
International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

DOI : 10.5121/ijwsc.2011.2201 1

AN ARCHITECTURE FOR WEB SERVICE SIMILARITY

EVALUATION BASED ON THEIR FUNCTIONAL AND

QOS ASPECTS

Mahsa Jamal Vishkaei
1
, Ahmad Baraani-Dastjerdi and Kamal Jamshidi

2

1
Department of Computer Engineering, University of Sheikhbahaee, Isfahan, Iran

vishkaei@shbu.ac.ir
2
Department of Computer Engineering, University of Isfahan, Isfahan, Iran

{ahmadb, jamshidi}@eng.ui.ac.ir

ABSTRACT

By increasing popularity of SOC, using Web services in applications has increased too. SOC creates a

loosely coupled environment in which the actual execution environment might differ significantly from the

one with the presupposed conditions during application design. Therefore, although an appropriate Web

service might have been selected, by passing time, the Web service may not be efficient enough or may

not be applicable under specific conditions.

For service-oriented systems to be flexible and self-adaptive, it is necessary to automatically select and

use a similar service instead of the one which causes the above mentioned problems. Finding a similar

service means specifying the proper services which fulfill the same requirements as those fulfilled by the

problematic service.

In most of the previous works, a number of the best services (k) are selected and ordered based on

functional similarity. The user must select one of these services based on his/her preferences. One

important metric in selecting a similar service is considering QoS properties and user preferences about

QoS. Because of the importance of this issue, in the present paper, an architecture is proposed in which,

in addition to functional similarity, QoS properties and user preferences are also considered in selecting

a similar service.

KEYWORDS

Web service, Self-adaptive, Functional Similarity, QoS Similarity &User Preferences

1. INTRODUCTION

“SOC promotes the idea of assembling application components into a network of services that

can be loosely coupled [1] and Web services are currently the most promising SOC based

technology [2]. Web services act dynamically in such an environment and therefore, there could

be real-time changes in service status such as service unavailability and service quality decline.

Such problems may reduce quality or cause failure in processes and applications which use such

services. This makes the service consumer to go through the process of rediscovering a service

similar to the initial one which could also fulfill the previous requirements. Such a process is

much time-consuming. A flexible and self-adaptive Service-oriented system must be able to

automatically select the similar services and introduce them to the user so that the user does not

have to go through the difficulties of discovering similar services. The present work offers a

solution in providing similar services automatically whenever there is a problem in initial

service availability. Similar services are considered those which have a close functionality and

QoS to the initial one. In the process of finding similar services, after finding some services

which have the most functional similarity, the important metric for the user is to select the

service which has a satisfactory level of QoS. For Web services users, considering QoS issues is

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

2

critical since there is a direct relationship between the quality of an application consisted of

Web services and the quality of each consisting service. Thus, finding a similar service does not

only encompass considering functional features, but also QoS related properties. For this

purpose, there is a need to seek a way to know the user’s preferences about QoS. In most studies

such as [3,4,5,6], finding similar services is based on functional similarity in which a number of

the best services (k) are selected and introduced to the user. The user then has to select one of

them based on his/her preferences about QoS.

The represented method in this paper, considers QoS properties and user preferences about these

properties in addition to functional similarity. Considering QoS properties results in a different

rating of functionally similar services and, as a result, the best possible selection is done based

on functionality and quality.

Using QoS properties, results in a selection based on another important aspect of services which

optimizes service selection. In case of any changes in QoS properties of services, the system

adapts itself to environmental conditions and automatically selects the best similar service. To

gain service quality information, a four layered architecture is introduced in this article which

monitors services and stores this information for future use. When there is a request to find a

similar service, the first step is to examine services based on functional similarity. The

functionally similar services are then examined based on quality and user preferences. At last,

services are rated based on all the above similarity metrics. Accuracy is increased by using

statistical methods. In addition, each functional and QoS similarity has a weight which could be

changed based on user’s opinion and environmental conditions which makes the final decision

flexible.

