
International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

DOI : 10.5121/ijwsc.2014.5101 1

SIMILARITY MEASURES FOR WEB SERVICE
COMPOSITION MODELS

Maricela Bravo

Systems Department, Autonomous Metropolitan University, Mexico City, Mexico

ABSTRACT

A Web service composition is an interconnected set of multiple specialized Web service operations, which
complement each other to offer an improved tool capable of solving more complex problems. Manual
design and implementation of Web service compositions are among the most difficult and error prone tasks.
To face this complexity and to reduce errors at design time, the developer can alternatively search and
reuse existing compositions that have solved similar problems. Thus the problem of designing and
implementing Web service compositions can be reduced to the problem of finding and selecting the
composition closest to an initial specification. To achieve this goal, there is the need to define and use
similarity measures to determine how close is a given composition with respect to any given specification.
Comparison of Web service compositions can be done using two possible sources: composition designs
(models), and execution logs of compositions. In particular, in this paper a set of similarity measures are
described for Web service composition models. The main objective is to measure and assess the degree of
closeness between two given compositions of Web services regardless of their modelling language.

KEYWORDS

Similarity measures; Web service compositions; State similarity

1. INTRODUCTION

A Web service composition is an interconnected set of multiple specialized Web service
operations, which complement each other to offer an improved tool capable of solving more
complex problems that go beyond each individual service capability. Manually designing and
implementing Web service compositions is among the most difficult and error prone tasks that
any application developer may face. Based on a given initial specification of a complex problem,
the common steps that the composition developer must follow are: identify specific sub-problems
derived from the complex problem; look for software components (in the form of Web services)
that can solve each sub-problem; design the information flow and execution flow for the overall
Web service composition; and finally, collect all responses and integrate them into a global
composed response to the client.

In order to face this complexity and to reduce the design time for Web service compositions, the
composition developer could alternatively search and reuse existing compositions that have
solved similar problems. Such Web service compositions can be found in repositories of Web
service descriptions which publish simple and compound services. Thus the problem of designing
and implementing Web service compositions can be reduced to the problem of finding and
selecting the composition closest to the initial specification.

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

2

To achieve this goal, there is the need to use similarity measures to determine how close is a
given composition with respect to the initial specification. Similarity measures applied to Web
services are not a new subject, as they have been studied and addressed long ago, this is because
application developers have faced many times, the problem of searching and selecting simple
Web services to meet their specific needs. However, to date little progress has been made in
relation to the construction of public repositories of Web service compositions that provide
proven solutions to common problem specifications. Also, little progress has been published in
relation to the complex tasks of searching, selecting and matchmaking composed Web services.
Regarding the comparison of Web service compositions, this task can be done using two possible
resources: the composition designs (models), and the execution logs of compositions. Both source
options pose different challenges and difficulties mainly because of the representation format and
techniques required to extract information. In case of comparing composition designs or models,
Web service compositions could have been modelled, described or implemented in some of the
following languages: BPEL4WS , BPMN , EPC , YAWL , WS-CDL among others. In case of
comparing execution logs of Web service compositions, it is necessary to mine server logs in
order to extract and analyze the sequences of messages issued during execution at the hosting
Web server.

In particular, in this paper the set of similarity measures are proposed for the comparison of Web
service composition models. In order to provide a solution compatible with majority of
composition languages, no specific modelling language is required. Instead, a more general
formalism representation is used. The main objective is to measure and assess the degree of
closeness between two given compositions of Web services regardless of their modelling or
representation language. Reported works in the literature describe a wide range of similarity
measures applicable to Web services. Methods for comparing Web services are usually based on
syntax or semantic approaches which frequently fail to identify similar service operations based
on their observable behaviour [1]. However, among all these similarity measures, none has
addressed aspects of the expected behaviour analysed from the design of the composition.
The rest of the paper is organized as follows. In the next section related works are presented. In
Section 3, the similarity measures for Web service compositions are introduced. In Section 4
experimental results are described. In Section 5, evaluation of results is presented. Conclusions
close the paper in Section 6.

2. RELATED WORK

In this section, an overview of relevant similarity measures approaches is described, these
approaches range from pure syntactical, semantic to behavioural.

