
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

DOI : 10.5121/ijnsa.2012.4408 123

A Universal Session Based Bit Level Symmetric
Key Cryptographic Technique to Enhance the

Information Security

Manas Paul
1
 and Jyotsna Kumar Mandal

2

1
 Dept. of Comp. Application, JIS College of Engineering, Kalyani, West Bengal, India

manaspaul@rediffmail.com

2
Dept. of C.S.E., Kalyani University, Kalyani, West Bengal, India

jkmandal@rediffmail.com

ABSTRACT

In this technical paper a session based symmetric key cryptographic technique, termed as SBSKCT, has

been proposed. This proposed technique is very secure and suitable for encryption of large files of any

type. SBSKCT considers the plain text as a string with finite no. of binary bits. This input binary string is

broken down into blocks of various sizes (of 2
k
 order where k = 3, 4, 5, ….). The encrypted binary string

is formed by shifting the bit position of each block by a certain values for a certain number of times and

from this string cipher text is formed. Combination of values of block length, no. of blocks and no. of

iterations generates the session based key for SBSKCT. For decryption the cipher text is considered as

binary string. Using the session key information, this binary string is broken down into blocks. The

decrypted binary string is formed by shifting the bit position of each block by a certain values for a

certain number of times and from this string plain text is reformed. A comparison of SBSKCT with

existing and industrially accepted TDES and AES has been done.

.Keywords

 SBSKCT, Cryptography, Symmetric Key, Plain text, Cipher text, Session Based Key, TDES, AES.

1. INTRODUCTION

During this time when the Internet provides essential communication between more than tens of

millions of people and is being increasingly used as a tool for commerce, security becomes a

tremendously important issue to deal with. It is essential to secure our information from

eavesdroppers. Hence network security is very much focused topic for researchers [1, 2, 3, 4, 5,

6, 7, 8, 9]. Many algorithms are available on this domain but each of them has their own merits

and demerits. As a result continuous research works are going on in this field of cryptography.

In this paper a new algorithm based on symmetric key cryptography has been proposed where

the plain text is considered as a stream of binary bits. Bit positions are shuffled to generate the

cipher text. During encryption process a session key is generated. The plain text can be

regenerated from the cipher text using the session key.

Section 2 of this paper contains the block diagram of the proposed scheme. Section 3 deals with

the algorithms of encryption, decryption and key generation. Section 4 explains the proposed

technique with an example. Section 5 shows the results and analysis on different files with

different sizes and the comparison of the proposed SBSKCT with TDES [10], AES [11].

Conclusions are drawn in the section 6.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

124

2. THE SCHEME

The SBSKCT algorithm consists of three major components:

• Key Generation

• Encryption Mechanism

• Decryption Mechanism

Key Generation:

Encryption Mechanism:

Decryption Mechanism:

3. PROPOSED ALGORITHM

3.1. Encryption Algorithm:

Step 1. The input file i.e. the plain text is considered as a binary stream of finite no. of bits.

Step 2. This input binary string breaks into blocks with different lengths like 8 / 16 / 32 / 64 /

128 / 256 / 512 ……. (2
k
 order where k = 3, 4, 5, ….) as follows:

First n1 no. of bits is considered as x1 no. of blocks with block length y1 bits where n1 = x1 * y1.

Next n2 no. of bits is considered as x2 no. of blocks with block length y2 bits where n2 = x2 * y2

and so on. Finally nm no. of bits is considered as xm no. of blocks with block length ym bits

where nm = xm * ym with ym = 8. So no padding is required.

Step 3. For each block with length n, a unique number (ranging from 1 to 3*n) is generated for

the position of each bit using the following function

f1(p) = p + n * [{ n + p * (-1)^ (n % 3) } % 3] ;

 where, n = block length under consideration

 p = position of the p
th

bit

 (-1)^ (n % 3) means that (n% 3) is the power of (-1)

Cipher

Text

Key (K)

Plain

Text

Plain

Text

Key (K)

Cipher

Text

Plain

Text

Key

Generator
Key (K)

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

125

 (n % 3) returns the remainder when n is divided by 3.