User QoS preferences are derived using SLA (Service Level Agreements). SLA is a commonly

used mechanism to express Quality features [7]. In the present work, the attempt is to introduce

a new method in which: first, using SLA, user-defined parameters and their values are derived

and used automatically after discovering functionally similar services; second, the final decision

is flexible based on functionality and quality metrics. Thus, the present study attempts to find a

similar service based on two aspects.

The paper is organized as follows: Section 2 introduces related works. Section 3 explains the

QoS model that refers to QoS properties which used for quality evaluation of service. Next,

Section 4, presents our Architecture for similarity evaluation in detail. Finally we get conclusion

in section 5.

2. RELATED WORKS

Similarity search for Web services, also called Web service retrieval, occupies an important

place in SOC and several related works could be found regarding the issue. Generally, there are

three major groups of methods for finding similar services. In the first group, there exists a

group of previously chosen similar services; when a service fails to work at runtime, it is

replaced by another based on user context or QoS [8,9]. In the second group, similar services

are selected dynamically [3,4,5,6]. In the third group, the external behavior of a Web service

like execution paths or its conversations with other services is considered. In this group, because

of lack of information about external behavior of services in their description, service check is

done in composition process [10,11,12,13,14].

The second group is considered basic for this article. The reason is, the methods in this group

base their work on information existent in service description (WSDL) rather than concerning

external behavior or defining a new model for service representation or even choosing similar

services in advance. In works [3,4,5,6], calculating similarity is based on functional aspects only

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

3

and therefore, the user needs to do further refinement pertaining to important QoS features. In

[3], both syntactic and semantic aspects of a Web service that could be derived from WSDL are

considered. Semantic aspects are related to the purpose of a Web service which is in turn related

to the names assigned to the entire service and syntactic aspects are based on input/output

structures and data type adaptations. In [4], a search engine named Woogle is established for

Web services which uses textual similarity of methods and its parameters in order to examine

service similarity. The key element of Woogle is clustering algorithm for identifying the

relationships among the terms adopted in the all published Web services. It then compares the

concepts encompassing input/output parameters as a measure of similarity. In [5], finding

similar services is based on domain-independent and domain-specific ontology. In order to

specify domain-independent relations, after a series of pre-processes, WordNet thesaurus is

used. Deeper relations based on industry and application-specific terms are found using domain-

specific ontology and after that, related terms are found based on rule based inference. Matches

due to the two methods are combined to determine an overall similarity score. In [6], because of

inefficiency of catalogue style service discovery methods, a new method has been developed in

which similarity is sought via comparing the two WDSLs. In this article, in order to find the

similarity between two WSDL descriptions, a series of complementary methods are introduced.

These methods examine, on the one hand, data type structures, messages and operations and, on

the other hand, the meaning of identifiers and natural language descriptions. These methods

combine classical information retrieval and WordNet-based technique to increasing the

precision of the retrieval mechanism.

 From the first group, work [15] could be mentioned in which, the assumption is that there is a

series of functionally similar services from which, one service is selected based on QoS. It uses

preferences networks to represent user preferences and to decide upon QoS using such

preferences. The work does not mention how to obtain user preferences but indicates that these

preferences can be defined at three levels of low, medium and high. Such a definition cannot be

accurate enough since different people may have different conceptions of these three levels.

3. THE QOS MODEL

The term “QoS” was used for the first time in the networking community by Crawley [16]. In

SOC, QoS encompasses a number of qualities or service properties like availability, security,

response time and throughput [17]. Generally speaking, QoS attributes are divided into two

groups: deterministic and non-deterministic [18]. Deterministic attributes are those that their

value is known before a service is invoked, like price or supported security protocols. Non-

deterministic attributes are those which their accurate value is unknown until the service is

invoked, like response time.

