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ABSTRACT 
 
In this paper a watermark embedding and recovery technique is proposed based on the compressed sensing 

framework. Both the watermark and the host signal are sparse, each in its own domain. In recovery, the 

L1-minimization is used to recover the watermark and the host signal almost perfectly in clean conditions. 

The proposed technique is tested on MP3 audio compression-decompression attack and additive noise 

attack. Bit error rates are compared with standard spread spectrum embedding. The proposed technique is 

implemented for both time domain and frequency domain embedding with a unified approach. The Walsh-

Hadamard transform (WHT), the discrete cosine transform (DCT) and the Karhunen-Loeve transform 

(KLT) are compared in the host signal sparsifying process. Significant performance improvements in all 

tested conditions are achieved against the spread spectrum embedding. A payload as high as 172bps in 

additive noise attacks, 86bps in 128kbps MP3 attacks and 11bps in 64kbps MP3 attacks are achieved at 

small bit error rates and acceptable MP3 audio signal quality. 

 

KEYWORDS 

Compressed Sensing, Audio Watermarking, MP3 Audio, L1-Minimization, Sparse Signals.  

 

1. INTRODUCTION 

 

Digital robust watermarking embeds a private secure code within a multimedia file (e.g., MP3 

music) where the watermark detection is possible only for the certified authority. The watermark 

should be imperceptible, secure, with high payload and robust to some attacks that do not destroy 

the original host signal. This is a truly challenging problem for audio signals, and in particular, 

for MP3 audio where MP3 compression/decompression attack is inevitable. 

 

Traditionally, spread spectrum (SS) and quantization index modulation (QIM) based approaches 

have been used for watermark embedding and recovery, however, both suffer from problems 

when it comes to compression/decompression attacks, and additive noise attacks. In particular, SS 

suffers from host rejection problem which reduces its payload capacity to increase the spreading 

rate, while QIM suffers from low immunity to additive noise and both have problems with MP3 

compression/decompression attacks. Recently, there has been a considerable amount of work in 

robust watermarking of MP3 audio to overcome some of the problems of the traditional 



The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.6, December 2012 

28 

techniques [1-15]. Recent work focuses on the effects of MP3 compression/decompression 

sampling rate conversion, and synchronization attacks, among other attacks. New watermarking 

techniques have emerged which combine the histogram based embedding, SVD of transform 

domain coefficients and the QIM are reaching promising payload values with improved 

robustness to different attacks [1-15]. 

 

Compressed sensing is a relatively new signal processing framework in which a sparse 

representation of a signal can be recovered from its noisy compressed measurements using the 

L1-norm minimization [16-19].  More recently, it has been shown that a sparse signal and an 

additive sparse interference can both be recovered perfectly under some conditions [20-21].  This 

recent work has inspired the novel idea of a “sparse watermark” which is presented in this paper 

in the compressed sensing framework. The sparse watermark works perfectly under clean, no 

attack or "fragile" conditions, where the watermark and the host signal can both be recovered 

with no errors, giving a very good reversible fragile watermarking approach. However, since the 

aim of this paper is robust watermarking, the practicality of the proposed technique is tested for 

MP3 music with various attacks, and is compared to the traditional SS approach for time domain 

and frequency domain embedding. 

 

The rest of the paper is organized as follows. Section 2 discusses the related recent work in MP3 

audio watermarking. Section 3 gives a brief description of the related theory of compressed 

sensing and the recent work in the Justice Pursuit [20] and extended LASSO [21] techniques 

which inspired the proposed technique. Section 4 describes the details of the proposed sparse 

watermark embedding and recovery, and the method used for sparsifying the audio host signal. 

Experimental results and comparisons are shown and discussed in section 5 and finally section 6 

gives the conclusions and future work. 

 

2. AUDIO WATERMARKING RECENT WORK 
 

In a recent paper [1] authors have made a comparison between most important MP3 audio 

watermarking research based on 7 criteria, namely, 1- the methodology being used (and that 

includes the complexity of the embedding and detection algorithms), 2- the imperceptibility of the 

watermark, 3- the robustness against attacks (e.g., compression/decompression, sampling rate 

conversion and de-synchronization), 4- the payload, 5- the security of the watermark, 6- whether 

the technique is blind or not and 7- if the algorithm and watermark are known to the attacker, can 

he use them to embed another audio media to frame the owner. Most of the recent techniques 

suffer from degraded performance against MP3 compression and sampling conversion. Payloads 

from as low as 2bps to up to 1378bps were reported with MP3 compression attacks (32kbps, 

