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ABSTRACT 

 A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a 

signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. 

This paper presents blind signature scheme using Chebyshev polynomials. The security of the given 

scheme depends upon the intractability of the integer factorization problem and discrete logarithms of 

Chebyshev polynomials. 
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1. INTRODUCTION 

The concept of blind signature was introduced by David Chaum in 1982 [2,3]. A blind 

signature scheme facilitates to ensure that the user’s private information would not be revealed 

when he/she proceeds with casting or purchasing over the internet. According to Chaum who 

offered the concept, two parties, namely a group of requesters and a signer, are the participants 

of a blind signature scheme. Suppose one of the requesters asks for a blind signature from the 

signer, first the requester blinds a message using the blind factor and then sends the blinded 

message to the signer. After receiving the blinded message, the signer signs it using his/her 

private key and then sends the blinded signature back to the requester. Afterwards, the requester 

can extract the signature signed by signer by eliminating the blinding factor from the blinded 

signature. To verify successfully the legitimacy of the signature; one can utilize the signer’s 

public key. The typical applications of blind signatures include e-cash, where a bank signs 

coins withdrawn by users, and e-voting, where an authority signs public keys that voters later 

use to cast their votes. Another application of blind signature scheme is anonymous credentials, 

where the issuing authority blindly signs a key [9, 18]. Recently, Microsoft introduced a new 

technology called U-prove to overcome the long standing dilemma between identity assurance 

and privacy which uses as a central building block blind signatures [22, 25].  

 

The blind signature scheme is supposed to satisfy the following requirements: [3, 8, 10]: 

Correctness: the correctness of the signature of a message signed through the signature scheme 

can be checked by anyone using signer’s public key. 

Blindness: the content of the message should be blind to the signature; the signer of the blind 

signature could not see the content of the message. 

Unforgeability: only the signer can give a valid signature for the associated message. 
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Untraceability: the signer of the blind signature is unable to link the message-signature pair 

even when the signature has been revealed to the public.  

There are many blind signature schemes have been proposed. Recently, many researchers 

proposed a variety of blind signature schemes [19, 20, 21]. The most widely used blind 

signature schemes are: RSA blind signature schemes [2], ElGamal signature scheme [5], and 

Schnorr Blind signature scheme [6]. RSA blind signature scheme security is based on the 

problem of integer factorization, while ElGamal and Schnorr blind signature schemes are based 

on the problem of discrete logarithm. 

As Chebyshev polynomials have semi-group property in real field, a public key cryptosystem 

was proposed [11], on the assumption that the computation of Chebyshev polynomial in real 

field is a one-way function. But it was soon found the private key could be quickly recovered 

from the public key, using trigonometric function substitution [14, 16]. In other words, the one-

way condition is not satisfied in such cryptosystem. To resist this attack, some references 

recommended [24, 27]. 

In this paper, we propose a blind signature scheme based on Chebyshev polynomials. Our 

scheme can meet the above requirements namely, correctness, blindness, unforgeability and 

untraceability. The security of the given scheme depends upon the intractability of the integer 

factorization problem and discrete logarithms of Chebyshev polynomials. The proposed scheme 

utilizes fewer numbers of bits due to inherent property of Chebysev polynomials as compared 

to its blind signature scheme such as RSA blind signature scheme.   

The outline of this paper as follows: In section 2, the basic concept of Chebyshev polynomials 

and properties have been studied. In section3, the blind signature scheme has been proposed 

and also an example has been given. In section 4, the proposed scheme, security issues have 

been discussed. Finally, section 5 describes concluding remarks. 

2. CHEBYSHEV POLYNOMIALS 

In this section we briefly describe Chebyshev polynomials, since they represent the cornerstone 

on which the public key cryptosystem, described in [11, 15], key agreement protocols, 

described in [23]  and the authentication scheme, described in [14], are built.  

Definition: Let n be an integer, and let x be a variable taking value over the interval [-1, 1]. The 

polynomial ( ) : [ 1,1] [ 1,1]
n

T x − → − is recursively defined as  

      1 2( ) 2. . ( ) ( ),
n n nT x x T x T x− −= −  for any 2n ≥  , where 

0
( ) 1T x = and 

1
( )T x x=  . 