In this section, some QoS attributes are introduced which are used to evaluate the extent of

similarity among Web services from quality point of view. These features are defined under

specific conditions, for example they must be measurable, being measurable means that they

could be measured through monitoring mechanisms, to name the most important. Stated simply,

the purpose here is to use non-deterministic features. This results in a real evaluation of services

in operational environment and thus has an important role in finding similar services. To create

a general open model for evaluating QoS, there is also a need to consider features with a high

percentage of generality among QoS features of Web services which their desired value is

mentioned in SLA so that user preferences are discovered automatically. In this article, those

features used to measure QoS similarity are called “metrics”. These metrics include Availability

(A) and Response time (R). It is also possible to add other features later.

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

4

4. THE ARCHITECTURE

The architecture proposed in this section finds similar services to the initial service (Sq) based

on functional and QoS similarity. This architecture is composed of four layers (Figure 1).

QoS

Similarity

Analyzer

Functional

Similarity

Monitoring

Figure 1: Architecture

The monitoring layer monitors Web services in the service repository (∑ = {Sp}) and stores

obtained data in a Database. In functional similarity and QoS similarity layers, functional and

QoS similarity of the Web services in the repository are evaluated compared to Sq. The analyzer

layer coordinates all the layers and makes the final decision. This layer communicates with the

external user and receives requests to find similar services and sends the final answer to the

user.

In this architecture, functional similarity is examined through WSDL. Services are examined for

QoS through monitoring QoS metrics of all services in repository and storing obtained data.

This is followed by evaluating QoS similarity of monitored services with user specified QoS

metrics related to Sq through the specification of user preferences about QoS metrics. An

examination of the stored information is done through monitoring operation and the degree of

similarity between QoS metrics of services with user preferences is identified. Not all services

need to be checked at this stage. Only those services whose functional similarity is greater than

a defined threshold are examined. Finally, services are rated based on the degree of similarity

obtained from two different aspects. Furthermore, this rating is done in a flexible manner and

thus, the best possible similar services are found and offered to the user. The component

diagram of the architecture is presented in Figure 2.

Figure 2: Component Diagram

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

5

Details about each layer are presented in the following sections.

4.1. The monitoring layer

The monitoring layer identifies and stores the QoS information of Web services. One of the

problems of the current Web services is their QoS information not being mentioned in their

description [17,19]. As a result, there is a need to find a way to monitor services and get such

information dynamically so that it could be used in future.

To get the required QoS information, the method for monitoring services in the repository ∑ =

{Sp}, must:

1. Have the ability to get the required information using Web service description (WSDL),

since, the code and implementation of the service is generally invisible to users;

2. Not need to do any change to the Web service;

3. Be independent form Web service provider and be applicable to all Web services.

In most works about QoS in Web services, the way to get and evaluate these features is not

mentioned; for example, in [20], the UDDI repository for associate QoS to specific Web service

is extend without any mentioning of how such values were obtained. In [21], analyzing and

estimating the performance of Web services is based on simulation i,e, invoking a Web service

under low load conditions and transforms these testing results into simulation model and uses

the model to estimate service excepted performance in heavy load. Because Web services act

dynamically, it does not seem that methods based on estimation be much accurate. [22] also

proposes a framework for QoS monitoring and analysis. This work considers communication

level monitoring via SOAP messages interception but has not detail about it and is mostly

concerned with analyzing the information. In [23] selecting services is based on QoS and it tries

to integrate QoS into Web service technology. But again in this work nothing is mentioned

about the way to get and evaluate QoS attributes.

After studding the existing methods and the above mentioned requirements, the method in [24]

was found suitable. This method is Non-intrusive, it measures QoS properties dynamically and

in a bootstrapping way and, in addition, completely service independent and does not have

access to Web service implementation. The measurement technique in this method is client-side

which is independent from the service itself and the service provider. In client-side technique it

is enough to have access to Web service description to get the QoS features of the service while

server-side technique need to access the Web service’ source code. Based on what mentioned

before, the latter is not a suitable technique here. [24] uses aspect-oriented programming (AOP)

which allows weaving performance measurement aspects. Thus, this approach could be used as

an independent package for monitoring services and recording the required information.