Step 4. The new position of each bit is generated to form the next intermediate block using the

given function

f2(q) = (q + 2) / 3 ; where, q = generated unique no. using f1(p) for pth bit

Step 5. The block of length n (=2
k
) be regenerated after n/4 (=2

k-2
) no. of iteration. Any of the

intermediate blocks generated in this process may be used as encrypted string.

Step 6. The cipher text is formed after converting the encrypted binary string into characters.

3.2. Decryption Algorithm:

Step 1. For decryption process, the input file i.e. the cipher text is considered as a binary stream.

Step 2. After processing the session key information, this binary string is broken down into

blocks of different length as similar as encryption process.

Step 3. Since a block of length n (=2k) is regenerated after n/4 (=2k-2) no. of iteration, so the

process is symmetric in nature. If n1 no. of iteration is used for encryption then (n/4 – n1) no.

of iteration is used for decryption.

Step 4. The plain text is reformed after converting the decrypted binary string into characters.

3.3. Generation of Session Key:

A session key is generated for one time use in a session of transmission to ensure much more

security to SBSKCT. The input plain text which is treated as binary bit stream is divided

dynamically into 16 portions, each portion is divided again into x no. of blocks with block

length y bits. The final (i.e. 16
th
) portion is divided into x16 no. of blocks with block length 8 bits

(i.e. y16 = 8). So padding is not required. Total length of the input binary string can be written as

x1 * y1 + x2 * y2 + …….. + x16 * y16.

The values of x and y are generated dynamically. The value of n1, no. of iteration performed to

encrypt the block with n bits, is also generated dynamically. The session key contains the

sixteen set of values of x, y and n1 respectively.

4. EXAMPLE

To illustrate the SBSKCT, let us consider a two letter’s word “At”. The ASCII values of “A”

and “t” are 65 (01000001) and 116 (01110100) respectively. Corresponding binary bit

representation of that word is “0100000101110100”. Consider a block with length 16 bits as

0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A unique no. is generated for each bit position from MSB to LSB using the function f1(p) and

from this unique no. the new position of the p-th bit for next intermediate block is generated

using the function f2(q).Table 4.1 shows the above for 16 bits block (i.e. n=16)

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

126

Table 4.1

Bit positions of each bit within a block

Original bit

position

Generated unique no. using the

function f1(p)

New Bit position for next intermediate

block using the function f2(q)

01 01 01

02 34 12

03 19 07

04 04 02

05 37 13

06 22 08

07 07 03

08 40 14

09 25 09

10 10 04

11 43 15

12 28 10

13 13 05

14 46 16

15 31 11

16 16 06

The source block, intermediate blocks and the final block which is nothing but the source blocks

are shown in the Figure 4.1.

0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source block with bit positions from MSB to LSB

0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1

1 4 7 10 13 16 3 6 9 12 15 2 5 8 11 14

First intermediate block with old (i.e. previous) bit position

0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

First intermediate block with new (i.e. present) bit position

0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1

1 4 7 10 13 16 3 6 9 12 15 2 5 8 11 14

Second intermediate block with old (i.e. previous) bit position

0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Second intermediate block with new (i.e. present) bit position

0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0

1 4 7 10 13 16 3 6 9 12 15 2 5 8 11 14

Third intermediate block with old (i.e. previous) bit position

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

127

0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Third intermediate block with new (i.e. present) bit position

0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fourth intermediate block i.e. regenerated source block

Fig. 4.1 Formation of the cycle of the process

For 16 (= n) bit block, total no of iteration is 4 (= n/4) i.e. after 4
th
 iteration source block is

regenerated. If n1 no. of iteration is used to encrypt the source block then (4 – n1) no. of

iteration is used to decry pt the cipher block. Value of n1 is chosen dynamically to enhance the

security.

If n1 = 1 then the encrypted block is

0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1

The equivalent decimal no. of two 8 bit binary numbers 00010000 and 01010111 are 16 and 87

respectively. 16 and 87 are ASCII values of the characters “►” and “W” respectively. So the

word “At” is encrypted as ”►W”. For decryption, remaining 3 iterations are used.

If n1 = 2 then the encrypted block is

0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1

The equivalent decimal no. of two 8 bit binary numbers 01010100 and 01100001 are 84 and 97

respectively. 84 and 97 are ASCII values of the characters “T” and “a” respectively. So the

word “At” is encrypted as ”Ta”. For decryption, remaining 2 iterations are used.