Some examples of Chebyshev polynomials are 

                       
2

2
( ) 2. 1T x x= −  

                       
3

3
( ) 4. 3.T x x x= −  

                      
4

4 2
( ) 8. 8. 1T x x x= − +  



International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.6, November 2011 

175 

 

 

Figure 1: Graphical representation of Chebyshev polynomials: 

One of the most important properties of Chebyshev polynomials is so called semi-group 

property which establishes that 

.( ( )) ( )
m n m nT T x T x=  

As immediate consequence of this property is that Chebyshev polynomials commute under 

composition 

( ( )) ( ( )).
m n n mT T x T T x=  

It is seen that this holds by using the classical formula [4], 
1( ) cos( cos ( ))nT x n x

−= which is 

valid for all real ‘x’ in the interval [-1, 1]. Using this formula we have  

1 1( ( )) cos( cos (cos( cos ( )))m nT T x m n x
− −=  

                                                               
1cos( cos ( ))mn x

−=  

                                                               
1cos( cos ( ))nm x

−=  

                                                               
1 1cos( cos (cos( cos ( )))n m x

− −=  

                                                               ( ( ))n mT T x=  

For 1x > we can use the formula 
1( ) cosh( cosh ( ))nT x n x

−=  to verify the identity. Up to 

linear transformation the pure monomial 
n

x and the Chebyshev polynomial are the only classes 

of the polynomials that satisfy the commutative composition relation    

( ( )) ( ( ))n m m nP P x P P x= with ( )nP x a polynomial of degree n. 

2.1. Binary powering for Chebyshev polynomials 

We seek to generalize the binary powering algorithm, so that we can quickly compute values of 

the Chebyshev polynomial modulo p.  We first rewrite the recurrence for Chebyshev 
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polynomials 1 2( ) 2. . ( ) ( ),
n n nT x x T x T x− −= − from [1] formula 22.7.4, page 782, as a matrix 

equation: 

1

1

( ) ( )0 1

( ) ( )1 2

n n

n n

T x T x

T x T xx

−

+

    
=    

−    
 

The equation with n diminished by 1 becomes: 

1 2

1

( ) ( )0 1

( ) ( )1 2

n n

n n

T x T x

T x T xx

− −

−

    
=    

−    
 

Combining the above equations yields  

2

2

1 1

( ) ( )0 1

( ) ( )1 2

n n

n n

T x T x

T x T xx

−

+ −

    
=    

−    
 

We continue to replace the vector on the right side until the index is 0, yielding 

0

1 1

( ) ( )0 1

( ) ( )1 2

n

n

n

T x T x

T x T xx+

    
=    

−    
 

As 0 ( ) 1T x = and 1( )T x x= , the vector on the right is just the transpose of the row vector ( )1, x . 

Hence we compute the above using matrix binary powering, perform one matrix-vector  

product, and then extract the first element of the resulting vector to obtain ( )nT x . Using the 

classical matrix-matrix multiplication algorithm, we can do one matrix multiplication with 

individual elements reduced modulo p using 8 integer multiplications, 4 integer additions, and 

4 integer remainder operations. As the exponent n p< we use  (log( ))O p matrix multiplications 

modulo p to compute the value of the degree n Chebyshev polynomial modulo p . This 

calculation has been resulted that the computation would take about 4 to 8 times more C.P.U. 

time than the conventional Diffie-Hellman algorithm, depending on the cost of a large integer 

division relative to a large integer multiplication [12].                         

2.2. Properties of Chebyshev polynomial sequences modulo a prime 

To investigate the difficulty of inverting ( )(mod )na T x p= , with n unknown, we generate 

some experimental data. Choosing a small p, we can compute the sequence ( )(mod )nT a p for n 

= 0, 1, 2, until we discover the period of the sequence. The result is that the period is at most p 

+ 1 for any given input argument x = 0, 1, 2,  ..., p − 1. For example , when x = 3, and p = 11, 

the sequence Tn(3)(mod11) for n = 0,1,2,3…………23 is: 

1,3,6,0,5,8,10,8,5,0,6,3,1,3,6,0,5,8,10,8,5,0,6,3 which is period of 12. 

 

Theorem 2.2.1.: Let p be an odd prime and x Z∈  such that 0 x p≤ < . Let k be the period of 

the sequence ( )(mod )nT x p for n = 0, 1, 2, . . … Let 
2 2 1xλ λ− + have roots 1 2,λ α α= .Then 

(i) k|p − 1 if the roots are in GF(p), otherwise, (ii) k|p + 1 when the roots are in GF(p2). 

Proof: In [12], it has shown that one can compute ( )(mod )nT x p by computing the n
th 

power of 

the recurrence relation matrix which has characteristic polynomial 2( ) 2 1f xλ λ λ= − + , 

performing one matrix-vector product modulo p, and then selecting the first element in the 
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resulting vector. The determinant of this matrix is also equal to the co-efficient of 0λ of ( )f λ , 

which is 1; thus the matrix is non-singular. As the 0
th
 power of the matrix is the identity matrix, 

the period k is the smallest positive integer such that the kth  power of the matrix is the identity 

matrix. We can compute powers of a matrix by finding its Jordan canonical form, computing 

powers of the Jordan canonical form, then transforming back.   Recall that the Jordan canonical 

form is either a diagonal matrix with distinct eigenvalues on the diagonal, or an upper triangular 

matrix with repeated eigenvalues on the diagonal; these eigenvalues are also roots of the 

characteristic polynomial. In the case of the characteristic polynomial has repeated roots, they 

both must be mod p± because the only least-residue solutions of 2 1 0(mod )y p− = are 1y = ± . 