64kbps and 128kbps) with bit error rates in the ranges between 0.01% and 16% and SNR between 

26 and 40dB. As shown in table 1 which summarizes some of the most recent approaches used 

for MP3 robust audio watermarking, ordered based on the MP3 attack quality. 
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Table 1. MP3 Robust Watermarking Summary 

Algorithm MP3 

Quality 

SNR %BER Payload 

Dhavale 2011 [8] 32kbps 26dB 0.4 1378 bps 

Dhavale 2012 [9] 32kbps >40dB 16% 344bps 

Noriega 2010  [2] 64kbps 40dB 0.013 230 bps 

Bhat 2010       [3] 64kbps >30dB 1 196 bps 

Wu 2005        [12] 64kbps 30dB 0.043 172bps 

Hamdouni 2012  [11] 64kbps 30dB 0.4 100 bps 

Yang 2010         [10] 64kbps 30dB 0.02 22 bps 

Ercelebi 2009    [13] 128kbps 30dB 0.5 170bps 

Wang 2004        [14] 128kbps 30dB 0.06 11bps 

Xiang 2007        [4] 128kbps 30dB 0.175 2bps 
 

Most of the recent work reviewed here rely on the concept of quantizing some parameters 

following the quantization index modulation (QIM) approach [2,6,7,15]. The quantized 

parameters are in a transformed space, for example, the Walsh-Hadamard [8], or the wavelet 

domains [2,9,10,11,14,15]. Many of the recent techniques apply singular value decomposition 

(SVD) [3,6,7] as a means of making the embedding more robust. Spread spectrum embedding, 

patchwork algorithm and histogram modification of selected coefficients have also shown good 

results [4,5,6,10]. One criticism over most of the reviewed techniques is that embedding is done 

in a selected number of coefficients with quantization modulation approach. Those two factors 

make such techniques more vulnerable to attacks. In one hand, QIM is very sensitive to additive 

noise attacks. On the other hand, if the attacker knows which coefficients are used in embedding, 

the attack would be much more destructive to the watermark and less degrading to the host. One 

advantage of the technique proposed here is that embedding is highly distributed in the time 

domain, thus, highly robust to additive noise and selective attacks. It is concluded that there is 

still much room for improvements. In particular, towards increasing the watermarking payload 

while maintaining the simultaneous robustness against MP3 compression and additive noise 

attacks among other attacks.  

3. COMPRESSED SENSING RELATED THEORY 

Compressed sensing relies on the concept of a sparse domain representation of compressible 

signals. In the basic formulation by Candès and others [16-18], if a K-sparse vector x with 

dimension (N×1) is sampled with a random orthonormal Gaussian M×N matrix � producing a 

measurement vector y with dimension (M×1) where M < N, then, given the measurement vector 

and knowing the sampling matrix � it is required to recover the sparse vector x from y, where e is 

a small additive noise (in the general noisy case), and ε is its variance: 

 

� = �� + �                                                (1) 
 

An exact recovery of the sparse vector x is possible through L1-minimization using the basis 

pursuit denoising algorithm (BPDN) [16-19]. This is done by solving the convex optimization 

linear programming (LP) problem: 

 

 minimize  ‖�‖
�  
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 subject to ‖� −  ��‖
� ≤ ε                                                            (2) 

 

If �  satisfies the restricted isometry property (RIP), which is met for Gaussian random 

orthonormalized matrices [16] where columns are orthogonal, then recovery is possible under the 

following sparsity condition: 

� >  � �� ��� ��
���                             (3) 

 

Where K is the number of non-zero elements in x. More recently, there have been two extensions 

to this framework. The first by Laska et. al. [20] in what was named the “Justice Pursuit” (JP) 

algorithm explained as follows: If the measurement vector is corrupted by an interference that is 

sparse in some domain, equation (1) becomes: 

 � = �� +  Ω� + �                                    (4) 

 

Where Ω is some full or partial transform or random matrix with orthonormal columns and 

dimensions (M×L) where � ≤ � and �  is a sparse vector with possibly large amplitude non-zero 

components of length L and sparsity k. The authors have shown that both sparse vectors (x and �) 

can be recovered if the two matrices are incoherent and the following sparsity condition is 

satisfied: 

� >  � �(� + ") ��� �� + �
� + "�  �        (5) 

 

Where k is the sparsity of  � and e is a small additive noise. 

