frame. The use of wavelet decomposition for 

noise decomposition is often performed in the image logarithm area. With an acceptable quality, 

appropriate error concealment techniques dealing with shape and texture data are necessary. 

Here, a main shortcoming of transformation is that it is based on estimation of the information of 

original image[1]. In order to deal with multiplicative noise model mentioned above, we attempt 

to reduce speckle in images using multi-Resolution decomposition[2-8]. For one-dimensional 

piecewise smooth signals, wavelets has been established as a powerful tool. However, nature 

images always contain abundant geometric characteristics, such as edges, contours and textures, 

etc. It is believed that wavelets can poorly handle the directional information of the natural 

images, and cannot provide the optimal sparse representation of nature images [5]. Recently, 

several more effective transforms with good directionality and anisotropy are proposed, such as 

ridgelet transform[3], curvelets transform [4],contourlet Transform(CT) [5] and wavelet-based 
contourlet  transform(WCT) [8], etc. The directionality and anisotropy characteristics enable all 

these newly proposed transforms in a certain degree to capture the directional information of a 

natural image into subbands of different scale and frequency.Thus, these transforms can make 

full use of the directional information to distinguish the important image features from the non-

directional noise. An image is often corrupted by noise in its acquisition and transmission. Image 

denoising is used to remove the additive noise while retaining as much as possible the important 

signal features. In recent years many approaches to image denosing have been proposed [1]-[6], 
some of them are based on single wavelet and the others based on multiple wavelets. Single 

wavelet and multiple wavelets have their own advantages and limitations. For instance, multiple 

wavelets can possess simultaneously orthogonality, symmetry, and short support, while a single 

wavelet cannot possess all these properties at the same time. So multiple wavelets is much more 
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flexible than single wavelet, however, single wavelet is the foundation of the multiple wavelets. 

The member of single wavelet family is much more abundant than multiple wavelets, and it is 

easy to calculate. The basic approach based on wavelet transform (single wavelet transform and 

multiple wavelets transform) consists of the following three steps:  

1) Compute the WT coefficients of the signal;  

2) Perform some specified processing on these coefficients;  

3) Compute the inverse WT to obtain the processed image.  

Different wavelet methods are differentiated by the step 2. Since the work of Donoho and 

Johnstone [1][2], many methods based on WT were proposed. These approaches can be 

classified by the selection of wavelet or threshold. This paper gives a comparison between single 

wavelet and multiple wavelets in image denosing.Another problem seen in the image denoising 
techniques is the pseudo-Gibbs artifacts which occur due to the thresholding of some of the 

transform coefficients to zero. Sometimes artifacts cannot be permitted in result images. For 

example, in medical image processing, artifacts can bring mistake in diagnosis. These artifacts 

can be reduced by nonlinear diffusion [12]. Denoising by combining wavelet transform and 

anisotropic diffusion to reduce these artifacts has been explored before and shown to give 

positive results [13]. Recently, denoising by combining Fractlet shrinkage and non linear 

diffusion has been implemented and the results show significant reduction in the artifacts [14]. 
In this paper, we combine anisotropic diffusion along with our hybrid denoising method which 

involves the Fractlet transform and the wavelet transform. We also compare the results obtained 

by our method with those obtained by Fractals based denoising and wavelet based denoising 

methods. 

2. Wavelet Transform 

Wavelet transform (WT) represents an image as a sum of wavelet functions with different 

locations and scales [17].Any decomposition of an image into wavelets involves a pair of 

waveforms: one to represent the high frequencies corresponding to the detailed parts of an image 

(wavelet function) and one for the low frequencies or smooth parts of an image (scaling 

function).  

 
Fig.1.Wavelet Transform. 

 

Fig. 1 shows two waveforms of a family discovered in the late 1980s by Daubechies: the right 

one can be used to represent detailed parts of the image and the left one to represent smooth 

parts of the image. The two waveforms are translated and scaled on the time axis to produce a 
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set of wavelet functions at different locations and on different scales. Each wavelet contains the 

same number of cycles, such that, as the frequency reduces, the wavelet gets longer. High 

frequencies are transformed with short functions (low scale). Low frequencies are transformed 

with long functions (high scale). During computation, the analyzing wavelet is shifted over the 

full domain of the analyzed function. The result ofWTis a set of wavelet coefficients, which 

measure the contribution of the wavelets at these locations and scales. 

