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ABSTRACT 

Developments in Medical imaging systems which are providing the anatomical and physiological details of 

the patients made the diagnosis simple day by day. But every medical imaging modality suffers from some 

sort of noise. Noise in medical images will decrease the contrast in the image, due to this effect low 

contrast lesions may not be detected in the diagnostic phase. So the removal of noise from medical images 

is very important task. In this paper we are presenting the Denoising techniques developed for removing 

the poison noise from X-ray images due to low photon count and Rician noise from the MRI (magnetic 

resonance images). The Poisson and Rician noise are data dependent so they won’t follow the Gaussian 

distribution most of the times. In our algorithm we are converting the Poisson and Rician noise distribution 

into Gaussian distribution using variance stabilization technique and then we used the patch based 

algorithms for denoising the images. The performance of the algorithms was evaluated using various image 

quality metrics such as PSNR (Peak signal to noise ratio), UQI (Universal Quality Index), SSIM (Structural 

similarity index) etc. The results proved that the Anscombe transform, Freeman & Tukey transform with 

block matching 3D algorithm is giving a better result.  
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1. INTRODUCTION 

Medical imaging became an integral part of medical diagnosis in present days. Various medical 

imaging modalities are developed for various applications since last few decades. These 

modalities are used to acquire the images of the anatomical structures within the body to be 

examined without opening the body. X-rays, Computed Tomography, Ultrasound, Magnetic 

resonance Imaging and Nuclear imaging are the popular modalities at present to diagnose the 

various diseases. However these modalities are suffering with a big problem called noise. Every 

modality is suffering from noise in image acquisition and transmission stage such as Quantum 

noise in X-rays and Nuclear imaging, speckle noise in ultrasound imaging, Rician noise in 

Magnetic resonance imaging etc. The noise present in the images will degrade the contrast of the 

image and creates problems in the diagnostic phase. So denoising is very important to remove the 

noise from these images [20]. 

The noise may be additive or multiplicative depending on the modality used for medical image 

acquisition. The noise due to electronic components in the acquisition hardware will be modeled 

with Gaussian noise which independent of data, the data dependent noise such as quantum noise 

in X-ray imaging is modeled with Poisson distribution, the speckle noise in ultrasound imaging is 

modeled with Rayleigh distribution and the noise in MRI is modeled with Rician distribution. 
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Here in this paper we are attempting to denoise the images corrupted with quantum noise in X-ray 

and Nuclear imaging and Rician noise in Magnetic Resonance Imaging [20, 12]. 

The mathematical modeling of degradation and restoration process is given as 
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( ) ( ) ( ) ( )
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Where ( ),g x y is the noisy and blurred observation, H  is the blurring kernel and ( ),f x y is the 

signal we are recovering. In the case of denoising problem the blurring kernel will be dropped and 

the degradation model will be given as 
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In the case of multiplicative noise the model is given as 

 
( ) ( ) ( ), , ,g x y f x y x yη= ⋅

                                                     (3) 

2. MATHEMATICAL PROPERTIES OF NOISE 

2.1 Poisson Noise  

The noise in X-ray imaging and Nuclear Imaging (PET, SPECT) is modeled with Poisson noise. 

X-ray photons incident on a receptor surface in a random pattern. We cannot force them to be 

evenly distributed over the receptor surface. One area of the receptor surface may receive more 

photons than another area, even when both the areas are exposed to the same average x-ray 

intensity. In all medical imaging procedures using gamma or x-ray photons most of the image 

noise is produced by the random behaviour of the photons that are distributed within the image. 

This is generally designated quantum noise. Each individual photon is a quantum (specific 

quantity) of energy. It is the quantum structure of an x-ray beam that creates quantum noise [9].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Poisson distribution for various values of lambda 
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A Poisson model assume that each pixel ' 'x of an image ' ( ) 'f x is drawn from a Poisson 

distribution of parameter ( )0
' 'f xλ = where 0' 'f is the original image to recover. The Poisson 

density is given as  

   
( )( )

!

ke
P f x k

k

λλ −

= =                              (4) 

The above figure gives the Poisson distribution for various values of ' 'λ  as the ' 'λ increases the 

Poisson distribution turns towards the Gaussian distribution. 