 

Another interesting technique by Nguyen et. al. [21] called the "extended LASSO" assumes that 

the sparse vector � is additive directly with the measurement vector (thus of same dimension M). 

In that sense, it can be considered an extension of the JP algorithm with the matrix Ω being the 

identity matrix of size M×M. In both cases, the recovery algorithm assumes a new sparse vector 

U=[x  �] of size (N+L)×1 and a new sensing matrix ψ=[�  Ω]  with size  M×(N+L), which is 

assumed to still satisfy the RIP condition, and the basis pursuit denoising becomes: 

 

Minimize ‖$‖
� 

Subject to:  ‖� −  %$‖
� ≤ ε                                                          (6)  
 

When the sparse vector U is estimated, its first N elements are those of x and the remaining L 

elements are those of � [20-21]. Many fast algorithms have been developed in the literature for 

solving the basis pursuit and the LASSO formulations, of those, the L1-magic library [22] was 

used for all the L1-minimization algorithms in the proposed technique in this paper.  The L1-

magic library solves the LP convex problem using the primal-dual algorithm [22]. 
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4. SPARSE WATERMARKING  PROPOSED FORMULATION 

4.1 Sparse Watermark 

 

The watermark is a sparse vector � of length L and with k non-zero components which take the 

binary values ±1 based on the required watermark value. In this paper, k=1 (only one non-zero 

element). For embedding in a measurement vector of length M, a random vector watermark signal & is generated: 

                                   & = Ω �                                                                                (7) 
 

Where Ω is an orthogonalized iid random Gaussian matrix of size (M×L). In this paper L < M 

and Ω does a random expansion of the sparse vector � similar to the spread spectrum spreading 

concept, however, with real random values instead of the binary values used in the SS. It is noted 

here that this proposed random real-valued watermark is an obvious change in paradigm from the 

traditional watermarking literature where the watermark vector is a random binary vector.  

4.2 Sparse Host Signal 

 

Audio (music and speech) signals are highly compressible signals for which sparse domains exist, 

and that what makes audio compression feasible. In this paper, the Karhunen-Loeve transform 

(KLT), the discrete cosine transform (DCT) and the Walsh-Hadamard transform (WHT) [14] are 

all used to find a sparse representation for the host audio signal. The KLT is a data-dependent 

transform (with adaptive transform matrix) which is an optimal transform since it produces the 

sparsest possible representation provided that the statistical properties don’t change. Since this 

work is concerned with MP3 music robust watermarking, a KLT matrix is learned for every song. 

The song audio signal is divided into frames of length M each, and the KLT matrix of dimension 

(M×M) is learned using 60 seconds of the song as training data. For MP3 sampling rate of 44,100 

samples per second, this corresponds to (2646000/M) frames.  Once the KLT matrix is learned, it 

is applied to each frame to produce the sparse domain coefficients.  

 

Both the DCT and the WHT on the other hand are non-adaptive, fixed matrix transforms. The 

DCT have orthonormal matrix, where in this paper the WHT (M×M) matrix and its inverse are 

normalized by the root of M.  

 

A sparsity of 50% is forced for all the audio frames by maintaining the highest M/2 coefficients 

and putting the rest to zero.  This process produced sparsified audio signal average quality of 

40dB for the KLT and 35dB for the DCT and WHT respectively with no perceptible quality loss. 

Experimental trials showed that this sparsity level strikes a good balance between maintaining the 

sparse signal quality and obtaining sparse-signal recovery. Many more different approaches may 

be taken, for example, taking all the coefficients which fall within a certain ratio relative to the 

largest coefficient, or making the coefficients approximately sparse by scaling them down.   

 

Let the audio frame in the sparse domain be x which is now K-sparse (where K is M/2), then, 

going back to the time-domain we take the inverse of the sparsifying transform (KLT, DCT or 

WHT). The sparsified host signal in time domain is thus: 

                          (()) = *�                                                                                                  (8) 
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Where * is the inverse matrix of KLT, DCT or WHT. 