Availability (A) and response time (R) metrics of services could also be measured using this

method. It is noticeable that using this method should be so that extra loads are not imposed on

services. If all services are monitored all the time, a huge amount of information must be stored;

in addition, extra loads may be forced on services. To prevent this, it is necessary to reduce the

amount of data without distorting its integrity. This is achieved by sampling in monitoring and

data storage. Services are monitored randomly or in static time intervals. A scheduler

component, in which scheduling policies are defined, is in charge of sampling. This process is

continued by collecting the measured features for each service and storing the data in a Data

base and using this data when necessary. When QoS data are collected, it needs to be processed

to fulfill its particular purpose. The processing of data could be online or offline or a

combination of both [25]. In online processing, the data are processed immediately and in

offline processing the data are processed after being stored. Offline processing has the

advantage that the data could be studied from various viewpoints. In the present work, based on

the objectives of the study and the defined usage for the data, offline processing was preferred.

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

6

4.2. The functional similarity layer

The functional similarity layer checks the degree of functional similarity between services in

repository (∑ = {Sp}) and Sq. Checking functional similarity means finding those services that

do the similar task to service Sq. The main source to be used here is WSDL description. The

required information can be obtained from main parts of the WSDL, i.e portType, operation and

message. After receiving the WSDL of Sq, its similarity to the services in the repository (∑ =

{Sp}) is measured and each service is rated based on its functional similarity. Those services

that their degree of similarity is higher than the threshold are chosen and named as services

S1..Sk. In the next step, the vector of F = (fs1, fs2, …, fsk) is created for services S1.. Sk from their

functional similarity. Services S1..Sk and vector F are then sent to the analyzer layer.

As mentioned in section 2, in works [3,4,5,6] the similarity between two Web services is

measured from functional point of view. In this section, one of these methods is selected for

evaluating functional similarity between Web services as follows.

In [4], terms are considered as a package of words and similarity is measured based on TF/IDF

measure, the concepts are inferred from terms and the similarity among these concepts is

noticed. The weakness of this work is that it is possible to send only one method to the Web

service. In [5] the focus is only on words and the structure of the WSDL is not considered which

is the weakness of this method. [6], like [3], uses a recursive method in measuring similarity

between service description elements but its weakness is not considering the number of

operations and parameters of Web services. Work [3] does not have the above mentioned

problems and is accurate enough; therefore it is used in the present work to measure functional

similarity. The latter method considers both syntactic and semantic aspects of Web services that

could be derived from WSDL. Semantic aspects are related to the purpose of the Web service

which is itself related to the names assigned to the entire service like the names of operations,

parameters, port types, parts and inputs and outputs of its methods. Syntactic aspects are related

to the conformance between input and output structures and the consistency among data types.

4.3. The QoS similarity layer

The QoS similarity layer measures the degree of QoS similarity of services in repository ∑ =

{Sp} to Sq. Achieving this goal requires calculating the vector of user preferences (Puq = (auq,ruq))

about service QoS features for Sq in which auq indicates availability and ruq indicates response

time. The next step is to evaluate the quality status of services using the information calculated

and stored by the monitoring layer. It is noticeable that only those services which are

functionally similar to Sq are examined here. In section 4.3.1. how to calculate Puq and in section

4.3.2. how to measure QoS similarity are discussed.

4.3.1. User preferences about QoS

For Web service users, considering quality issues are very important because the quality of

applications consisting of Web services has a direct relationship with the quality of each service.

Therefore, there is a need to calculate Puq. One method is using SLA. By using SLA, one can

automatically become aware of user preferences when choosing Sq and use them in finding

similar services. SLA is actually a kind of contract in which different metrics for quality is

defined [17]; for example, the average response time should be less than 0.5 second or the

availability of a service must be more than 99.0 %.

In order to use SLA, it is necessary to use one of its defined standards. One standard is WSLA

(Web Service Level Agreement) [7] that is a formal language for expressing SLA in which the

agreement is made at service level.