2.1. Multi resolution Analysis 

Fractal T performs multi resolution image analysis [18]. The result of multiresolution analysis is 

simultaneous image representation on different resolution (and quality) levels [19]. The 

resolution is determined by a threshold below which all fluctuations or details are ignored. The 

difference between two neighboring resolutions represents details. Therefore, an image can be 

represented by a low-resolution image (approximation or average part) and the details on each 

higher resolution level. Let us consider a one-dimensional (1-D) function f(t). At the resolution 

‘j’ level , the approximation of the function. The intuition behind using lossy compression for 

denoising may be explained as follows. A signal typically has structural correlations that a good 

coder can exploit to yield a concise representation. White noise, however, does not have 

structural redundancies and thus is not easily compressible. Hence, a good compression method 

can provide a suitable model for distinguishing between signal and noise. The discussion will be 

restricted to wavelet-based coders, though these insights can be extended to other transform-

domain coders as well. A concrete connection between lossy compression and denoising can 

easily be seen when one examines the similarity between thresholding and quantization, the 

latter of which is a necessary step in a practical lossy coder. That is, the quantization of wavelet 

coefficients with a zero-zone is an approximation to the thresholding function (see Fig. 1). Thus, 

provided that the quantization outside of the zero-zone does not introduce significant distortion, 

it follows that wavelet-based lossy compression achieves denoising. With this connection in 
mind, this paper is about wavelet thresholding for image denoising and also for lossy 

compression. The threshold choice aids the lossy coder to choose its zero-zone, and the resulting 

coder achieves simultaneous denoising and compression if such property is desired  

 

 
Fig. 2.  Thresholding function can be approximated by quantization 

 

The theoretical formalization of filtering additive iid Gaussian noise (of zero-mean and standard 

deviation ) via thresholding wavelet coefficients was pioneered by Donoho and Johnstone [14]. 

A wavelet coefficient is compared to a given threshold and is set to zero if its magnitude is less 

than the threshold; otherwise, it is kept or modified (depending on the thresholding rule). The 

threshold acts as an oracle which distinguishes between the insignificant coefficients likely due 

to noise, and the significant coefficients consisting of important signal structures. Thresholding 

rules are especially effective for signals with sparse or near-sparse representations where  only a 
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small subset of the coefficients represents all or most of the signal energy. Thresholding 

essentially creates a region around zero where the coefficients are considered negligible. Outside 

of this region, the thresholded coefficients are kept to full precision (that is, without 

quantization). Their most well-known thresholding methods include VisuShrink [14] and 

SureShrink [15]. These threshold choices enjoy asymptotic minimax optimalities over function 

spaces such as Besov spaces. For image denoising, however, VisuShrink is known to yield 

overly smoothed images. 

Since the works of Donoho and Johnstone, therehas been much research on finding thresholds 

for nonparametric estimation in statistics. However, few are specifically tailoredfor images. In 

this paper, we propose a framework and a near-optimal threshold in this framework more 

suitable for image denoising. This approach can be formally described as Bayesian, but this only 

describes our mathematical formulation, not our philosophy. The formulation is grounded on the 

empirical observation that the wavelet coefficients in a subband of a natural image can be 

summarized adequately by a generalized Gaussian distribution (GGD) To achieve simultaneous 

denoising and compression, the nonzero thresholded wavelet coefficients need to be quantized. 

Uniform quantizer and centroid reconstruction is used on the GGD. This criterion balances the 

tradeoff between the compression rate and distortion, and yields a nice interpretation of 

operating at a fixed slope on the rate-distortion curve. 

3. Fractal Transform 

Originally, fractal-based methods sought to express a target set as a union of shrunken copies of 

itself. However, most real-world images are rarely so entirely self-similar. Instead, self-

similarity may be exhibited only locally, in the sense that subregions of an image may be self-

similar. This is the basis of the block-based fractal encoding scheme introduced by Jacquin [11]. 

Most fractal-based image coding methods are based on this scheme, which can be outlined as 

follows: 

1) As illustrated in Fig. 1, the image is subdivided into two different non-overlapping partitions 
of sub-blocks:  

  a) M _ M domain(parent) blocks, Di. For instance, when the image is square with a 

power of size, we choose M = 2m, for some integer m > 1 

b) N _ N domain (child) Ri. Typically we choose N = 2_M, so that the size of a parent block is 

four times of a child block. 

2) Each child block, Ri, k=1,2,3.....N2, is then matched to its most ’similar’ parent block  for the 

same 
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.  

 

Fig.3. Uniform image partitioning for fractal image coding. 

 

3) The similarity between the parent block Di(k) and the child block Rk, is in the sense that the 

subimage on the parent block Di(k) can be transformed ”closely” to the subimage on the child 

block Rk via a contractive mapping. This contractive transformation is a composition of a 

geometric mapping wi(k) followed. 

4) A least-squares fit is then performed between the child block Rk, and the geometrically 

transformed parent block using affine grey-level mapping Rk. 