 

2.2 Rician Noise 
 

Magnetic Resonance Imaging (MRI) is a non-invasive widely used modality in medical diagnosis 

such as cardiac related diseases and neurological disorders. The MRI imaging will suffer from 

low signal to noise ratio (SNR) or contrast to noise ratio (CNR) because of which the image 

analysis tasks such as segmentation, reconstruction and registration will become complicated. So 

the noise reduction in MR images is very important as a pre-processing task before going to 

image analysis and to improve the diagnostic quality of the images [9,12]. 

 

Thermal noise is the major source of noise in MR imaging. The MR images are reconstructed 

from the raw data by applying the inverse Fourier transform to it. The signal component is present 

in both real and imaginary channels which are orthogonal to each other and are affected by 

additive white Gaussian noise. Hence the noise in the reconstructed date is complex white 

Gaussian noise. Normally the magnitude image of the reconstructed complex data is used for 

visual inspection. So the magnitude of the MR signal is the square root of the sum of the squares 

of the data present in real and imaginary channels, the noise is the square root of the two 

independent Gaussian variables. Hence the noise in MR images is no longer Gaussian. 

 

Let ' 'A be the pixel intensity in the absence of noise and ' 'M be the observed or measured pixel 

intensity. In the presence of noise the probability distribution for ' 'M  is given as 
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Where ' 'σ denotes the standard deviation of the Gaussian noise in the real and imaginary images 

which is considered as equal here and ' 'oI is the modified zeroth order of Bessel function of the 

first kind. This is called as Rice density. For small values of SNR ( )/ 1A σ ≤ the rice distribution 

is far from being Gaussian and from ratios as small as /A σ = 3 it starts to move towards the 

Gaussian distribution. 

In the image regions where signal content is much less (approximately zero i.e. 0A = ) only noise 

is present then the above equation is reduces to 
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M
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=                           (6) 

This is well known as Rayleigh distribution. This distribution governs the noise in image regions 

where no NMR signal and only noise is present. The mean and variance of this distribution is 

given as 
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These relations are useful in the estimation of the true noise power.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Rician noise (Low SNR, High SNR) distributions 
 

When the SNR is large then 
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From the above equations we can say that for image regions where large signal intensities are 

present the noise distribution will be considered as a Gaussian distribution with mean 
2 2

A σ+

and variance
2σ . 

 

3. PROPOSED METHOD 

A numerous algorithms are developed by the scientists and engineers to remove the noise in the 

natural and medical images since 1970. These denoising methods are originating from various 

disciplines such as algebra, probability & statistics, linear and nonlinear filtering, partial 

differential equations and multiresolution analysis etc. At first the denoising methods are based 

on pixel by pixel transformation later the neighborhood filtering was developed to remove the 

noise. However these methods will introduce some artifacts and blurring while removing the 

noise from the images. The important features in the image such as edges and texture are going to 

be damaged in the process of noise removal. 

 

To preserve the edges and textural information in the image many denoising methods were 

developed such as anisotropic diffusion, Laplacian pyramids, steerable pyramids, wavelet 

transforms, principle component analysis based methods, dictionary based approaches etc. The 

anisotropic diffusion will preserve the edges but loose the texture information. The 

multiresolution based approaches are sensitive to the high frequency discontinuities but fails to 

detect the spatial changes in the low frequencies properly. The dictionary based approaches are 

very time consuming and computational cost is very high to implement in real time.   
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In this paper we developed the algorithms combining the advantages of variance stabilization 

transforms and the famous patch based algorithms (Nonlocal means and BM3D) to recover the 

medical images corrupted with Quantum noise (X-ray, CT, and Nuclear Imaging) and the Rician 

noise (Magnetic resonance imaging). The block diagram of the proposed architecture is given 

below. First the noisy image is processed by the variance stabilization transform to have the 

distribution with constant variance (Poisson and Rician distributions are converted into Gaussian 

distribution). Then one of the patch based technique is applied on the stabilized data to remove 

the noise and then the processed data is converted back by the inverse variance stabilization 

transform to get the denoised image. Each block of the architecture is explained in the following 

sections [21, 27]. 