2.1. Syntactic Measures

Syntactic similarity measures are those based on lexico-syntactical comparisons, such as a string
to string comparison. Whereas structural similarity measures are those that exploit signature or
interface information of the service, such as: input parameters, output parameters, operation
names and descriptions, and service name and descriptions [14]. Some distance measures to
compare strings have been applied to Web services, for instance the Hamming distance used in
information theory [2]; or the Levenshtein [3] distance between two strings. The UDDI Registry
By Example (URBE) for Web service retrieval uses the evaluation of similarity between Web
service interfaces [4]. The algorithm combines the analysis of the interfaces structures and the
analysis of the terms used inside them. URBE is useful to find a Web service suitable to replace
an existing one that fails. Semantic Annotation for WSDL (SAWSDL) is adopted as a language to
annotate a WSDL description. Dong et al. [5] provide a syntactic-structural approach for

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

3

supporting Web service similarity search and clustering; service name and descriptions of text,
operation, and input/output are considered over agglomerative algorithm to discover similar
operations and input/output parameters.

2.2. Semantic Measures

Semantic similarity measures use dictionaries or semantic references such as ontologies to
construct representations of the meanings. Bruno et.al [6] describe a semantic-based approach for
automated classification and annotation of Web service description files (WSDL). Their approach
relies on Support Vector Machines (SVM) and Information Retrieval Vector Spaces for service
classification. As an outcome they build concept lattices representing service domains. Stroulia
and Wang [7] developed and evaluated three methods to assess the similarity between two WSDL
specifications. The first method is based on the Vector-space model information retrieval and
WordNet considering words at the lexical level only. The second method represents an extension
of the signature-matching method for component retrieval; this method is a structural-based
approach. And the third method combines the structure-based matching with a semantic
approach, by using WordNet to calculate the semantic distances between each pair of compared
elements in the WSDL specifications. The semantic Web has influenced many works by
providing logic-based mechanisms to describe, annotate and discover Web services. Within this
context, McIlarith, Cao Son & Zeng [8] proposed one of the first initiatives to markup Web
services based on DAML (ontology language), which started the important research area of
“Semantic Web Services”. The term Semantic Web Services is related to the set of technologies
to design or implement ontologies as a mechanism to enhance or annotate semantically service
descriptions, for instance OWL-S , WSMO , and SAWSDL. To use these technologies there is the
general assumption that the annotation or ontology representation is done previously or during
Web service deployment. An attempt to characterize and improve Web service search and
discovery using a semantic approach called "conceptual indexation" is presented in [17].
Conceptual indexation method is based on OWL-S service descriptions to exploit hasInput and
hasOutput elements to index Web services and requests.

2.3. Behavioural Measures

From the perspective of behaviour analysis applied to Web services interaction, there are some
reported works in the literature. A functional quality of service approach to discover and compose
interoperable Web services is described in [1]. They consider as functional attributes the service
category, the service name, the operation name, the input and output messages and the annotation
of the service. A tree similarity based on structure matching of XML schema documents, is
provided. Grigori et.al [9] address the problem of service behavioural matching by implementing
a graph matching algorithm which is based on the edit distance similarity measure. They apply
their behavioural approach to service matchmaking, where a user service request is represented as
a process graph, aiming at comparing against a set of published models graphs in a library.
Similarly, Dijkman et.al [10] compare four graph matching algorithms to discover business
process similarity. In [11] authors describe Match and Merge operators for Statecharts, their
Match operator is based on typographic and linguistic similarities between the vocabularies of the
different models producing a corresponding relation between the states of compared models; their
Merge operator produces a merge that: preserves the behavioural properties of the models,
respects the hierarchical structures, and distinguishes between shared and non-shared behaviours
of compared models.

Despite the existence of numerous proposals to measure the similarity of Web services, it has not
been possible to achieve the desired level of automation for the selection and discovery of Web
services. Measurement approaches based on syntax and structure provide information related to

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

4

the communication interface of the service, but say nothing about the functional and contextual
information. On the other hand, semantic approaches strongly depend on human intervention,
because there is always the requirement to manually annotate or enhance semantically Web
services, providing their IOPE (input output preconditions and effects) annotations.

Approaches that analyze the behaviour of interactive systems applied in the modelling and
comparison of Web service compositions are very suitable. For instance, the current trend for
computing the context associated to a given situation described by Singh [13] for the Pragmatic
Web represents a close antecedent to the work reported in this paper. Another important issue
towards the automated measurement, selection and composition of Web services is understanding
the "composition life cycle" presented by [18]. However, until now the analysis that combines
measurements of structural and semantic similarity with these behavioural approaches have not
been proved for composition design models.