4.3 Watermark Embedding 

 

The watermarked host signal is given by: 

                � = *� +  ,.Ω �                                                                                               (9)  
Where α is an embedding strength scalar factor which is adaptively adjusted to make the SNR of 

the watermarked signal constant at 28dB as follows. Since all watermark vectors (the columns of 

the Ω matrix) are normalized, then the SNR is given by:   

                      

         0�1 = 10���34 ∑ 6789:;<=8                                                                              (10) 

 

Thus, fixing the SNR at 28dB, the embedding strength is adapted each frame using the formula: 

 

                                  , = 0.04>∑ (?@A7B3                                                             (11) 

 

The adaptive value of , imposes no problem in the recovery, since it will only scale the sparse 

vector � but will not affect its sign which represents the watermark value. It is to be noted that if 

the location of the non-zero element in � is fixed, then one bit is embedded at each M-length 

frame since the sparse watermark contains one non-zero value. If the position of the non-zero 

element is allowed to change, then more bits are encoded in each frame since the location of the 

non-zero element combined with its sign give more information. A block diagram of the 

embedding process is shown in Fig.1, while examples of long and short segments of the music 

signal are shown in Fig.2 (left and right respectively).  

 

 

 

Sparsifying 

Process 

Watermark 

Embedding 

Host signal 

Watermarked signal: � = *� + , Ω β 

 Ω       β 

 
* 

*� 

, , = 0.04C∑(*�)@ 

Figure 1. Diagram of the Watermark Embedding Process 
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Figure 2. Original, sparsified and watermarked segments. Left: 0.6 sec. segment. Right: 0.01 sec. 

segment. 

 

4.4 Host and Watermark Recovery 
 

One major advantage of the proposed approach is that it can recover the host signal perfectly in 

clean conditions, an advantage which does not exist in most watermarking methods in the 

literature. This may have some important practical applications, for example, to use a perceptible 

watermark where the noisy host signal is free for previewing and downloading, but the clean 

signal can only be obtained by the L1-minimization recovery, which requires the secret random 

matrix Ω as shown in Fig. 3.  

 

Three different, almost equivalent, methods are used in this paper to recover the sparse watermark 

and the host signal: 

 

1) Direct Justice Pursuit:   

Having the measurement vector y, we apply the basis pursuit denoising (BPDN) algorithm as in 

(6):   

                              Minimize ‖$‖
� 

                              Subject to:  ‖� −  %$‖
� ≤ ε  

 

Where in this case $= [x  �] and % =[T  Ω] with size M×(M+L). It is noted here that the values 

of M, L, K and k  used in this paper satisfy the condition in equation (5) (and note that the N in (5) 

equals M in this paper since we use a square transform matrix) thus the condition in (5) becomes: 

 

� >  � �(� + ") ��� �� + �
� + "�  �             (12) 
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And the typical values used in this paper are (M=128 or 64, L=8, K=64 and k=1). The watermark 

sparse vector which contains only one non-zero value is �. With the sparse vector x is recovered, 

the recovered host signal in time domain is obtained by X(t)=T x. In the clean situation with no 

attacks, both the watermark and the host signal are recovered perfectly (with over 90dB for the 

host signal relative to the un-watermarked host). However, in non-ideal conditions, more than one 

non-zero value may appear in the recovered watermark. In this paper, we find the largest value 

and take its sign as the estimated watermark. 

 

2) Multiplying by the Inverse of Ω: (ΩE) 
In this case, we multiply the watermarked host � by the inverse of the random matrix Ω (using 

Moore-Penrose pseudo inverse function in Matlab [15]) to have a new measurement vector 

y1=ΩE� with a new dimension L and is given by: 

 �1 = ΩE*� +  �                                                (13)      
 

Following the basis pursuit denoising formulation in (6), we use   % =[ΩET   F] where F is the 

identity matrix of size L×L and we get the recovered sparse vector $= [x  �]. 

 

3)Multiplying by the annihilator of Ω: (ΩGH) 

The annihilator of  Ω is a matrix ΩGH of dimension (M-L)×M. In this case, the new measurement 

vector yAN=ΩGH� with a new dimension (M-L) and is given by: 

 �GH = ΩGH  * �                                                  (14) 

 

We use % =[ΩGH T] and in this case, we only get the sparse vector x, and by getting x we do the 

subtraction (� − *�) which produces 

  �2 = Ω�                                                        (15) 
                                                                                  

Then we can get � either multiplying by ΩE or by applying the basis pursuit to get the sparse 

vector � . 

 

The watermark value detection looks at the sign of the recovered watermark value. A simple 

voting is used between the three methods described to make the final decision. Experimental 

results have shown they are highly equivalent. 
 