 

 

 

 

 

 

 

 

Figure 3: Proposed Denoising System Architecture 

 

3.1 Variance Stabilization Transforms 
 

In statistics the variance stabilization transforms are used to convert the distributions with 

variable variance into distribution with constant variance. These transforms are useful to convert 

the Poisson distribution and Rician distributions into Gaussian distribution with constant 

variance. The noise in the X-ray imaging and nuclear medical imaging such as PET and SPECT is 

modeled with Poisson distribution because its variance depends on the mean value and this makes 

difficult the denoising task. Here in this work we want to use the variance stabilization transforms 

as a preprocessing stage for the denoising filter to make the Poisson and Rician distributions into 

Gaussian distribution with known variance and then we perform the denoising operation. After 

the preprocessing we will apply the inverse variance stabilization transform to get back the 

original distributions. In this work we are using three variance stabilization transforms and their 

inverses they are square root, Freeman & Tukey and Anscombe transforms. The mathematical 

representation of the transforms is given below. 
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Table 1: Variance Stabilization transforms and their Inverses 

 

 

The direct inverse and Adjusted inverse will give unbiased estimates if photon count is 

significant. However they will give biased estimates for the low intensity data that is photon 

count is minimum, the unbiased inverse is used in such situations. 

3.2 Gaussian Filters 

After transforming the data into distributions with constant variance we will apply the Gaussian 

filtering on this data. In this work we are using two algorithms one is nonlocal means algorithm 

and the second one is BM3D (block matching 3D). Here in this section we will give the brief 

description of these two algorithms. 

 

In the earlier works of image denoising there are two assumptions considered about the noisy 

image. The first assumption is that the noisy image consists of both low and high frequencies. 

The noise is treated as non-smooth because of the high frequencies contained in it. The original 

image only contains low frequencies is the second assumption. i.e. images do not contain fine 

detail. Both the assumptions lead to the damage of fine details such as edges and lines in the 

denoised images. 

 

The Wiener and the Gaussian filtering approaches also make these assumptions. The filters 

attempt to denoise the noisy image by removing the higher frequencies from the image keeping 

the lower frequencies assuming that noise is present in high frequencies and most of the image 

information is in low frequencies. The assumption will not suitable for the images which may not 

be smooth. They can contain fine details and structures which have high frequencies. Because 

these filtering methods unable to differentiate between the higher frequencies of the original 

image and the noise, the high frequencies of the original image will be lost. This results in 

blurring. In addition, the low frequencies of the noise will still remain in the denoised image. 

Here in this work we are not considering the above assumptions and our methods depends on the 

self-similarity of the pixels in the image. 
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3.2.1 Nonlocal Means algorithm 

 
The nonlocal means filtering is also considered as the extension of the fundamental neighborhood 

filter (Yaroslavsky filter) where the pixel intensity is decided by averaging the intensities of its 

neighborhood.  

In this method the pixels which are having similar neighborhood are found and averaged in 

deciding the intensity of a pixel. Normally similarity between the pixels is found by observing 

their intensities, if the two pixels having the same intensity we can say that they are similar 

otherwise they are different. 

 

Here in the nonlocal means algorithm the similarity is found by considering the neighborhoods of 

the pixels. Two pixels are similar when the neighborhoods of the two pixels are having same 

intensities. So we can define the neighborhood of pixel ' 'i  is a set of pixels ' 'j  whose 

neighborhoods are similar to the neighborhood of ' 'i .  