3. SIMILARITY MEASURES FOR WEB SERVICES COMPOSITIONS

A Web service composition is the interconnection of multiple specialized Web service operations,
which complement each other to offer an improved tool capable of solving more complex
problems. Normally, the invocation of a service operation produces an output which may be part
of the input of another service operation. A common form of interaction between single services
inside a composed service is by means of an intermediary, which is a program responsible for
creating required input objects, invoking service operations and receiving the output results from
service operations. Is in the intermediary program, where data transformations are executed and
where a general response is created as a result of the composed service. The automatic generation
of the response is done by exchanging input and output messages between the different
interconnected operations that form a Web service composition. This message exchange is
traditionally specified, modelled and executed by means of some flow language like BPEL or
WSCL , or can be represented as a workflow using YAWL , or can be modelled by means of a
FSM [26]. Based on the pragmatic ideas described in [19] a the set of measures reported in [20],
in this section a set of similarity measures are designed and adapted for comparing Web service
composition models. Formally a Web service composition C is represented as follows.

C = (S, s0, A, , F),
Where

S , is the set of states
s0, is the initial state
A is the set of service operations to be processed by C
, is the transition relation,  : S × A S
F, is the set of final states

States in a Web service composition model represent the possible situations that can occur before
and after the invocation of an operation, and are defined by the set of input and output parameters.
Transitions in Web service compositions work over the cartesian product of the sets of states and
operations. In particular, the Web service compositions modelled in this work are not
deterministic. That is, given a pair of state and message (s, a) the transition  (s, a) leads to
different states, therefore transitions are modelled as a mathematical relation. By representing a
Web service composition as a FSM, the states represent the possible situations of the execution.
The initial state s0, represents the beginning of the invocation sequence of operations of a Web
service composition; a intermediate state si is designed to be achieved after the execution of the

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

5

service operation aj, and sf ∈ F is a final state achieved after the invocation the last service
operation.

3.1. State similarity

In this paper, the state similarity incorporates more useful information. In particular, in Web
service compositions the situation of a given Web service invocation is defined by the set of input
parameters and the returned output parameters. A transition between states in a FSM can be seen
as a situation s that change into s’ by processing the input a. In a given Web service composition,
s’ represents the resulting situation after the execution of the service operation a. In this work, a
given Web service state is measured using the state name, state type, output parameters and
service domain type.

State Name . Let s1, s2 be two states from different service compositions, STokens1 and STokens2

are the set of lexical tokens extracted from each of the names s1, s2, respectively. The lexical
similarity between s1, s2 is calculated by:

StateNameSim(s1, s2) = STokens1 ∩ STokens2 / STokens1 ∪ STokens2 (1)

The state name similarity measure is a value in [0, 1], where a 0 value represents a total lexical
difference, and 1 represents full similarity between the names of states.

State Type. The type of the state identifies its execution position throughout the service
composition. Accordingly, there are three types of states: starting, intermediate and final. In order
to obtain this information, let type(si) be the function that reads and returns the state type of a
particular state. Let type(s1), and type(s2) be two state types from different service compositions.
The state type difference is defined by:

(2)

Let s1, s2, be two states from different service compositions. The state type similarity between s1,
s2, StateTypeSim(s1, s2) is calculated by:

(3)

The state type similarity is a value in [0, 1], where 1 sets a total type similarity between the states.

Output Parameters . The output of the Web service operation invocation is used to measure its
structural information, using parameter names and parameter data types. Let s1 = (sname1, Cp1),
and s2, = (sname2, Cp2) be two states from different service compositions, where Snamem is the
state name and Cpm is the set of output parameters of state m. Each parameter i is defined by a
pair of name namePi and data type typePi. Their respective sets of output parameters are defined
as follows:

Cp1 = { (nameP1, typeP1), (nameP2, typeP2), … , (namePi, typePi)},
Cp2 = { (nameP1, typeP1), (nameP2, typeP2), … , (namePi, typePi)}.

StateTypeSim(s1 , s2) =

1, if type(s1) = type(s2)

1/TypeDif (s1 , s2) otherwise

< 0 if type(s1) < type(s2)
> 0 if type(s1) > type(s2)
0 if type(s1) = type(s2)

TypeDif((type(s1), type(s2))) =

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

6

Parameter similarity between output parameters is defined as the ratio of the intersection divided
by the union of both sets of output parameters.

ParamsSim(s1 , s2) = Cp1 ∩ Cp2 / Cp1 ∪ Cp2 (4)

The output parameter similarity measure is a value in [0, 1], where a 0/1 represents a total
difference/similarity between parameters.