In the case that 1 is a double root, x = 1and our sequence is 1, 1, 1, ------ which has period 1. In 

the other case, the repeated root is -1 with x  =  -1; our sequence is 1, p - 1, 1, p - 1, -----  which 

has period 2 and is a divisor of  p - 1 , as p is odd. We consider the that the distinct roots lie in 

GF(p) . From Fermat’s theorem, 1 1(mod )p
a p

− = for any non-zero a p< . The (p - 1)
st 

power of 

the Jordan canonical form matrix is the identity matrix, so our sequence has period at most p - 

1. If a small exponent 1k p< − exists such that k
th  

power of our Jordan canonical form matrix 

is the identity, k must be a divisor of  p - 1, because, by Lagrange’s theorem for the order of a 

subgroups of a finite group, the period must be a divisor of p - 1. The other case is that the roots 

exists only in a Quadratic extension of GF(p). We can still diagonalize our matrix as long as we 

do our arithmetic in that quadratic extension field. First we raise our diagonal Jordan canonical 

form matrix to power p; such raising a number to the power p is an automorphism in the 

quadratic extension fields. Hence the two roots just swap position on the diagonal, as we have 

only one non-identity automorphism in a quadratic extension field. Then we multiply our 

original Jordan canonical –form matrix to complete the calculation of the (p + 1)st  power .This 

just multiplies two pairs of conjugate roots.  As the product of the conjugate roots is also co-

efficient of 0λ in the characteristic polynomial, which is 1. The (p + 1)st power is the identity 

matrix. Thus the period is at most (p + 1). Again by Lagrange’s theorem, the period must be a 

divisor of (p + 1). 

We recommend choosing p to be a safe prime, and check that (p+1) had large prime factor or 

that it is hard to factor.          

 

2.3. The discrete log problem for Chebyshev polynomials 

To make the protocol practical we require an efficient algorithm for computing ( )(mod )nT x p  

for the n and p large. We call this as Chebyshev discrete log problem. We map the Chebyshev 

discrete log problem onto the conventional discrete log problem by recalling the hyperbolic 

definition of Chebyshev polynomials and solving it for n. We have the following theorem. 

Theorem 2.3.1 : Let a and x be integers and p is a prime. If ( ) modma T x p= then m is one of 

the values 
2

2

1
log ( 1)

x x
a a

+ −
+ −  in which the square roots lie in the quadratic extension field 

2( )GF P and the logarithm is the discrete log in the field ( )GF P  or its quadratic extension 

field.   

Proof:
1( ) cosh( cosh ( ))na T x n x

−= =  so

1

1

cosh ( )

cosh ( )

a
n

x

−

−
= . We convert this to logarithms to find 

2

2

log( 1)
.

log( 1)

a a
n

x x

+ −
=

+ −
 Recalling the change of base formula, we write this as 
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2

2

1
log ( 1)

x x
n a a

+ −
= + − . In the case that both the square roots 

2
1x −  and 

2
1a − exists 

in ( )GF P we have a conventional discrete log problem; otherwise, at least one square root 

exists in the quadratic extension field 
2( )GF P , which yields a quadratic extension fields 

generalization of the discrete log problem. To compute a square root in ( )GF P  or in 

2( )GF P we can use 
3(log )O p the probabilistic polynomial time method of Rabin, described 

in [7] .  

3. BLIND SIGNATURE SCHEME 

3.1. Blind signature Scheme by David Chaums 

Recall the Chum’s blind signature scheme [2], based on RSA cryptographic algorithm. RSA 

based blind signature scheme is divided into five phases: initializing, blinding, signing, 

unblinding, and  verifying. The signer first publishes the public information in the initializing 

phase. In the blinding phase, the requester blinds the message and sends it to the signer for 

requesting the signature. Then the signer signs the blinded message in the signing phase. In the 

unblinding phase, the requester derives the signature from the blinded signature. Finally, 

anyone can verify the legitimacy of signature in the verifying phase. The details of this scheme 

are described as follows: 

Initializing phase: 

 The signer randomly chooses two large primes p and q, and computes M pq=  and 

( 1)( 1).L p q= − − The signer chooses two large numbers e and d such that 0 e M< < and 

1
(mod )d L

e
= . Let (e, M) be the signer’s public key and d be the signer’s private key. The 

signer keeps (p, q, d) secure and publishes (e, M) and a one way hash function h(.) such as 

SHA-1 or MD5. 