If n1 = 3 then the encrypted block is

0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0

The equivalent decimal no. of two 8 bit binary numbers 01010101 and 00010010 are 85 and 18

respectively. 85 and 18 are ASCII values of the characters “U” and “↕” respectively. So the

word “At” is encrypted as ”U↕”. Only single iteration is used for decryption.

5. RESULTS AND ANALYSIS

In this section the results of analysis are given. The analysis includes the comparison of

encryption time, decryption time, Character frequencies, Chi-square values, Avalanche and

Strict Avalanche effects, Bit Independence. The comparative study between Triple-

DES(168bits), AES(128bits) and SBSKCT has done on 20 files of 8 different types with

different sizes varying from 330 bytes to 62657918 bytes (59.7 MB). All implementation has

been done using JAVA.

5.1. ANALYSIS OF ENCRYPTION & DECRYPTION TIME

Table I & Table II shows the encryption time and decryption time for Triple-DES (168bits),

AES (128bits) and proposed SBSKCT against the different files. Proposed SBSKCT takes very

less time to encrypt/decrypt than Triple-DES and little bit more time than AES. Fig. 1(a) and

Fig. 1(b) show the graphical representation of encryption time and decryption time against file

size in logarithmic scale.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

128

TABLE I

File size v/s encryption time (for Triple-DES, AES and SBSKCT algorithms)

Sl.

No.

Source File Size

(in bytes)

File

type

Encryption Time (in seconds)

TDES AES SBSKCT

1 330 Dll 0.001 0.001 0.004

2 528 Txt 0.001 0.001 0.008

3 96317 Txt 0.034 0.004 0.024

4 233071 Rar 0.082 0.011 0.067

5 354304 Exe 0.123 0.017 0.089

6 536387 Zip 0.186 0.023 0.143

7 657408 Doc 0.220 0.031 0.257

8 682496 Dll 0.248 0.031 0.073

9 860713 Pdf 0.289 0.038 0.125

10 988216 Exe 0.331 0.042 0.176

11 1395473 Txt 0.476 0.059 0.182

12 4472320 Doc 1.663 0.192 0.408

13 7820026 Avi 2.626 0.334 0.712

14 9227808 Zip 3.096 0.397 0.521

15 11580416 Dll 4.393 0.544 0.871

16 17486968 Exe 5.906 0.743 2.075

17 20951837 Rar 7.334 0.937 1.736

18 32683952 Pdf 10.971 1.350 2.285

19 44814336 Exe 15.091 1.914 3.271

20 62657918 Avi 21.133 2.689 6.452

TABL II

File size v/s decryption time (for Triple-DES, AES and SBSKCT algorithms)

Sl.

No.

Source File Size

(in bytes)
File type

Decryption Time (in seconds)

TDES AES SBSKCT

1 330 Dll 0.001 0.001 0.002

2 528 Txt 0.001 0.001 0.007

3 96317 Txt 0.035 0.008 0.032

4 233071 Rar 0.087 0.017 0.064

5 354304 Exe 0.128 0.025 0.079

6 536387 Zip 0.202 0.038 0.067

7 657408 Doc 0.235 0.045 0.223

8 682496 Dll 0.266 0.046 0.147

9 860713 Pdf 0.307 0.060 0.101

10 988216 Exe 0.356 0.070 0.150

11 1395473 Txt 0.530 0.098 0.348

12 4472320 Doc 1.663 0.349 0.554

13 7820026 Avi 2.832 0.557 0.683

14 9227808 Zip 3.377 0.656 0.515

15 11580416 Dll 4.652 0.868 1.002

16 17486968 Exe 6.289 1.220 1.816

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

129

17 20951837 Rar 8.052 1.431 2.073

18 32683952 Pdf 11.811 2.274 3.809

19 44814336 Exe 16.253 3.108 3.390

20 62657918 Avi 22.882 4.927 6.092

Fig. 1(a). Encryption Time (sec) vs. File Size (bytes) in logarithmic scale

Fig. 1(b). Decryption Time (sec) vs. File Size (bytes) in logarithmic scale

5.2. ANALYSIS OF CHARACTER FREQUENCIES

Analysis of Character frequencies for text file has been performed for T-DES, AES and

proposed SBSKCT. Fig.2(a) shows the distribution of characters in the plain text. Fig.2(b), 2(c),