Service Type . This data relates the service operation with its application domain. This
information is relevant, because it allows using the semantic information of the service and
associating the domain of the service with its result. To obtain this information, let WStype(si) be
a program function that reads and returns the state service type. Let WStype(s1), WStype(s2), be
two service state types from different service compositions. The service domain type similarity is
calculated by:

(5)

Let s1, s2, be two states from different service compositions. The state service type similarity is
calculated as follows:

(6)

The service type similarity measure is a value in [0, 1], where 1 sets a total service type similarity
between the states.

State Similarity . The general state similarity is calculated by the mean of state name lexical
similarity, state type similarity, output parameter similarity and service type similarity.

StateSim(s1 , s2) =
StateNameSim(s1 , s2) +
StateTypeSim(s1 , s2) +

ParamsSim(s1 , s2) +
StateServiceTypeSim(s1 , s2) / 4

(7)

The state similarity measure is a value in [0, 1], where a 0/1 represents a total
difference/similarity between the states.

3.2. Message Similarity

Messages in a service composition are invocations of service operations. Let A1, A2 be the set of
operations of a service composition C1 and C2 respectively. A measure of the degree of message
similarity between two compositions is given.

Let 1(preS1, a1)  posS1, and 2(preS2, a2)  posS2 be transition functions from Web service
compositions C1 and C2 respectively. Notice that a1 and a2 denote respective message at preS1,

StateWSTypeSim(s1, s2)=

1, if WStype(s1) = WStype(s2)

1/WSTypeDif (s1, s2) otherwise

WSTypeDif(s1 , s2) =
<0, if WStype(s1) < WStype(s2)
>0 if WStype(s1) < WStype(s2)

0, if WStype(s1) = WStype(s2)

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

7

preS2 of transitions, and posS1, posS2 the resulting states. Let p be a threshold of acceptance. A
relation of similarity between messages a1 and a2 is established if and only if:

1) StateSim(preS1, preS2) > p,
2) StateSim(posS1, posS2) > p,

The message similarity is calculated as the mean of the state similarity between current states and
the state similarity between posterior states.

MessageSim(a1, a2) = (StateSim(preS1, preS2) + StateSim(posS1, posS2)) / 2 (8)

3.3. Trace Similarity

The concept of trace was defined by Rabinovich [15] as follows: let C be a chart and s0 be its
initial state. A trace of C is a sequence a1...an of messages such that there exist nodes s1...sn in C
and s i-1 → si for i = 1...n.

Considering this definition in this paper a trace is defined as the sequence of state – transition –
state, starting from the initial state and ending in any final state. The formal notation of a FSM
trace is represented by s0, a1, s1, a2, …, sf.

The trace equivalence definition defined by Tan et al. [16] states that a trace equivalence relation
between two states p and q, written p ≈tr q, holds if and only if Tr(p) = Tr(q). Given two Labelled
Transition Systems S and M with initial states s0 and m0 respectively, they say that M is trace-
equivalent to S, written M ≈tr S, of only if m0 ≈tr s0.

Based on the concepts of trace and trace equivalence, in this paper trace similarity is defined as
follows: Let T1 be the set of all possible traces extracted from a given composition C1, and T2 the
set of all possible traces from a composition C2, C1 and C2 are said to be equivalent if they can
execute exactly the same traces T1 = T2. Based on this trace equivalence definition, it is possible
to define a measure of the degree of trace similarity between two compositions.

Let C1= (S1, s0, A1, 1, F1) and C2= (S2, t0, A2, 2, F2) be two Web services compositions, and f1 ∈
F1 and f2 ∈ F2.

Let T1 and T2 the set of traces extracted from C1 and C2 respectively, and v ∈ T1, w ∈ T2. Let p be
a threshold of acceptance.

A relation of trace similarity between v and w is established if and only if the following conditions
hold:

StateSim(s0, t0) > p,
StateSim(f1, f2) > p, and

1(s0, v) f1, and 2(t0, w) f2.

Trace similarity is calculated as the mean of the state similarity between the initial states and the
state similarity between final states.

TraceSim(v, w) = (StateSim(s0, t0) + StateSim(f1, f2)) / 2 (9)

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

8

4. EXPERIMENTATION

To test and evaluate the set of measures defined, a software tool for experimentation and
evaluation of results was developed. Figure 1 shows the class diagram of the similarity measures
tool implemented with Java classes to support the representation and measurement of Web
service compositions.