 
3.1. Fractal Decoding 

The fractal decoding algorithm is a fast and recursive process which can be summarized as 

follows: Starting with any initial image (typically a blank image), each range subblock Rk, is 
predicted from its fractal code. This process is then repeated recursively until a desirable 

convergence is achieved. Convergence may be defined in terms of the difference between two 

consecutive iteration estimates. Next, we outline the fractal-based joint image denoising and 

resizing scheme. 

3.2. Fractal Image Denoising 

In [12], a simple and effective fractal-based strategy for smoothing noisy images in the pixel as 

well as the wavelet domains of the noisy image was proposed. First, it was observed that 

straightforward fractal coding of a noisy image yields some degree of noise reduction. This may 

be explained by the fact that self-similar structures found in natural images are generally 

reconstructed rather well through fractal coding whereas the noisy components cannot be 

approximated well in this way. We have also shown that one can achieve better image denoising 

results by estimating the fractal code of the original noiseless image from that of the noisy 
observation. From this predicted fractal code, one can generate a fractally denoised estimate of 

the original image. Due to space limitation, the details of this fractal-based image denoising 

scheme are not included here. The reader is referred to our previous work in [13, 14].  

 

3.3. Fractal Image Interpolation 

In order to increase the size of the image by a power of two (in each direction), a simple fractal 

strategy can be applied [15]. This method is performed entirely during the fast converging fractal 

decoding process. For instance, for the commonly used test image of “Lena” of size 512 X 512  
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and suppose we wish to double the size of this test image to obtain a fractal interpolated image 

of size 1024 X 1024.  

1) First, the original image is fractal encoded, using the standard fractal coding scheme, outlined 

above. This must be done at a sufficiently high fractal resolution (i.e. small domain/range 

blocks) in order to achieve a sufficiently high quality fractal representation of the image. For 

instance for the standard fractal scheme, we use (M,N)=(64,128) which results in mapping a 8 X 

8 pixel parent blocks into a 4 X 4 child blocks. 

2) Then, in order to double the size of the fractally decoded image, during the decoding process 

one simply starts with an initial blank image seed of the same size as the desired interpolated 
image. 

 This simple fractal-based process results in a fractally interpolated image of size 1024 X 1024 

Of course, modifying (increase or decreasing) the size of the image by any power of 2 in each 

direction can be performed in a similar manner, by simply applying the fractal code on an image 

blank image seed of a suitable size. 

 

4. Novel Image Denoising Schme 

In fact, Gaussian scheme is the main process behind the proposed scheme. Image smoothing 
using nonlinear diffusion has been used in the field of image processing. If u0 denote the 

observed noisy image which is known to be the sum of the original image s and some Gaussian 

noise n  

 
 

and periodic boundary conditions. Here, the time t acts as a scale parameter for filtering. The 
choice of the diffusion constant g(x)=const corresponds to a strong smoothing of u with 

increasing t. typically, g(x) is a non-negative decreasing function with limit of g(x) tending to 

zero as x approaches infinity. The diffusivity g controls the smoothing process by admitting 

strong diffusion if the gradient is small, possibly caused by noise, and by slowing down or even 

stop the smoothing for large gradients.  

One of the serious problems in the diffusion model in (5) is that it is very sensitive to noise. The 

noise often introduces very large oscillations of the gradient. Therefore, the model in (4) 

possibly misconstrues the true edges and heavy noise, which leads to undesirable diffusion in 
regions where there is no true edge. A typical improved model, to remedy these deficiencies, is 

based on Gaussian regularization 

 

where  is a Gaussian kernel with variance. The Gaussian filtering acts as a preprocessing to 

reduce the influence of noise during the diffusion process. The diffusion is applied to the 

difference image u0 - uc, instead of directly applying to the denoised image. Here u0 is the noisy  
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image and uc is the denoised image. After some iteration steps of the diffusion scheme, the 

smoothened difference image is added to the denoised image to obtain the final result. The idea 

here is to keep the low-frequency coefficients and the significant coefficients, that is those 

coefficients whose magnitude is above the threshold, untouched and slightly change the 

coefficients that have been thresholded to zero in such a way that the image is smoothed. 

The idea behind this approach is that while the denoised image contains the important features of 

the image to be reconstructed, the difference image particularly contains high frequency 

components which mainly correspond to noise. Applying the diffusion only to the difference 
image avoids the narrow peaks or textures from getting smoothened too much as in conventional 

diffusion. We can thus retain the signal amplitude of the detail components while reducing the 

pseudo- Gibbs oscillations at the same time, in comparison to those methods directly using 

curvelet shrinkage, As the diffusivity function g. 