2(d) show the characters distribution in cipher text for T-DES, AES and proposed SBSKCT

respectively. All algorithms show a distributed spectrum of characters. From the above

observation it may be conclude that the proposed SBSKCT may obtain very good security.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

130

Fig. 2(a). Distribution of characters in source file

Fig. 2(b): Distribution of characters in TDES

Fig. 2(c). Distribution of characters in AES

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

131

Fig. 2(d). Distribution of characters in SBSKCT

5.3. TESTS FOR NON-HOMOGENEITY

The test for goodness of fit (Pearson χ2
) has been performed between the source files (expected)

and the encrypted files (observed). The large Chi-Square values (compared with tabulated

values) may confirm the high degree of non-homogeneity between the source files and the

encrypted files. Table III shows the Chi-Square values for Triple-DES (168bits), AES (128bits)

and proposed SBSKCT against the different files.

From Table III it may conclude that the Chi-Square values of SBSKCT are at par with T-DES

and AES. Fig. 3 shows the graphical representation the Chi-Square values on logarithmic scale

for T-DES, AES & SBSKCT.

Table III

Chi-Square values for Triple-DES, AES and SBSKCT algorithms

Sl.

No.

Source File

Size (bytes)

File

type

Chi-Square Values

TDES AES SBSKCT

1 330 dll 922 959 895

2 528 txt 1889 1897 1939

3 96317 txt 23492528 23865067 20174362

4 233071 rar 997 915 972

5 354304 exe 353169 228027 176731

6 536387 zip 3279 3510 3359

7 657408 doc 90750 88706 87988

8 682496 dll 29296 28440 26642

9 860713 pdf 59797 60661 56134

10 988216 exe 240186 245090 257169

11 1395473 txt 5833237390 5545862604 6771635306

12 4472320 doc 102678 102581 99874

13 7820026 avi 1869638 1326136 807744

14 9227808 zip 37593 37424 36715

15 11580416 dll 28811486 17081530 13759262

16 17486968 exe 8689664 8463203 7994999

17 20951837 rar 25615 24785 26491

18 32683952 pdf 13896909 13893011 15298623

19 44814336 exe 97756312 81405043 499844380

20 62657918 avi 3570872 3571648 4893222

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

132

Fig.3 Chi-Square values for TDES, AES & SBSKCT in logarithmic scale.

5.4. STUDIES ON AVALANCHE EFFECTS, STRICT AVALANCHE EFFECTS AND BIT

INDEPENDENCE CRITERION

Avalanche & Strict Avalanche effects and Bit Independence criterion has been measured by

statistical analysis of data. The bit changes among encrypted bytes for a single bit change in

the original message sequence for the entire or a relative large number of bytes. The Standard

Deviation from the expected values is calculated. The ratio of calculated standard deviation with

expected value has been subtracted from 1.0 to get the Avalanche and Strict Avalanche effect on

a 0.0 – 1.0 scale. The value closer to 1.0 indicates the better Avalanche & Strict Avalanche

effects and the better Bit Independence criterion. Table IV, Table V & Table VI show the

Avalanche effects, the Strict Avalanche effects & the Bit Independence criterion respectively.

Fig.4(a), Fig.4(b) & Fig4(c) show the above graphically. In Fig.4(a) & Fig.4(b), the y-axis

which represent the Avalanche effects & the Strict Avalanche effects respectively has been

scaled from 0.9 – 1.0 for better visual interpretation.

Table IV

Avalanche effects for T-DES, AES and SBSKCT algorithms

Sl.

No.