Figure 1. Class diagram of the similarity measurement tool

A service composition is a FSM that integrates states, transitions and operations. State class
represents state objects of any Web service composition implemented by a set of attributes: state
name, state type, message type, state id, and a set of output parameters that result by a service
execution. Transition class is helpful for the representation of states connections by instantiating a
current state, an operation and the posterior state. Action class is used to instantiate service
operations and their associated set of contextual parameters, which are the set of input parameters
required for the service execution. The Parameter class represents instances of input and output
parameters, each defined by its name and data type.

Figure 2. Experimentation methodology

Service Composition
Repositories State Similarity

Compositions
represented as FSM

Message Similarity

Trace Similarity

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

9

The procedure for experimentation is depicted in Figure 2. First, service compositions are
represented as FSM in the software model implemented. Once the service compositions are
loaded in memory, states similarity measures are executed to discover similar states over a
threshold of p = 0.6 in this case. Then message similarities are calculated for each pair of service
operations defined in all transitions. Then a recursive trace tracking algorithm is executed, which
identifies and extracts all the possible traces from each service composition. Finally, using a map
of similar states and traces, trace similarity is calculated to discover similar traces under a certain
threshold.

4.1. Representation of Web Service Compositions as FSM

Web services compositions identified by C1, C2 and C3 depicted in Figures 3, 4 and 5 were
represented as FSM.

Figure 3. FSM of composition C1

C1 = (S1, s0, A1, , F),

Where

S1 = {"Flight Reserved", "Group Hotel Reserved", "Individual Hotel Reserved", "Error Flight
Reservation", "Hotel reservation Error", "Payment Rejected", "Payment Confirmed"}

A1 = {"Book", "MakeReservations", "ProcessCreditCard"}

Figure 4. FSM of composition C2

C2 = (S2, s0, A2, , F),

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

10

Where

S2 = {"Flight Reserved", "Group Defined", "Group Hotel Reserved", "Personal Hotel Reserved",
"Make Reservation Error", "Hotel Reservation Error", "Payment Done", "Error Code"}
A2 = {"MakeReservations", "OpenFile", "BookHotel", "Credit"}

Figure 5. FSM of composition C3

C3 = (S3, s0, A3, , F),

Where

S3 = {"Reserved Flight ", "Room Hotel Reserved", "ListService Add", "Transaction Confirmed",
"Flight Error", "Fault Hotel Book", "Fail Load", "Declined Payment"}
A3 = {"searchFlight", "book", "addList", "pay"}

State-based Similarity Measures

In order to obtain state similarity between compositions, each composition must be compared
with every different composition. Therefore, the number of different pairs to be compared is 3.
For each pair of different compositions their sets of states are compared each other using Formula
(7) to find state similarities above a threshold of 0.6 (see Figure 6).

Figure 6. Process for comparing sets of states from two compositions.

For each pair of states their StateName, StateType, ParamSim and ServiceType measures are
calculated and the final state similarty is obtained. Those states that resulted in a similarity with a
threshold > 0.6 are shown in Table 1, Table 2 and Table 3, respectively. Table 1 shows the results
after comparing the sets of states from compositions (C1, C2), which are .

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

11

Table 1. State similarity between compositions C1 and C2

States from composition C1 States from composition C2 Similarity
start start 0.8125

FlightReserved FlightReserved 0.7955

ErrorFlightReservation MakeReservationError 0.6750

GroupHotelReserved GroupHotelReserved 0.8250

GroupHotelReserved PersonalHotelReserved 0.7083

IndividualHotelReserved GroupHotelReserved 0.7000

IndividualHotelReserved PersonalHotelReserved 0.7500

HotelReservationError HotelReservationError 0.8750

PaymentConfirmed TransactionConfirmed 0.6833

PaymentRejected PaymentErrorCode 0.6875

Table 2. State similarity between compositions C1 and C3

States from composition C1 States from composition C3 Similarity
start start 0.8214

FlightReserved reservedFligth 0.6333

ErrorFlightReservation fligthError 0.6125

GroupHotelReserved roomHotelReserved 0.6250

IndividualHotelReserved roomHotelReserved 0.6250

HotelReservationError faultHotelBook 0.6750

PaymentConfirmed transactionConfirmed 0.6458

PaymentRejected declinedPayment 0.7083

Table 3. State similarity between compositions C2 and C3

States from composition C2 States from composition C3 Similarity

start start 0.8056

FlightReserved reservedFligth 0.6083

MakeReservationError fligthError 0.6875

GroupHotelReserved roomHotelReserved 0.6477

PersonalHotelReserved roomHotelReserved 0.6250

HotelReservationError faultHotelBook 0.6750

TransactionConfirmed transactionConfirmed 0.7778

PaymentErrorCode declinedPayment 0.6125

Message similarity is calculated for each different pair of service compositions. To calculate
Message Similarity first the sets of transitios of each service composition is obtained, then for
each transition its message is used to calculate message similarity is calculated. Figure 7
ilustatrates an example of comparing the message "Book" from composition C1 with the message
"MakeReservations" from composition C2.