The basic parts of a WSLA are as follows [7]:

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

7

1. Parties and their roles: provider, consumer and third parties;

2. SLA parameters: service object specifications like response time, throughput, etc. ;

3. Service Level Objectives (SLO): promises made about SLA parameters, obligations of

each party and actions taken if these promises and obligations are not observed.

It is obvious that in order to realize user preferences and to make the Puq vector about service

specifications, one must use the third part of WSLA i.e. SLO. In WSLA, it is possible to define

arbitrary parameters. It is also possible to have different definitions for the same parameter like

availability. In order for this article to be comprehensive, for each parameter, only one

definition is used and in all WSLAs for different services it is interpreted the same. In order to

understand better, notice a sample SLO in Figure 3.

<ServiceLevelObjective name="Conditional SLO For AvgThroughput">

<Obliged>ACMEProvider</Obliged>

</Validity>

<Expression>

<Implies>

<Expression>

<Predicate xsi:type="Less">

<SLAParameter> Response Time</SLAParameter>

<Value>10</Value>

</Predicate>

</Expression> part 1

<Expression>

<Predicate xsi:type="Greater">

<SLAParameter>AvgThroughput</SLAParameter>

<Value>1000</Value>

 </Predicate>

 </Expression>

</Implies>

</Expression>

<EvaluationEvent>NewValue</EvaluationEvent>

 </ServiceLevelObjective>

Figure 3. A sample SLO

As is seen in Figure 3, part 1 shows the extent considered for QoS parameters that could be used

to find the most similar service in QoS to the initial one. For each attribute, it is specified that

the desired value must be greater or lower than the mentioned number. For example, for the

average throughput, a number greater than 1000 and for response time, a number less than 10 is

specified. This is how the vector of Puq for WSLA concerning Sq is created.

In WSLA, it is possible to define parameters at both method-level and service-level. In this

work, the assumption is that parameters are defined at service-level and in addition the WSLA

between service provider and service consumer for each Web service is stored in Database.

4.3.2. Evaluating QoS similarity

In this section, examining services from QoS point of view is discussed. In order to evaluate

QoS similarity of services with user preferences about Sq, it is necessary to communicate with

the analyzer layer. Through this communication, services S1..Sk and the WSLA of Sq (WSLAsq)

are received and the QoS similarity of services that are functionally similar to Sq are evaluated.

The vector of Puq is filled with the average availability and the average response time values

from WSLAsq. To evaluate the degree of QoS similarity, it is also necessary to use the data

stored for services S1..Sk by the monitoring layer. The average availability (asj) and the average

response time (rsj) for services S1..Sk are calculated using the stored data and put into matrix M

(Figure 4). In recovering the monitored data and calculating the average availability and the

average response time a number of recently stored data (w) are used. The purpose is considering

the most recent service behavior so that if the service has been acting well previously but not

recently, such a fact makes a difference in decision making and at the end the best possible

selection is done.

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

8

()

kjr
w

ra
w

awhere

ra

ra

M

n

wnx

sjxsj

n

wnx

sjxsj

sksk

ss

...1,
1

,
1

1
11

=∀==














=

∑∑
−=−=

MM

 sjxa

: Xth stored data for servicej , n : total stored data , w : number of recently stored data

sja

: average availability for service

j , sjr

: average response time for service

j

Figure 4

Calculating the similarity of vector Puq and matrix M is actually a calculation in Euclidean space

in which Puq and each element of M are like points in space with two dimensions of A and R. It

is noticeable that data in Puq specifies the two desirable thresholds for availability and response

time from user’s point of view; this means that the user prefers service availability be greater

than auq and service response time be less than ruq; the more difference between these two, the

more satisfied the user. Therefore, Euclidean distance could be used to calculate similarity

between Puq and M.

In using Euclidean space, if there is great difference among data values or there is a difference

in measurement units of specifications, it is necessary to normalize the data; this assures

assigning the same weight to all specifications [26]. Here, because of the difference between the

measurement scales of availability and response time, Puq and M data must be normalized. The

normalization is done using the min-max relation [26], formula 2. For example, if the minimum

and the maximum values for A are minA and maxA respectively, and (a) is the old value of A,

based on formula 2, the new value of A, in the new range, (new_minA, new_maxA), is a'.