 

The following figure shows the similarity windows in the image [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Self similarity in an Image (Fundamental to Patch based Algorithms) 

 

Let ' 'Ω is the area of an image ' 'I , ' 'x  is the location inside ' 'Ω , ( )u x and ( )v x are the clean and 

observed noisy image value at the location ' 'x  respectively. Then the nonlocal algorithm is given 

as follows 
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 Where aG a Gaussian is function with standard deviation ' 'a  and ' 'h is a filtering parameter 
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In the discrete case the non-local means algorithm is given as 
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Where the weight ( , )w i j depends on the distance between observed gray level vectors at points 

' 'i and ' 'j . The distance can be calculated as 

                                     

2

2,
( ) ( )

i j a
d v N v N= −                         (11) 

iN  is the neighborhood of the pixel ' 'i  which is the squared window around the pixel ' 'i . Every 

pixel in the image will have their own neighborhood. The size of the neighborhood can be 

varied depending on the application. Now we can define ' 'iNS  the neighborhood system 

of a pixel ' 'i . It is a set of similar neighborhoods to the neighborhoods of ' 'i  ( )iN . The similarity 

between the neighborhoods is calculated by calculating the difference in the intensity gray levels 

in the neighborhoods as shown in the above equation. The pixels ' 'i  and ' 'j are said to be similar 

if ( )iv N is similar to ( )
j

v N . 

 

The weight can be defined as 
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                              Where 
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3.2.2 BM3D 

 
The BM3D algorithm is based on non-local image modelling and frequency domain filtering. The 

algorithm is developed based on enhanced sparse representation of the image. This can be 

achieved by the following steps. First the image is divided into number of 2D fragments. Then the 

similar 2D fragments are grouped together to form 3D stack. Now the collaborative filtering is 

performed to achieve the sparsity. And finally the filtered fragments are returned back to their 

original positions. The following figure gives the block diagram of the system [30]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Block diagram of BM3D system used in our algorithm 

 
The algorithm is divided into two stages. Basic estimation and Final estimation. In the basic 

estimation stage the groups are pre-filtered and this basic estimate is jointly used with noisy 

image in stage 2 to give the final estimate. The algorithm will proceed as follows. In both the 
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stages the estimation use similar steps except that in the first step filtering is carried by hard 

thresholding and in the second step filtering is done by wiener filtering. 

 

Basic Estimation 

1. Grouping. 

2. 3D Transform Application. 

3. Hard Thresholding. 

4. Inverse 3D Transform. 

5. Returned estimated blocks to their 

position 

6. Aggregation 

Final Estimation 

1. Grouping (based on BE result) 

2. 3D Transform Application. 

3. Wiener filtering (using BE result). 

4. Inverse 3D Transform. 

5. Returned estimated blocks to their 

position. 

6. Aggregation. 

 

3.2.2.1 Grouping 

The first step in algorithm is to divide the image into number of fragments by defining a square 

neighborhood around each pixel. The groups are formed by performing block matching with 

reference to a reference frame to find the similar fragments at various spatial locations in the 

image. These 2D fragments are stacked as a 3D array. 

 
The block matching method measures the difference between the fragments with reference one 

and if the difference is less than certain threshold the fragment is kept in the group. Let ' 'iN be 

the neighborhood around ' 'i (Reference fragment), ' 'iGN be the similarity group for this 

fragment, ' 'Th  is a certain threshold then the fragment ' '
j

N  belongs to the above group if it 

satisfies the following condition 

                           ( , )
i j j j

If difference N N Th N GN< → ∈  (13) 

For grouping the similar blocks we may use the clustering algorithms but they will create the 

disjoint sets. Where the block matching algorithm one fragment may become member in more 

than one group. That is the algorithm produces disjoint sets. 

 

3.2.2.2 Similarity measurement 

Basic Estimation: In basic estimation the similarity is measured by applying a 2D forward 

transform on both the fragments and hard thresholding is performed on them. Now the difference 

between the spectral coefficients of both the fragments is measured. If the distance is smaller than 

certain threshold then the fragment is similar otherwise they are different from each other. 

( )( ) ( )( )
( )

2
' '

2 2
2

2

1

( , )
D i D j

i j

Y T N Y T N
D N N

M

−
=         (14) 

'Y is the hard thresholding operator, 2DT is the 2D Linear Transform and 1M is the fragment size 

in the first stage. 