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

12

Figure 7. Process for comparing sets of transitions from different compositions.

Using Formula 8 the calculation of message similarity between "Book" and "MakeReservation" is
obtained as follows:

1. MessageSim(a1, a2) = (StateSim(preS1, preS2) + StateSim(posS1, posS2)) / 2
2. MessageSim(“Book”, “MakeReservations”) = (StateSim(“start”, “sart”) +

StateSim(“Flight Reserved”, “Flight Reserved”)) / 2
3. MessageSim(“Book”, “MakeReservations”) = (0.8125 + 0.7955)) / 2
4. MessageSim(“Book”, “MakeReservations”) = 0.804

This calculation is executed for all messages between composition pairs. If message similarity
results > 0.6 then both messages are defined to be similar. Table 4 shows the resulting pairs of
similar messages.

Table 4 shows the results after comparing transitions from compositions C1, C2 and C3.
Table 4. Message similarity between compositions

Similar messages from compositions C1 and C2

Book MakeReservations
MakeReservations OpenFile
MakeResrvations BookHotel
ProcessCreditCard Credit

Compositions C1 and C3

Book searchFlight
MakeReservations book

Compositions C2 and C3

MakeReservations searchFlight
BookHotel book

In order to discover pairs of similar traces between compositions (C1, C2), (C1, C3) and (C2, C3),
their respective traces are generated, calculate state similarities between all initial states for each
pair of compositions over a threshold 0.6, calculate state similarities between final states from the
different compositions pairs; and finally, confirm if the sequences started in similar initial states
end up in similar final states.

Considering the following traces from compositions C1 and C2 respectively modelled in the form
of state – message – state

v = start - Book FlightReserved - MakeReservations - HotelReservationError
w = start - MakeReservations - FlightReserved - OpenFile - GroupDefined - BookHotel -
GroupHotelReserved - BookHotel - HotelReservationError

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

13

Trace similarity between both traces is calculated as follows:

1. TraceSim(v, w) = (StateSim(s0, t0) + StateSim(f1, f2)) / 2
2. TraceSim(v, w) = (StateSim("start", "start") + StateSim("HotelReservationError",

"HotelReservationError")) / 2
3. TraceSim(v, w) = (0.8125 + 0.8750) / 2
4. TraceSim(v, w) = 0.8437

This calculation is executed for all traces between composition pairs. If trace similarity results >
0.6 then both traces are defined to be similar. Table 5 shows the resulting pairs of similar traces.

Table 5. Some of resulting similar traces between compositions

Traces Sequence from composition C1 Sequence from composition C2

v2, w2 start Book FlightReserved
MakeReservations HotelReservationError

start Make Reservations Flight Reserved
Open File Group Defined Book Hotel Group
Hotel Reserved Book Hotel Hotel Reservation
Error

v3, w2 start Book FlightReserved
MakeReservations GroupHotelReserved
MakeReservations HotelReservationError

start Make Reservations Flight Reserved
Open File Group Defined Book Hotel Group
Hotel Reserved Book Hotel Hotel Reservation
Error

v4, w3 start Book FlightReserved
MakeReservations IndividualHotelReserved
MakeReservations HotelReservationError

start MakeReservations FlightReserved
BookHotel PersonalHotelReserved BookHotel
HotelReservationError

v5, w5 start Book FlightReserved
MakeReservations GroupHotelReserved
ProcessCreditCard PaymentConfirmed

start MakeReservations FlightReserved
OpenFile GroupDefined BookHotel
GroupHotelReserved Credit
TransactionConfirmed

v8, w7 start Book FlightReserved
MakeReservations IndividualHotelReserved
ProcessCreditCard PaymentRejected

start MakeReservations FlightReserved
OpenFile GroupDefined BookHotel
GroupHotelReserved Credit PaymentRejected