() ()2min_min_max_
minmax

min
` AAA

AA

A newnewnew
a

a +−
−

−
=

For each element of Puq and M, formula 2 is used to create P'uq and M' (Figure 5). Here, the new

range is [0, 1].














=

sksk

ss

ra

ra

M

``

``

`
11

MM

()uququq raP `,`
`

= ,

uqkj ∧=∀ ..1
12

1
`

rr

rr
r

sj

sj
−

−
= , ,

12

1
`

aa

aa
a

sj

sj
−

−
= where

 },,,,min{ 211 sksuq rrrrr L= },,,,min{ 211 sksuq aaaaa L= ,

 },,,,max{ 212 sksuq rrrrr L= },,,,max{ 212 sksuq aaaaa L= ,

Figure 5

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

9

The degree of similarity can now be calculated using Euclidean distance. Calculating similarity

is done using QSim in Formula 3 and the answer is stored in Q vector (Figure 6).

()


















=≥−=

=≤−=

=∀+==

0)``()``(

0)``()``(

)3(

..1,]`[,`][22

relserrifrrr

aelseaaifaaa
where

kjrajMPQSimjQ

sjuqsjuq

sjuqsjuq

uq

Figure 6

4.3.3. Optimization

Calculating the similarity between P'uq and M' cannot be only based on average availability and

average response time since high data variation from these two may affect accuracy. Therefore,

in order to increase accuracy, it is necessary to consider the degree of variation from average as

well. Thus, in calculating similarity between P'uq and M', coefficient of variation (CV) is used.

Low CV shows consistency among data and high CV shows inconsistency among them [27].

Using data in (or By having a set of data objects) X = {x1,x2,…,xn}, CV is calculated through

formula 4 [27] :

()4
1

, 1

2
_

1
_

_
−









−

===

∑∑
==

n

xx

s
n

x

xwhere

x

s
CV

n

i

i

n

i

i

Therefore, in order to increase accuracy in calculating QoS similarity, the CV value for each of

the availability metric (cva) and response time metric (cvr) is calculated for services S1.. Sk from

data stored in monitoring through the time span previously mentioned. These numbers are put

into QSim (P'uq,M'[j]) in (3) and (5) is created:

)5(..1;
11

 M`[j]) ,(P` QSimQ[j] 22

uq kjr
cv

a
cv ra

=∀+==

The Q vector shows the degree of similarity of each service to P'uq. To increase accuracy, the

assumption is that cva and cvr are less than one. It is possible that any element of Q be out of

[0,1] range, therefore it is necessary to put them back in the boundary using (2). The new vector

is named Q' and its elements are named as qsj; thus Q' is represented as Q'(qs1,qs2,…,qsk). Now

the final decision is made using Q' and the results of functional similarity evaluation.

4.4. The analyzer layer

The analyzer layer is responsible for coordinating all the layers and producing the final result.

This layer communicates with external user and receives requests for finding similar services

and sends the final answer to the user. When a request to find similar services to Sq is received,

the analyzer sends the WSDL of Sq to the functional similarity layer, which checks for

functional similarity. The result is a list of services S1..Sk together with their degree of similarity

to Sq which is sent back to the analyzer. Notice that this result has the form of F =

(fs1,fs2,…,fsk). The analyzer then sends the list of services (S1..Sk) to the QoS similarity layer,

which has to check for QoS similarity. It also sends the specific WSLA based on the requesting

party, the provider and Sq. the QoS similarity layer produces the result in the form of Q' in

which the extent of QoS similarity of services S1…Sk to Puq is presented. In the analyzer layer

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

10

the overall similarity of services S1…Sk and Sq is calculated by creating a matrix of Skx2whose

columns are filled with functional and QoS similarity values previously calculated (Figure 7).



















=

kk qs

qs

qs

fs

fs

fs

S
MM

2

1

2

1

Figure 7

Finally, the overall similarity of services S1…Sk to Sq is calculated in the analyzer layer as

follows and services are ranked and ordered. The overall similarity means both functional and

QoS similarity at the same time.