 

        
 

I = |*  Ω | 

*� 

Watermarked signal: � = *� + , Ω β 
Minimize ‖$‖
� 

  Subject to:  ‖� −  %$‖
� ≤ ε  

 

K = � β 

Recovered host signal          (()) = *� 

Watermark sparse vector β 

Figure 3. Diagram of the Watermark Recovery Process 
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4.5 Averaging to Enhance Robustness 

 

To overcome the effects of additive noise and compression/decompression attacks on watermark 

detection, the averaging option was adopted. The watermark information estimated from D 

frames is averaged and the watermark bit value is re-estimated based on the averaged information. 

For recovery method-1, the averaging is done over y vector for D frames and the BPDN is applied 

to recover the watermark from the averaged vector. For method-2, the averaging is done over �1 

for D frames and for method-3 is done over �2. The value D corresponds to a redundancy coding 

of the watermark bits, in the sense that the same watermark bit is repeated D times over D 

successive frames, as a mean of channel coding to enhance the robustness. This of course results 

in a decreased payload as will be discussed in the experimental results section. 

 

4.6 Expected Error in Watermark Recovery 

 

Since the three recovery methods are almost equivalent, let us look at method-3 in more details. 

The recovered sparse vector of the host is practically �M where the L2-norm of the difference is: 

 ‖N‖O@ = ‖� − �M‖O@                                        (16) 

 

Its upper bound is given in [9] by the formula: 

 

‖N‖O@ ≤ Q√� S.A
T   +  ‖�‖O@                    (17) 

 

Where e is additive noise (may be attributed to the attack in this case), C and λ are factors 

depending on the matrices Ω and * and the sparsity K. Following (15) and taking the multiplying 

by ΩE approach, we get: 

ΩE . �2 =  � +ΩE . N                                        (18) 
 

Where the term ΩE . N in (18) represents the error in the watermark sparse vector estimate. Since 

this sparse vector � contains only one non-zero element, and assuming we know its location (the 

jth element), then we can deduce that the error term in (18) is given by: 

 

U =  ΩE . N = VΩEW7
A

7B3
 N7                                 (19) 

 

And since ΩEW is a random sequence with zero-mean and unity variance (A columns in the 

orthonormal random Gaussian matrix ΩE), then by the central limit theorem, the expected value 

of E approaches zero with convergence speed with the order of  
3
A and its variance is ‖N‖O@. 

When the averaging over D frames is used, the error variance is decreased by an order of D and 

the expected value of E approaches zero with convergence speed of   3
A∗Y . Thus, better estimates 

of the watermark are obtained with larger M and with more averaged frames, however, with a 

decreased payload which equals 
Z[

A∗Y where \] is the sampling frequency of the MP3 audio and 

� ∗ ^ represents the number of host samples carrying a single watermark bit.  
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4.7 Frequency Domain Embedding 

 

The proposed embedding technique is extended to frequency domain (and in principle, to any 

linearly transformed domain). Assuming that the host signal X(t) is transformed to another 

domain by a transform matrix G, equation (9) becomes: 

 �ᵗ = `. *� +  ,.Ω�                                      (20) 
 

Where �ᵗ is the watermarked host in the transform domain. In this paper, G is taken as the 

discrete cosine transform (DCT) matrix of size (M×M). The recovery is done exactly the same 

way as in the time-domain embedding, however, instead of using the matrix * we use the matrix 

product ` ∗ *. Thus, in recovery we solve the following basis pursuit denoising problem:  
 

                              Minimize ‖$‖
� 

                              Subject to:  ‖�ᵗ−  Ѱ$‖
� ≤ ε  

 

Where in this case $= [x  �] and Ѱ =[ ` ∗ *  Ω]. If the matrix  Ω used in this case is the same as 

the time-domain embedding then we get the same results since the frequency characteristics were 

not exploited. Instead, in this paper the matrix Ω is modified to make different embedding weight 

for different frequencies. As a preliminary experiment, the bandwidth of the host is divided into 3 

parts (low, medium and high frequency bands). Thus, the dimension M of the matrix Ω is divided 

to 3 parts accordingly and multiplied by [0.4 0.9 0.1] respectively for the low, medium and high 

bands (these values are chosen experimentally). This puts more embedding strength in the mid-

frequency band than the low and high frequency bands, since the low frequency band affects the 

quality and the high frequency band is most affected by MP3 and noise adding attacks.  