Traces Sequence from composition C1 Sequence from composition C3

v4, x2 start Book FlightReserved
MakeReservations IndividualHotelReserved
MakeReservations HotelReservationError

start searchFligth reservedFligth book
faultHotelBook

v6, x4 start Book FlightReserved
MakeReservations IndividualHotelReserved
ProcessCreditCard PaymentConfirmed

start searchFligth reservedFligth book
roomHotelReserved addlist listServiceAdd
pay transactionConfirmed

v8, x5 start Book FlightReserved
MakeReservations IndividualHotelReserved
ProcessCreditCard PaymentRejected

start searchFligth reservedFligth book
roomHotelReserved addlist listServiceAdd
pay declinedPayment

Traces Sequence from composition C2 Sequence from composition C3

w2, x2 start MakeReservations FlightReserved
OpenFile GroupDefined BookHotel
GroupHotelReserved BookHotel
HotelReservationError

start searchFligth reservedFligth book
faultHotelBook

w5, x4 start MakeReservations FlightReserved
OpenFile GroupDefined BookHotel
GroupHotelReserved Credit
TransactionConfirmed

start searchFligth reservedFligth book
roomHotelReserved addlist listServiceAdd
pay transactionConfirmed

w7, x5 start MakeReservations FlightReserved
OpenFile GroupDefined BookHotel
GroupHotelReserved Credit
PaymentRejected

start searchFligth reservedFligth book
roomHotelReserved addlist listServiceAdd
pay declinedPayment

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

14

5. EVALUATION

To evaluate experimental results, Precision and Recall measures are used [12]. The Precision of
state similarity is defined as the number of relevant (correct) similar states retrieved with a
measure result >= 0.6, divided by the total number of states pairs retrieved. And Recall is defined
as the number of relevant similar states with a measure result >= 0.6, divided by the total number
of correct relevant similar states pairs (which should have been selected). To evaluate message
similarity results, Precision is defined as the number of relevant (correct) similar message pairs
retrieved with a measure result >= 0.6, divided by the total number of message pairs retrieved.
Results of Precision and Recall are shown in Table 6. To evaluate trace similarity results,
Precision is defined as the number of relevant (correct) similar trace pairs retrieved, divided by
the total number of trace pairs retrieved.

Table 6. Precision, recall and F-measures results

State similarity Message similarity Trace similarity

Pair Precision Recall F measure Precision Recall F measure Precision Recall F measure

c1, c2 0.80 1.00 0.90 0.75 1.00 0.88 1.00 1.00 1.00

c1, c3 1.00 1.00 1.00 1.00 0.67 0.83 1.00 0.89 0.94

c2, c3 1.00 1.00 1.00 1.00 0.67 0.83 1.00 0.86 0.93

Table 6 shows Precision and Recall results of measures used for discovering similarities between
service compositions. Notice that these results are highly precise because the similarity threshold
is tuned up to achieve the best balance. Actually, a relevant issue is the possibility to adapt the
similarity measures to any set of Web service compositions, that is, by means of a threshold
tuning, regarding the particular characteristics of Web services domain. Therefore, a general
method for similarity measuring is enabled.

CONCLUSIONS

This paper reports a set of similarity measures aiming at addressing the problem of finding and
selecting Web service compositions that are similar with an initial composed service
specification. The set of similarity measures are defined for the comparison of compositions
modeled as FSM, where states represent the possible situations that can occur before and after the
invocation of a service operation, and situations are defined by the set of input and output
parameters. Transitions in Web service compositions work over the cartesian product of the sets
of states and operations. In particular, the Web service compositions modeled in this work are not
deterministic. That is, given a pair of state and message (s, a) the transition  (s, a) leads to
different states, therefore transitions are modeled as a mathematical relations.

A tool for experimentation was implemented which starts calculating state similarities, which
means identifying similar situations between all compositions. Then calculates message
similarities between all compositions, this step allows identification of similar service operations
considering their input and output parameter sets. Finally, using state similarities and message
similarities trace similarity is calculated leading to the recognition of similar service execution
paths, a necessary and preliminary calculation towards the selection of a similar behaving
composition. Results of these calculations are promising according with the precision and recall
evaluation measures.

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

15

The set of proposed similarity measures that have been presented in this work allow the
progressive comparison of service compositions. These comparisons are made in granular form
and evaluating different elements of the compositions, so that it is possible to know numerically
the syntactic differences they have and at the time of selecting a similar composition to know in
advance the required changes.