 

Final Estimation: The pre-filtered image from the basic estimation is used in forming the groups 

of second stage. The coordinates of the pre-filtered image is used to make the groups in the noisy 

image. The normalized Euclidean distance at this stage is given as 
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Where 
iPN  and 

j
PN are the pre-filtered fragments, 

2M is the size of the fragment in second 

stage. Based on this new distances and new threshold new groups are defined. 

 

Collaborative Filtering: The collaborative filtering consists of three steps. They are forward 3D 

transform, Filtering and Inverse 3D transform. The groups are characterized by intra-fragment 

correlation (appears between the pixels of each grouped fragment) and inter-fragment correlation 

(appears between the corresponding pixels of different fragments). The 3D transform can take 

advantage of these correlations and will produce the sparse representation of the true signal in the 

group. This sparsity will improve the effectiveness of shrinkage step in removing the noise and 

preserving the features of the image. 

 

When a group of ' 'X fragments are taken the collaborative filtering will produce ' 'X estimates 

one for each fragment. Every fragment will participate in estimating the every other fragment so 

all the fragments are participating in the estimation process it is called collaborative filtering. 

 

Basic Estimation: 
In this stage the collaborative filtering is given as below 

( )( )( )1

3 3i D D iPNG T Y T GN
−=

                        
 (16) 

Where ' 'Y is the hard thresholding operator, 
3' 'DT is the 3D linear transform, ' 'iGN is the group 

of fragments to be processed and ' 'iPNG is the output of the collaborative filtering. The 3D 

transform is implemented by performing the 2D transform on the fragments and 1D transform 

along the third dimension of the group. In this work biorthogonal splines are used in 2D 

transformation and Haar basis is used in 1D transform. 

 

Final Estimation: 
In this stage we have two groups one from noisy image and the other is pre-filtered image from 

basic estimation. This stage will use the wiener filtering. The coefficients of the wiener filter are 

computed from the pre-filtered image performing 3D transform on it as given below 
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( )

2
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2 2

3

i

D i

C

D i

T PNG
W

T PNG σ
=

+
            (17) 

Now the collaborative filtering on the noisy fragments are carried out by multiplying the 3D 

transformed coefficients of noisy fragments with the wiener filter coefficients and taking the 

inverse 3D transform. This process will give us the final estimate. 

    
( )( )1

3 3ii D C D iFNG T W T NG
−=                        (18) 

Where ' '
iC

W are the empirical wiener shrinkage coefficients, 3DT is a forward 3D linear 

transform, ' 'iNG  is the fragment group from noisy image and ' 'iFNG  is the final estimate. Here 
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in this stage the 2D transform is DCT (Discrete cosine transform) and 1D transform is Haar 

Transform. 

 

3.2.2.3 Aggregation: 

This is very important step in the algorithm. As the algorithm is not having disjoint sets in 

grouping the fragments may present more than one group. Because of this the fragments will get 

more than one estimation depending upon their participation. For example if a fragment is 

participating in three groups it will get three estimations one from each group after performing the 

collaborative filtering. 

 

The aggregation in basic and final steps are performed by weighted averaging. The weights are 

computed based on the variance of the estimation i.e the weights are inversely related with the 

variance. If a fragment in having high variance it is considered as noisier and the weight 

associated with that frame is minimum. The weights are calculated as follows 

 

Basic estimation: 

2

1
 N 1
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HTCBE
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Nw
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σ
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= 

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                     (19) 

Where HTCN is the number of non-zero coefficients after hard thresholding 

 

Final estimation: 
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2

1

i

FE

C

w
Wσ

=                       (20) 

Where ' '
iC

W are the wiener filter coefficients.  

Finally the weighted averaging is computed and each fragment is returned its original position. 