4.8 Spread Spectrum (SS) as a Baseline for Comparison 

 

Spread spectrum based watermarking is still a popular and reliable embedding technique for its 

robustness to additive noise [1]. It is taken as a baseline for comparison in this paper. The 

following formulation of the SS embedding and detection is intended to show the resemblance 

and differences with the CS approach. The embedding equation is given by: 

 �[[ = *. � + µ . a &[[                                           (21) 

 

Where *. �  is the sparsified signal in time domain, µ  is an embedding factor which is taken 

proportional to the frame energy.  a is a random matrix with ±1 binary values for spreading, and  &[[ is a sparse vector of length M with only one non-zero element taking the +1 or -1 value 

representing the watermark bit value for this frame. The embedding factor µ  is selected so that SS 

embedding would have the same SNR as the proposed compressed sensing (CS) embedding. The 

location of the non-zero value selects which column of the random binary matrix P would be used 

for embedding. In traditional SS this location is fixed a priori and known to both encoder and 

decoder. At recovery, the received watermarked measurement �[[  is multiplied by the 

corresponding column from the matrix a and the resulting sequence is summed and its sign is 

taken as the detected watermark value. 
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4.9 Related Work in CS Watermarking 

 
In 2007 Shiekh and Baraniuk (SB technique for brevity) [25] proposed a transform domain image 

watermarking model based on compressed sensing as follows.  Let  �b = cd + �    be the 

transform domain watermarked signal where f is the spread spectrum watermark sequence, A is 

an m×n random matrix where (m>n) and e is the sparse transform domain vector for the host 

signal. 

 

The annihilator of A, (cef) is multiplied by the transform domain vector to give a new vector � ′ = cef. �  for which the L1-minimization is performed. Once the sparse transform domain 

signal e is detected, it is subtracted from �b  and the result is multiplied by the inverse of A to get 

the watermark f. One major difference between their technique and the one proposed here is that 

in this paper here the watermark itself is a sparse vector allowing for simultaneous recovery of the 

watermark and the host signal, and potentially better robustness against attacks by adaptively 

selecting the location of the non-zero element in the sparse watermark vector, which also allows 

us to encode more than one bit in each frame by combining the location with the sign. 

Furthermore, one can theoretically insert more than one non-zero element, since the L1-

minimization can detect the positions and signs of the non-zero elements. In [25] the authors 

applied their technique to a fragile image watermarking scenario where no attacks were 

considered, and the main aim was to show that the watermark can be detected perfectly with zero-

errors as long as the CS conditions are met. In this paper the (SB) technique is implemented in the 

context of audio watermarking and is compared to the proposed technique as shown in section 5. 

 

5. EXPERIMENTAL RESULTS 

5.1 Experimental Setup 

 

To demonstrate the practicality of the proposed compressed sensing based watermarking 

technique, it was applied on a 128kbps MP3 music file of duration 120 seconds containing slow 

rock music with vocals. The MP3 music file is first converted into WAV format for the 

watermark embedding stage. The file is divided into frames of length M each (128 and 64 

samples are used). The watermark embedding is done for each frame and the results show the 

average performance over the 41,344 frames used where \]=44,100 Hz.  

 

The embedding random matrix   was regenerated every 32 frames. When additive noise is added it 

is done before the MP3 attack. For the MP3 compression attack, the watermarked WAV file is 

converted back to MP3, then, converted back to WAV format to apply the watermark detection 

process. Both 128kbps and 64kbps MP3 compression attacks were considered. 

 

The watermark recovery performance is measured at 3 different points. First, after the watermark 

embedding and before writing back the MP3 file to measure the effects of additive noise alone. 

Secondly, after writing the MP3 compression-decompression, and finally, after applying the 

averaging process for both the noise attack and the MP3 attack. The watermark embedding 

strength in all experiments was fixed at an SNR of 28dB which gives minor effects to the host 

signal quality. The lower dimension of the CS embedding matrix Ω is taken L=8 with sparsity 

k=1 where the non-zero element position is fixed and known to the decoder, and only the sign is 

estimated. It is to be noted that in all experiments, the position of the non-zero element in the 

sparse watermark � is assumed to be known to the receiver. This position can be fixed all along 



The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.6, December 2012 

38 

the signal, or is allowed to change in a pre-determined fashion.  In all the experiments, the 

position (between 1 and 8) is changed every 4 frames and is assumed to be known at the 

watermark extraction where the sign of the estimated sparse vector is checked only at that 

position. It is to be noted that the sparse watermark vector length L was varied in one 128kbps 

MP3 attack experiment from 2 to 40 with no obvious change in performance. However, in 

general, the larger this length becomes, the more likelihood that errors may occur in the position 

of the non-zero element since L column vectors in the Ω matrix compete, and thus, it is fixed to 8 

in all the results presented in this paper. 