Source File Size

(in bytes)

File

type

Avalanche achieved

TDES AES SBSKCT

1 330 dll 0.99591 0.98904 0.96444

2 528 txt 0.99773 0.99852 0.97661

3 96317 txt 0.99996 0.99997 0.98984

4 233071 rar 0.99994 0.99997 0.99456

5 354304 exe 0.99996 0.99999 0.99102

6 536387 zip 0.99996 0.99994 0.99576

7 657408 doc 0.99996 0.99999 0.99339

8 682496 dll 0.99998 1.00000 0.99188

9 860713 pdf 0.99996 0.99997 0.99386

10 988216 exe 1.00000 0.99998 0.98686

11 1395473 txt 1.00000 1.00000 0.99353

12 4472320 doc 0.99999 0.99997 0.99001

13 7820026 avi 1.00000 0.99999 0.99455

14 9227808 zip 1.00000 1.00000 0.99899

15 11580416 dll 1.00000 0.99999 0.99865

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

133

16 17486968 exe 1.00000 0.99999 0.99908

17 20951837 Rar 1.00000 1.00000 0.99900

18 32683952 pdf 0.99999 1.00000 0.99896

19 44814336 exe 0.99997 0.99997 0.99986

20 62657918 Avi 0.99999 0.99999 0.99994

Table V

Strict Avalanche effect for T-DES, AES & SBSKCT algorithms

Sl.

No.

Source File

Size (in bytes)
File type

Strict Avalanche achieved

TDES AES SBSKCT

1 330 Dll 0.98645 0.98505 0.89548

2 528 Txt 0.99419 0.99311 0.96732

3 96317 Txt 0.99992 0.99987 0.97625

4 233071 Rar 0.99986 0.99985 0.99137

5 354304 Exe 0.99991 0.99981 0.98773

6 536387 Zip 0.99988 0.99985 0.99456

7 657408 Doc 0.99989 0.99990 0.99022

8 682496 Dll 0.99990 0.99985 0.98507

9 860713 Pdf 0.99990 0.99993 0.98701

10 988216 Exe 0.99995 0.99995 0.97168

11 1395473 Txt 0.99990 0.99996 0.99024

12 4472320 Doc 0.99998 0.99995 0.98222

13 7820026 Avi 0.99996 0.99996 0.99068

14 9227808 Zip 0.99997 0.99998 0.99897

15 11580416 Dll 0.99992 0.99998 0.99685

16 17486968 Exe 0.99996 0.99997 0.99747

17 20951837 Rar 0.99998 0.99996 0.99896

18 32683952 Pdf 0.99997 0.99998 0.99892

19 44814336 Exe 0.99991 0.99990 0.99986

20 62657918 Avi 0.99997 0.99998 0.99989

Table VI

Bit Independence criterion for T-DES, AES & SBSKCT algorithms

Sl.

No.

Source File Size

(in bytes)

File

type

Bit Independence achieved

TDES AES SBSKCT

1 330 Dll 0.49180 0.47804 0.39143

2 528 Txt 0.22966 0.23056 0.20942

3 96317 Txt 0.41022 0.41167 0.42818

4 233071 Rar 0.99899 0.99887 0.98266

5 354304 Exe 0.92538 0.92414 0.93376

6 536387 Zip 0.99824 0.99753 0.99166

7 657408 Doc 0.98111 0.98030 0.97182

8 682496 Dll 0.99603 0.99560 0.96489

9 860713 Pdf 0.97073 0.96298 0.96629

10 988216 Exe 0.91480 0.91255 0.92836

11 1395473 Txt 0.25735 0.25464 0.24598

12 4472320 Doc 0.98881 0.98787 0.95295

13 7820026 Avi 0.98857 0.98595 0.96716

14 9227808 Zip 0.99807 0.99817 0.99707

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

134

15 11580416 Dll 0.86087 0.86303 0.85963

16 17486968 Exe 0.83078 0.85209 0.85420

17 20951837 Rar 0.99940 0.99937 0.99834

18 32683952 Pdf 0.95803 0.95850 0.95689

19 44814336 Exe 0.70104 0.70688 0.82535

20 62657918 Avi 0.99494 0.99451 0.99564

Fig.4(a) Comparison of Avalanche effect between T-DES, AES and SBSKCT

Fig4(b) Comparison of Strict Avalanche effect between TDES, AES and SBSKCT

Fig.4(c) Comparison of Bit Independence criterion between TDES, AES and SBSKCT

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

135

6. CONCLUSION

The proposed SBSKCT algorithm, presented in this paper, is very straight forward and simple

to understand. The key size and key information varies from session to session for any

particular file which may enhance the security features of this proposed algorithm. Results and

Analysis section indicates that the SBSKCT is comparable with industry accepted standards T-

DES and AES. The performance of SBSKCT is significantly better than T-DES algorithm. For

large files, SBSKCT is at par with AES algorithm. The proposed technique is applicable to

ensure high security in message transmission of any form.