 

4. EVALUATION CRITERIA FOR DENOISING ALGORITHMS 
 
To evaluate the quality of the image processing algorithms there are several metrics proposed in 

the literature. The metrics are classified as pixel difference based measures, correlation based 

measures, edge based measures, spectral distance measures, context based measures and Human 

visual system based measures. Here we are comparing our denoising algorithms using a group of 

metrics drawn from the above class and performance of the algorithms was observed. 

 

4.1 Pixel difference based measures 
 

4.1.1 Minkowski metrics 

The Lγ norm of the dissimilarity of two images can be calculated by calculating the minkowski 

average of the pixel differences spatially and then chromatically as given below 

            ( ) ( )

1

1 1

1 0 , 0

1 1 ˆ, ,
K M N

k k

k x x y

f x y f x y
K MN

γγ
γε

− −

= = =

 
= − 

 
∑ ∑ ∑       (21) 

Where ( , )f x y is the reference image, ˆ ( , )f x y is the estimated image of ( , )f x y by our 

denoising algorithm with the input ( , )g x y which is a noisy version of ( , )f x y . 
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For 1γ = we obtain the absolute difference (AD), for 2γ = we will obtain the mean square error 

(MSE). Along with these two measures we are calculating minkowski measures for 3γ = and 

4γ = in this paper to observe the performance of our algorithms. 

 

4.1.2 PSNR (Peak Signal to Noise Ratio) 
PSNR is the peak signal-to-noise ratio in decibels (dB). The PSNR is only meaningful for data 

encoded in terms of bits per sample, or bits per pixel. For example, an image with 8 bits per pixel 

contains integers from 0 to 255. 
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2 1
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MSE
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−
=          (22) 

 
Where B represents bits per sample and MSE (Mean Squared error) is the mean square error 

between a signal ( , )f x y and an approximation ˆ ( , )f x y   is the squared norm of the difference 

divided by the number of elements in the signal. 
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MSE and RMSE measures the difference between the original and distorted sequences. PSNR 

measures the fidelity i.e how close a sequence is similar to an original one. 

 

4.1.3 Maximum Difference 
Maximum difference is defined as  

                     ( ) ( )( )ˆmax , ,MD f x y f x y= −                                      (25) 

The large value of maximum difference means denoised image is poor quality. 

 

4.1.4 Normalised Absolute Error (NAE) 

The large value of normalised absolute error means that denoised image is poor quality and is 

defined as 
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                        (26) 

 

4.1.5 Signal to Noise Ratio (SNR) 

Signal to noise ratio in an image is calculated as 

                                                SNR
µ

σ
=                                     (27) 
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Where µ is the average information in the signal and σ is the standard deviation of the signal 

which represents the amount of noise present in the image. There is one more measure is there 

similar to the SNR it is signal to background ratio. 

                                             
BG

SBR
µ

σ
=                                     (28) 

Subtract background from the image calculate standard deviation from it and finally compute the 

above ratio. 

 

4.2 Correlation based measures 

The correlation between two images can also be quantified interms of correlation function. These 

measures measure the similarity between the two images hence in this sense they are 

complementary to the difference based measures. 

4.2.1 Structural content 

For an M N× image the structural content is defined as 

                                

( )
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− −
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− −
=

= =

=

∑∑
∑
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                 (29) 

The large value of structural similarity means that denoised image is poor quality 

 

4.2.2 Normalised cross correlation measure (NK) 

 
 The normalised cross correlation measure is defined as 

                          

( ) ( )
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− −
=

= =

=

∑∑
∑

∑∑
                 (30) 

4.2.3 Czekanowski distance 

A metric useful to compare vectors with strictly positive components as in the case of images is 

given as 

                  

( ) ( )( )

( ) ( )

1 1
1

0 0

1

ˆ2 min , , ,
1

1
ˆ, ,

K

k kM N
k
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x y
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k
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C
MN

f x y f x y

− −
=

= =

=

 
 
 = −
 +
  

∑
∑∑

∑
     (31) 

This coefficient is also called as percentage similarity measures the similarity between different 

samples, communities and quadrates. 