 

The first experiment is the additive noise attack effects, where the SS and SB techniques are also 

included with and without averaging. The second experiment is the MP3 compression / 

decompression. In all experiments, the proposed technique is termed (CST) and (CSF) for time 

domain and frequency domain embedding respectively. The spread spectrum and the Shiekh-

Baraniuk are termed (SS) and (SB). 

5.2 Additive Noise Attack 

Additive noise was added with increasing levels starting from the clean condition (28dB) until the 

SNR reached (8.5dB) and the noise was quite annoying. Note that starting from a SNR below 

20dB the quality is not acceptable. Figure 4 shows the %success rate of watermark bits recovery 

for the proposed CST and CSF techniques as well as for the SS and SB techniques all with and 

without averaging. The left figure shows the no averaging case, corresponding to a payload of 

344bps. The 3
rd

 right figure with averaging factor D equals 2 corresponding to a payload of 

172bps. The results of this experiment give the following indications: 

 
Figure 4. Noise attack performance comparison: green: SS, blue: CST, black: CSF, red: SB                  

1- The best performance is obtained by the proposed technique with frequency domain 

embedding and the spectral shaping. However, the advantage over the time domain 

embedding and the SB technique is not significant. 

 

2- For a noise attack with 20dB (considered very noisy) the proposed watermark with 

averaging is highly robust with almost zero bit error rates. 

 

3- Due to the host-rejection problem in the SS technique, an overhead of performance loss is 

always there as clear from the results in Figure 4.  
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5.2.1 Robustness to sever additive noise attack: 
 

As seen in Table 2, it takes an averaging of 16 frames to reach acceptable bit error rate for the SS 

technique under sever additive noise attack with 10dB SNR. The table also shows a comparison 

between the performances of the competing techniques versus the number of averaged frames D, 

where the proposed techniques reach the same acceptable performance of 1% BER with D=4.  

Table 2. %Success Rate at 10 dB as a function of D 

DDDD    Payload rate Payload rate Payload rate Payload rate (bps)(bps)(bps)(bps)    CSTCSTCSTCST    CSFCSFCSFCSF    SSSSSSSS    SBSBSBSB    
1 344bps 83.3 85.7 74.7 80.2 2 172bps 92.3 92.3 88 90.6 4 86bps 99 99 90.7 98 8 43bps 100 100 95.6 100 16 22bps 100 100 99 100 

 

 

Figure 5. Noise attack performance comparison: blue: KLT, black: DCT, red: WHT  

Figure 5 above shows a comparison between the different sparsifying transforms. In theory, the 

KLT should perform the best since it is the "optimal" transform, however, it is trained on only 60 

seconds from the song, which contains large statistical variations, and thus in practice, and under 

the conditions used, it is not performing better than the DCT. The best performance is obtained by 

both the KLT and the DCT with slightly better performance than the WHT. It is noted however 

that the KLT is the best of the three in the sparsifying process quality since it produces an average 

of 40dB SNR compared to the other two which produce 35dB at 50% sparsity imposed on all 

transforms. 
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Figure 6. Effect of watermark embedding strength in clean and MP3 attack. Blue: MP3 attack. 

Black: No Attack 

5.3 MP3 Compression/Decompression Attack 

 

The MP3 compression/decompression attack is tested for the proposed technique. This attack is 

essential since in practice, one would take an MP3 music file, convert it into a WAV file, do the 

watermark embedding then convert back to the MP3. Hence, this conversion has to maintain a 

stable embedding and recovery for the watermark.   Figure 6 above shows a comparison between 

the 128kbps MP3 attack versus the clean (no attack) cases as functions of watermark embedding 

strength. It is concluded that when the SNR goes below 28dB the MP3 attack performance 

degrades very quickly, and that is the reason why this watermark embedding strength is used in 

all the experiments. On the other hand, it is very interesting to see that the clean (WAV format) 

watermarked signal had preserved the watermark detection performance even with very weak 

watermark embedding strength (90dB). This may be a useful result in situations where the audio 

file is kept in the uncompressed (WAV format) and is used to hide important information in a 

fragile data hiding context. 

 

Tables 3 and 4 show the %success rate of watermark bits recovery for the proposed CST and 

CSF techniques and for SS and SB techniques, with and without averaging with frame length 

M=128 for the 128kbps and the 64kbps MP3 compression/decompression attacks respectively. 