Next step of this work is to develop an experimentation tool to allow remote users to publish Web
service composition models, to compare service models using similarity measures and to select
the compositions that best suit their needs. Another important research topic derived from the set
of similarity measures is their application to classification and clustering algorithms.

REFERENCES

[1] Jeong, B., Cho, H., Lee, C. On the functional quality of service (FQoS) to discover and compose
interoperable Web services. International Journal of Expert Systems with Applications, 2008, pp.
5411-5418.

[2] Hamming, R. Error detecting and error correcting codes. Bell System Technical Journal, Vol. 29 No.
2, 1950, pp. 147-160.

[3] Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady Vol. 10, 1966, pp. 707-10.

[4] Plebani, P., & Pernici, B. URBE: Web Service Retrieval Based on Similarity Evaluation, IEEE
Transactions on Knowledge and Data Engineering, 2009, Vol. 21 No. 11.

[5] Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J. Similarity Search for Web Services,
Proceedings of the 30th VLDB Conference, 2004, pp. 372-383.

[6] Bruno, M., Canfora, G., Di Penta, M., & Scognamiglio, R. An Approach to support Web Service
Classification and Annotation. IEEE International Conference on e-Technology, e-Commerce and e-
Service, 2005.

[7] Stroulia, E., Wang, Y. Structural and Semantic Matching for Assesing Web Service Similarity,
International Journal of Cooperative Information Systems, 2005, Vol. 14 No. 4.

[8] McIlarith, S., Cao Son, T., & Zeng, H. Semantic Web Services. IEEE Intelligent Systems. 2001.
[9] Grigori, D., Corrales, J., Bouzeghoub, M. Behavioral matchmaking for service retrieval, IEEE

International Conference on Web Services. 2006.
[10] Dumas, M., García-Bañuelos, L., Dijkman, R. Similarity Search of Business Process Models, Bulletin

of the IEEE Computer Society Technical Committee on Data Engineering, Vol. 32 No. 3, 2009, pp.
23-28.

[11] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., & Zave, P. Matching and Merging of
Statecharts Specifictaions, Proceedings of the 29th International Conference on Software Engineering,
2007.

[12] Baeza-Yates, Ribeiro-Neto. Modern Information Retrieval, New York ACM Press, Addison-Wesley.
1999.

[13] Munindar, P. Singh. The Pragmatic Web: Preliminary thoughts. NSF-OntoWeb Workshop on
Database and Information Systems Research for Semantic Web and Enterprises, 2002, pp. 82-90.

[14] Sharma, V., Kumar, M. Comparative Analysis of IR Based Web Service Similarity Measures Using
Vector Space Model, Global Trends in Information Systems and Software Applications,
Communications in Computer and Information Science, 270, 2012, pp. 752-760.

[15] Rabinovich, A. A complete axiomatisation for trace congruence of finite state behaviours.
Mathematical Foundations of Programming Semantics, Lecture Notes in Computer Science, Vol. 802,
1994, pp. 530-543.

[16] Tan, Q., Petrenko, A., Luo, G. & Bochmann, G. Testing Trace Equivalence for Labeled Transition
Ssystems, Technical Report 976, Dept. of I.R.O., University of Montreal, 1995.

[17] Fethallah, H., Mine, M. Automated Retrieval of Semantic Web Services: A Matching Based on
Conceptual Indexation, The International Arab Journal of Information Technology, Vol. 10 No. 1,
2013.

[18] Rinderle-Ma, S., Reichert, M., Jurisch, M. Equivalence of Web Services in Process-Aware Service
Compositions, IEEE International Conference on Web Services, 2009, pp. 501-508.

International Journal on Web Service Computing (IJWSC), Vol.5, No.1, March 2014

16

[19] Alvarado, M., & Bravo, M. Pragmatic Similarity for Web Services Composition, Unpublished
Manuscript, 2011.

[20] Bravo, M., & Alvarado, M. Similarity Measures for Substituting Web Services. In P. Hung (Ed.),
Web Service Composition and New Frameworks in Designing Semantics: Innovations, 2012, (pp.
143-170). Hershey, PA: Information Science Reference.

Authors

Maricela Bravo is a researcher at the Systems Department of the Autonomous
Metropolitan University UAM (Azcapotzalco, Mexico) since 2011. She holds a BS in
Information Systems, a MSc in Computer Science and a PhD in Computer Science from
CENIDET (2003 and 2006 respectively). Her research interests include Semantic Web
services, Semantic Web services complex tasks support (search, discovery, match,
substitute, and compose); and Ontology design.