REFERENCES

[1] M. Bellare and P. Rogaway, “On the construction of variable length input Ciphers”, in Proceedings of

Fast Software Encryption. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg, 1999.

[2] S.Patel, Z.Ramzan and G.Sundaram, “Efficient constructions of variable-input-length block ciphers”,

in Proceedings of Selected Areas in Cryptography 2004. LNCS, vol. 3357. Springer, Heidelberg ,

2004.

[3] J.K. Mandal, P.K. Jha, “Encryption through Cascaded Arithmetic Operation on Pair of Bits and Key

Rotation (CAOPBKR)”, National Conference of Recent Trends in Intelligent Computing (RTIC-06),

Kalyani Government Engineering College, Kalyani, Nadia, India, 17-19 November 2006.

[4] Rajeev Chatterjee and J. K. Mandal , “Authentication of PCSs with Cascaded Encryption technique

(CE Technique)”, in proceedings of Fourth International Conference on Bridging the Digital Divide ,

Asian Applied Computing Conference (AACC 2007), Kathmandu, Nepal, 13-15th December 2007.

[5] M.Paul, J.K.Mandal, “A Permutative Cipher Technique (PCT) to Enhance the Security of Network

Based Transmission”, in Proceedings of 2nd National Conference on Computing for Nation

Development, Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi,

pp. 197-202, 08th -09th February 2008.

[6] Som S., Mandal J. K., (2008) “A Session Key Based Secure-Bit Encryption Technique (SBET)”, in

Proceedings of 2nd National Conference on Computing for Nation Development, Bharati

Vidyapeeth’s Institute of Computer Applications and Management, New Delhi, 08th -09th February

2008.

[7] Jayanta Kumar Pal, J. K. Mandal, and Somsubhra Gupta, “Composite Transposition Substitution

Chaining Based Cipher Technique” in proceedings of 16th International Conference on Advanced

Computing and Communication(ADCOM 2008), MIT Campus, Anna University Chennai, India, pp.

433-439, 14th-17th December 2008.

[8] S. Som, D. Mitra, J. Halder, “Session Key Based Manipulated Iteration Encryption Technique

(SKBMIET)”, International Conference on Advanced Computer Theory and Engineering (ICACTE

2008), Phuket, Thailand, 20-22 December 2008.

[9] S. Som, K. Bhattacharyya, R. Roy Guha, J. K. Mandal, “Block Wise Bits Manipulations Technique

(BBMT)”, International Conference on Advanced Computing, Tiruchirappalli, India, 6-8 August 2009.

[10] “Triple Data Encryption Standard” FIPS PUB 46-3 Federal Information Processing Standards

Publication, Reaffirmed, 1999 October 25 U.S. DEPARTMENT OF COMMERCE/National Institute

of Standards and Technology.

[11] “Advanced Encryption Standard”, Federal Information Processing Standards Publication 197,

November 26, 2001

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

136

Authors

Mr. Manas Paul received his Master degree in Physics from Calcutta University

in 1998 and Master degree in Computer Application with distinction in 2003

from Visveswariah Technological University. Currently he is pursuing his PhD in

Technology from Kalyani University. He is the Head and Assistant Professor in

the Department of Computer Application, JISCE, West Bengal, India. His field of

interest includes Cryptography and Network Security, Operation Research and

Optimization Techniques, Distributed Data Base Management System, Computer

Graphics.

Dr. JYOTSNA KUMAR MANDAL received his M.Tech. and PhD degree from

Calcutta University. He is currently Professor of Computer Science &

Engineering & Dean, Faculty of Engineering, Technology & Management,

University of Kalyani, Nadia, West Bengal India. He is attached with several

AICTE projects. He has 25 years Teaching & Research Experiences. His field of

interest includes Coding Theory, Data and Network Security, Remote Sensing &

GIS based Applications, Data Compression error corrections, Watermarking,

Steganography and Document Authentication, Image Processing, Visual

Cryptography.