4.4.1. Calculating the overall similarity

In order to calculate the overall similarity and ranking services, it is necessary to consider

functional and QoS similarities and their degree of importance. Therefore, in analyzer, a weight

is assigned to functional and QoS similarities. This weight is applied through W = [w1,w2]

where w1 stands for functional similarity and w2 stands for QoS similarity and w1+w2=1. w1 is

always greater than w2 because the purpose is to find a service which does the same work with

good quality. Of course these weights could be changed based on the type of work and user’s

opinion. Total similarity ranking of services S1…Sk to Sq is done using (6).

)6(],[21

2

1

2

1

ww

qs

qs

qs

fs

fs

fs

A

kk

score
×



















=
MM

Each element of Ascore is calculated based on (7).

)7(..,21 kijqswfswA jj

score

j =∀×+×=

Based on total similarity rank, score

jA , services are ranked and ordered. The service with the
highest value of score

jA is the most similar and its rank is ‘first’; similarly, a list of ranked
services based on score

jA is created and sent to the user.

5. CONCLUSION

There could be real-time changes in service status such as service unavailability and service

quality decline in SOC environment. For service-oriented systems to be flexible and self-

adaptive, it is necessary to automatically select and use a similar service instead of the one which

causes problems and introduce them to the user so that the user does not have to go through the

difficulties of discovering similar services. The present work offers a solution in providing

similar services automatically whenever there is a problem in initial service availability.
One important metric in selecting a similar service is considering QoS properties and user

preferences about QoS. Because of the importance of this issue, in this work, an architecture is

proposed in which, additional to functional similarity, QoS properties and user preferences are

also considered in selecting a similar service.

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

11

In our architecture to check functional similarity, WSDL of services is used. Checking

functional similarity means finding those services that do the similar task. To check QoS

similarity, all services in the repository are monitored and the results are stored in a Database.

After automatically obtaining user preferences about QoS, QoS similarity of services to user

preferences is checked. In order to increase accuracy in QoS similarity check, statistical methods

are used. Total similarity is calculated based on functional and QoS similarity in a flexible way.

Considering QoS properties results in a different rating of functionally similar services and, as a

result, the best possible selection is done based on functionality and quality.

In future works, the objective is to extend QoS model with deterministic parameters like cost,

security, etc.

REFERENCES

[1] Michael P. Papazoglou,Paolo Traverso,Schahram Dustdar,Frank Leymann, (2007) "Service-Oriented

Computing: State of the Art and Research Challenges ," IEEE , vol. 40, no. 11, pp. 38-45.

[2] S. Weerawarana, Ed., (2005) Web Services Platform Architecture:SOAP, WSDL, WS-Policy, WS-

Addressing, WS-BPEL, WS-Reliable. Prentice Hall.

[3] P.Plebani,B.Pernici, (2009) "URBE: Web Service Retrieval Based on Similarity Evaluation," IEEE

Transactions on Knowledge and data engineering, vol. 21, no. 11, pp .1629-1642.

[4] X.Dong,A.Y. Halevy,J.Madhavan,E.Nemes,J.Zhang, (2004) "Simlarity Search for Web Services," in

Thirtieth international conference on Very large data bases, vol. 30, pp. 372-383.

[5] T.S.Mahmood,G.Shah,R.Akkiraju,A.A.Ivan,R.Goodwin, (2005) "Searching Service Repositories by

Combining Semantic and Ontological Matching," in IEEE International Conference on Web

Services (ICWS ’05), pp. 13-20.

[6] E.Stroulia,Y.Wang, (2005)"Structural and Semantic Matching for Assessing Web-Service

Similarity," International Journal of Cooperative Information Systems, vol. 14, no. 4, pp. 407-438.

[7] "Web Service Level Agreement (WSLA) Language Specification," IBM, 2003.