The first column shows the number of averaged frames D and the second column shows the 

corresponding payload. Results show that acceptable performance is obtained at payload rates of 

43bps and 11bps for the 128kbps and 64kbps MP3 compression attacks with averaging of 8 

frames and 32 frames respectively. Even though these results are not the highest in the literature 

for MP3 attacks, as shown in table 5, when the additive noise robustness is also considered, it 

makes the proposed technique a reliable candidate since most reported high payload techniques in 

the literature are based on QIM approach which is very sensitive to additive noise attacks. 

Moreover, most of those techniques rely on hiding the watermark information in a pre-determined, 

specific band (frequency bands or wavelet details band), and thus are much easier to target in 

comparison with the proposed technique which spreads the watermark embedding over the whole 

frame length in time, and over the whole frequency band. Another advantage is that the proposed 

technique offers zero error recovery and potentially very large payload in clean conditions, which 

is useful in fragile data hiding situations.   
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Table 3. 128kbps MP3 attack on watermark %success rate (M=128) 

D Payload rate 

(bps) 

CST CSF 

 

SS SB 

1 344bps 95.8 97 62 95.6 

2 172bps 97.4 98.5 67.5 97 

4 86bps 98.4 99.3 78 98 

8 43bps 99.6 99.5 91.6 99.2 

12 29bps 100 100 96.9 100 

16 22bps 100 100 98.2 100 

 

Table 4. 64kbps MP3 attack on watermark %success rate (M=128)  
D Payload rate 

(bps) 

CST CSF 

 

SS SB 

1 344bps 70.2 72 57 70.2 

4 86bps 77.5 78 65.4 76.6 

8 43bps 91 91.8 72.6 90.4 

12 29bps 93.2 94 77.8 92 

16 22bps 94.6 95 86 93.7 

32 11bps 98.5 99.5 91.3 98.1 

Table 5. Proposed technique in comparison with Table 1 

Algorithm MP3 

Quality 

SNR %BER Payload 

Proposed 64kbps 28dB 0.5 11 bps 

Proposed 128kbps 28dB 0.7 86bps 

5.4  Recovery of the Host Signal using L1-Norm Minimization 

One of the major differences between the compressed sensing framework and the other 

embedding approaches the proposed technique can recover the host signal and separate it blindly 

from the watermark. The recovered host signal SNR is tested in 3 situations, in the clean 

condition case, after the additive noise and after the MP3 attack. In the clean condition, an SNR 

of more than 90dB is obtained from the 28dB watermarked signal. This is quite remarkable and it 

shows that the original host signal can be almost perfectly recovered from the watermarked one. 

In the additive noise case, an average gain of +3dB is obtained over the noisy watermarked signal. 

In the MP3 attack, an average gain of +2dB is obtained over the MP3 compressed-decompressed 

signal. Such gains can be enhanced with a careful adjustment of the parameters of the basis 

pursuit denoising algorithm for the additive noise case, and by characterizing the nonlinear 

distortion caused by the MP3 attack. 

 
6. CONCLUSIONS AND FUTURE WORK 
 

A new technique for watermarking “sparse watermarking” based on the compressed sensing 

framework is proposed. The sparse watermark vector which contains one non-zero element is 

expanded by a random matrix and added to the host signal, which is made sparse in a specific 

transform domain. The proposed technique relies on the compressed sensing framework and the 

L1-minimization for watermark and host signals recovery. The proposed technique is applied to 
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audio watermarking and it works perfectly for clean conditions with no attacks. Additive noise 

and MP3 compression attacks are used to test the practicality of the proposed technique, in 

comparison with spread spectrum watermarking, with significant advantage for the proposed 

technique. The proposed technique has 3 main advantages over recent techniques in the literature. 

Firstly, the embedding is secure and distributed as opposed to specific coefficients embedding. 

Secondly, it is robust to additive noise as opposed to QIM based techniques, and finally, it can 

recover the host signal perfectly in clean conditions. More research needs to be done in the 

following issues. 1- Characterizing the MP3 distortion effects so that the L1-minimization can 

recover the host signal with better SNR under MP3 attacks. 2- Investigating the issue of using 

more non-zero elements in the watermark sparse vector and changing their positions so the 

decoder estimates both the sign and the position. 3- Investigating how to find optimal embedding 

matrix   and optimal weighting for frequency domain embedding, and finally, 4- Optimally 

selecting a random watermark vector from the random matrix   on a frame by frame basis to 

optimize robustness. 
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