This section focuses on the estimation of the GGD parameters,   and   which in turn yields 

a data-driven estimate of   that is adaptive to different subband characteristics. The noise 

variance needs to be estimated first. In some situations, it may be possible to measure based on 

information other than the corrupted image. If such is not the case, it is estimated from the 

subband by the robust median estimator, also used in [14], [15], To summarize, we refer to our 

method as BayesShrink which performs soft-thresholding, with the data-driven, subband- 

dependent threshold, 

 
 

 

5. Experimental Results 

 

The grayscale images goldhill, lena, barbara and baboon are used as test images with different 

noise levels . The original images are shown in fig 3. The wavelet transform employs 

Daubechies least asymmetric compactly-supported wavelet with eight vanishing moments [11] 

with four scales of orthogonal decomposition 
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Fig. 4. Original images. From top left, clockwise: goldhill, lena, barbara and baboon 

 

We have also made comparisons with the Wiener filter, the best linear filtering possible. The   

version used is the adaptive filter, wiener2, in the MATLAB image processing toolbox, using the 

default settings ( local window size, and the unknown noise power is estimated). The MSE 

results are shown in Table I, and they are considerably worse than the nonlinear thresholding 

methods, especially when is large. The image quality is also not as good as those of the 

thresholding methods. The MDLQ-based compression step introduces quantization noise which 

is quite visible. As shown in the last column of Table I, the coder achieves a lower bitrate, but at 
the expense of increasing the MSE. The MSE can be even worse than the noisy observation for 

small values of , especially for the highly detailed images. This is because the quantization noise 

is significant compared to the additive Gaussian noise.  
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Fig. 5.Histogram of the wavelet coefficients of four test images.For each image, from top to bottom it is 

fine to coarse scales: from left to right, they are the HH, HL, and LH subbands, respectively 

 
 

For larger, the compressed images can achieve noise reduction up to approximately 75% in  
terms of MSE. Furthermore, the bitrates are significantly less than the original 8 bpp for 

grayscale images. Thus, compression does achieve denoising and the proposed MDLQ-based 

compression can be used if simultaneous denoising and compression is a desired feature. If only 

the best denoising performance were the goal, obviously using solely BayesShrink is preferred. 

A fair assessment of the MDLQ scheme for quantization after thresholding is the R-D curve 

used in Hansen and Yu [17] (see http://cm.belllabs .com/stat/binyu/publications.html). This R-D 

curve is calculated using noiseless coefficients, and yields the best possible in terms of R-D 

tradeoff when the quantization is restricted to equal-binwidth. It thus gives an idea on how 

effective MDLQ is in choosing the tradeoff with respect to the optimal. The closeness of the 

MDLQ point to this R-D lowerbound curve indicates that MDLQ chooses a good R-D tradeoff 

without the knowledge of the noiseless coefficients required in deriving this R-D curve. the 

resulting images of each denoising method for goldhill and (a zoomed-in section of the image is 

displayed in order to show the details). Table II compares the threshold values for each subband 
chosen by OracleShrink, SureShrink and BayesShrink, averaged over five runs. It is clear that 

the BayesShrink threshold selection is comparable to the SURE threshold and to the true optimal 

threshold . Some of the unexpectedly large threshold values in SureShrink comes from the 

universal threshold, not the SURE threshold, and these are placed in parentheses in the table. 

Table II(c) lists the thresholds of BayesShrink, and the thresholds in parentheses correspond to 

the case when , and all coefficients have been set to zero. Table III tabulates the values of chosen 
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by for each subband of the goldhill image, , averaged over five runs. The MDLQ criterion 

allocates more levels in the coarser, more important levels, as would be the case in a practical 

subband coding situation. A value of indicates that the coefficients have already been 

thresholded to zero, and there is nothing to code. 

6. Conclusions 

Two main issues regarding image denoising were addressed in this paper. Firstly, an adaptive 

threshold for wavelet thresholding images was proposed, based on the GGD modeling of 

subband coefficients, and test results showed excellent performance. Secondly, a coder was 

designed specifically for simultaneous compression and denoising. The essence of fractal-based 

denoising, both in the wavelet as well as pixel domains, is to predict the fractal code of a 

noiseless image from its noisy observation. We have experimentally shown that the fractal-

wavelet denoising scheme is able, at least for moderate 

 

Fig.6. The Threshold values of OracleShrink, SureShrink, And BayesShrink, 
 

 

noise variances, to locate near-optimal Parent subtrees that lie among the best domain subtrees in 

terms of collage distance.The proposed BayesShrink threshold specifies the zero-zone of the 

quantization step of this coder, and this zero-zone is the main agent in the coder which removes 

the noise. Although the setting in this paper was in the wavelet domain, the idea can be extended 
to other transform domains such as DCT, which also relies on the energy compaction and sparse 

representation properties to achieve good compression. 
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