[8] Y.Taher, D.Benslimane, M.C. Fauvet, Z. Maamar, (2006) "Towards an Approach for Web services

Substitution," in in 10th International Database Engineering and Applications Symposium IEEE, pp.

166-173.

[9] Y.Yamato, H.Sunaga, (2007) "Context-Aware Service Composition and Component Change-over

using Semantic Web Techniques," in IEEE International Conference on Web Services, pp. 687-694.

[10] M. Mecella,B. Pernici,P. Craca, (2001) "Compatibility of E-Services in a Cooperative Multi-

Platform Environment," in Int’l Workshop Technologies for E-Services (TES ’01), pp. 44-57.

[11] g.spanoudakis,A. Zisman, A. Kozlenkov, (2005) "A Service Discovery Framework for Service

Centric Systems," in IEEE Int’l Conf. Services Computing (SCC ’05), pp. 251-259.

[12] L.Kuang, (2008) "A Formal Analysis of Behavioral Equivalence for Web Services," in IEEE

Congress on Services, pp. 265-268.

[13] P.Cyrille H´eam, O. Kouchnarenko , J.o.Voinot, (2007)"How to Handle QoS Aspects in Web

Services Substitutivity Verification," in 16th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 333-338.

[14] A. Martens, (2005) "Process Oriented Discovery of Business Partners," in Enterprise Information

International Journal on Web Service Computing (IJWSC), Vol.2, No.2, June 2011

12

Systems (ICEIS ’05), pp. 57-64.

[15] G.Ram, Santhanam,S.Basu,V.Honavar, (2009) "Web Service Substitution Based on Preferences

Over Non-functional Attributes," in International Conference on Services Computing (SCC 2009),

Bangalore, pp. 21-25.

[16] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, "A Framework for QoS based Routing in the

Internet".

[17] A.Menasce, Danial, (2002) "QoS issues in Web services," in IEEE Internet computing, pp. 72-75.

[18] Y. Liu, A. H. Ngu, and L. Zeng, (2004) "QoS Computation and Policing in DynamicWeb Service,"

in Proceedings of the 13th International Conference onWorldWideWeb (WWW’04)ACM Press,

New York, NY, USA, pp. 66-73.

[19] A.Mani, A.Nagarajan, (2002) "Understanding quality of service for Web services," IBM http://www-

128.ibm.com/developerworks/library/ws-quality.html.

[20] S. RAN, (2003) "A Model for Web Services Discovery With QoS," ACM SIGecom Exchanges, vol.

4, no. 1, pp. 1-10, Nov.

[21] H.G. Song, K.Lee, (2005)"sPAC (Web Services Performance Analysis Center):," in Business

Process Management3rd International Conference, vol. 3649, France, BPM, pp. 109-119.

[22] R.B.Halima, K.Guennoun , K.Drira , M.Jmaiel, (2008) "Non-intrusive QoS Monitoring and Analysis

for Self-Healing Web Services," in 1st IEEE International Conference on the Applications of Digital

Information and Web Technologies (ICADIWT 2008), pp. 549-554.

[23] M. Tian, A. Gramm, H. Ritter, J. Schiller, (2004) "Efficient Selection and Monitoring of QoS-aware

Web services with the WS-QoS Framework," in WI '04 Proceedings of the 2004 IEEE/WIC/ACM

International Conference on Web Intelligence, pp. 152-158.

[24] F.Rosenberg, C. Platzer, S. Dustdar, (2006) "Bootstrapping Performance and Dependability

Attributes ofWeb Services," in ICWS '06 Proceedings of the IEEE International Conference on Web

Services, Chicago, pp. 205-212.

[25] W.John,S.Tafvelin, T.Olovsson, (2010) "Passive internet measurement: Overview and guidelines

based on experiences," Computer Communications, vol. 33, no. 5, p. 533–550.

[26] J.Han,M.Kamber, (2006) Data mining :Concept and Techniques, 2nd ed. San Francisco, CA: Diane

Cerra.

[27] J.K.Sharma, (2010) Fundamentals of Business Statistics. India: Dorling Kindersley.