4.3 Edge Based metrics 

4.3.1 Laplacian Mean Square Error (LMSE) 

This measure is based on importance of edges measurement. The large value of Laplacian mean 

square error means that the image is poor quality. LMSE is defined as  
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− −

= =

 −
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4.4 HVS based metrics 

4.4.1 Universal Image Quality Index (UQI) 

It is a measure used to find the image distortion. It is mathematically defined by making the 

image distortion relative to the reference image as a combination of three factors: Loss of 

correlation, Luminance distortion and contrast distortion. 

If two images ( ),f x y  and ( )ˆ ,f x y are considered as a matrices with M column and N rows 

containing pixel values ( ),f x y  and ( )ˆ ,f x y respectively the universal image quality index Q 

may be calculated as a product of three components 

ˆ ˆ

2 22 2
ˆ ˆ

ˆ 22  

ˆ
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f ff f
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σ σ σ σ
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The first component is the correlation coefficient which measures the degree of linear correlation 

between images. It varies in the range [-1,1]. The best value 1 is obtained when the images are 

linearly related. The second component measures how close the mean luminance is between 

images with a range [0, 1]. The third component measures the contrasts of the images the value 

range for this component is [0, 1]. The range of values for Q is [-1, 1]. The best value 1 is 

achieved if and only if the images are identical.  

4.4.2 Structural similarity (SSIM) index is a method for measuring the similarity between 

two images [28]. The SSIM index is a full reference metric, in other words, the measuring of 

image quality based on an initial uncompressed or distortion-free image as reference. SSIM is 

designed to improve on traditional methods like peak signal-to-noise ratio (PSNR) and mean 

squared error (MSE), which have proved to be inconsistent with human eye perception [10]. 

The SSIM metric is calculated on various windows of an image. The measure between two 
windows x and y of common size N×N is [28]: 

        

( )( )
( ) ( )

1 2

2 2 2 2

1 2

2 2
( , )

x y xy

x y x y

c c
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µ µ σ
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+ +
=

+ + + +
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Where 

 

� xµ is the average of x  and yµ is the average of y  
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� 2

xσ is the variance of x  and 
2

y
σ is the variance of y 

� 
xyσ is the covariance of  x and y  

� 2 2

1 1 2 2( ) , ( )c k L c k L= = two variables to stabilize the division with weak 

denominator 

� L is the dynamic range of the pixel values (typically this is #bits per pixel2 1− ) 

� 1 0.01k = and 2 0.03k = by default 

 

In order to evaluate the image quality this formula is applied only on luma. The resultant SSIM 

index is a decimal value between -1 and 1, and value 1 is only reachable in the case of two 

identical sets of data. Typically it is calculated on window sizes of 8×8. The window can be 

displaced pixel-by-pixel on the image. 

 

5. RESULTS 

The algorithms were applied to denoise the X-ray images contaminated with Poisson noise and 
the MR images contaminated with Rician noise. Three variance stabilization transforms square 
root, Freeman & Tukey and Anscombe are used in combination with patch based algorithms 
Nonlocal means and BM3D. The quality metrics were tabulated as below. The denoised images 
of Poisson noise (Anscombe+NLM, Anscombe+BM3D) and of Rician noise (Square Root 
+NLM, Square root+BM3D, Freeman+NLM and Freeman+BM3D) are presented below. 

Table 2: Performance evaluation of denoising algorithms for Poisson noise 
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Table 3: Performance evaluation of denoising algorithms for Rician noise 

 
 

            

 

 

 

            

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The International Journal of Multimedia & Its Applications (IJMA) Vol.4, No.6, December 2012 

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSIONS AND FUTURE WORK 
 

The development and implementation of denoising filters using variance stabilization transform 

and patch based algorithms were carried and evaluated their performance using various image 

quality metrics. The developed algorithms are applied on the x-ray and MR Images and the visual 

appearance after denoising was improved, the contrast of the images are also improved. Further 
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enhancement can be done using the wavelet frames such as complex dual tree wavelet transforms 

and double density wavelet transforms etc. 
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