Blinding phase: 

The requester has a message m , and he/she whishes to have it signed by the signer. The 

requester randomly selects an integer k such that 0 k M< < as the blinding factor. The 

requester computes and submits the number 
* ( ). e

m h m k=  to the signer. 

Signing phase: 

 After receiving 
*

m from the requester, the signer computes and sends back the number 
* *d

s m= to the requester.     

Unblinding phase: 

 After receiving 
*

s from the signer , the requester computes 
1 *.s k s

−=  

Verifying phase: 

 The s is a signature on the message m. The other users can verify the legitimacy of the 

signature by checking whether se=h(m) or ( )d
s h m= . 
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3.2. Blind signature scheme based on Chebyshev polynomials 

In this subsection, we propose blind signature scheme based on Chebyshev polynomials. We 

modify the above algorithm to use the first kind of Chebyshev polynomials  ( )nT x   instead of 

monomials n
x , as follows: 

Initializing phase: 

 The signer randomly chooses two large primes p and q, and computes M pq=  and 

2 2( 1)( 1).L p q= − − The signer chooses two large numbers e and d such that 0 e M< < and 

1
(mod )d L

e
= . Let (e, M) be the signer’s public key and d be the signer’s private key. The 

signer keeps (p, q, d) secure and publishes (e, M) and a one way hash function h(.) such as 

SHA-1 or MD5. 

Blinding phase: 

The requester has a message m , and he/she whishes to have it signed by the signer. The 

requester randomly selects an integer k such that 0 k M≤ ≤ as the blinding factor. The 

requester computes and submits the number 
* ( ). ( )(mod )em h m T k M=  to the signer. 

Signing phase: 

 After receiving 
*

m from the requester, the signer computes and sends back the number 
* *( )(mod )ds T m M= to the requester.     

Unblinding phase: 

 After receiving 
*

s from the signer , the requester computes 

*

(mod )
s

s M
k

= . 

Verifying phase: 

 The s is a signature on the message m. The other users can verify the legitimacy of the 

signature by checking whether ( )(mod )ds T m M=  or ( ) ( )(mod )eh m T s M= . 

3.3. Example for Proposed Blind signature scheme: 

We now present an example with artificially small parameters by taking a bank example. 

Initially Bank should do the following: 

• Chooses two large primes p = 5 and q = 17 which are kept secret 

• Computes the public modulus 85M =  

• Chooses a random encryption degree e = 31 

• Computes the secret modulus 6912L =   

• Using the extended Euclidean algorithm, computes a secret decryption degree 223d =  

• Sends to customer(requester) M and e 



International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.6, November 2011 

180 

 

After receiving the above value Customer should request for the signature by computing 

the values as follows: 

• Customer selects a random value 547k =  

• Hashed message m=259 

• Computes the blind message as *
31259. (547)(mod85) 259.37(mod85) 63m T= = =  

• Sends blind message 
*

m to Bank for signature. 

Bank should do the following: 

• Receives blind message from customer and treats it as an ordinary message since the bank 

does not recognize the blinding. The bank computes 

*

223(63)(mod85) 83s T= =  

• After computing the blind signature
*

s , bank sends it to the customer as signature. 

Customer should do the following to recover real signature S after receiving the blind 

signature 
*

s from the Bank. 

• Computes 
83

(mod85) 4
547

s = =  

• Now the signature message pair is : ( , ) (4,259)s m =  

• Sends signature pair ( , )s m to verifier    

Verifier should do the following: 

• Receives signature pair ( , )s m from the customer. 

• Sends signature pair ( , )s m to bank. 

• Bank accepts  signature if (Customer signature)  223(259)(mod85) 4S T= =  

4. SECURITY ANALYSIS OF BLIND SIGNATURE SCHEME BASED ON 

CHEBYSHEV POLYNOMIALS 

In this section, we examine the correctness, blindness, unforgeability and untraceability of the 

proposed scheme. 

4.1 Correctness: 

In the unblinding phase of our proposed scheme, the requester can derive the signature by 

computing  

                                

** ( )(mod )dT m Ms
s

k k
= =  
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(( ( ). ( )(mod ))(mod )d eT h m T k M M

k
=  

                             
( ( ))(mod )( ( ( )(mod ))(mod )d d eT h m M T T k M M

k
=  

                            
( ( ))(mod )( ( )(mod ))d d eT h m M T k M

k
=  

                           
2 2( 1)( 1) 1

( ( ))(mod )( ( )(mod ))d k p q
T h m M T k M

k

− − +
=  

                            
1( ( ))(mod )( ( )(mod ))dT h m M T k M

k
=  

                            
( ( ))(mod ).dT h m M k

k
=  

                           ( ( ))(mod )dT h m M=  

The requester computes ( ( ))(mod )ds T h m M= , so that ( ) ( )(mod )eh m T s M= . 

4.2. Blindness: 

Blindness is an important property in a blind signature. It is that the signer can sign a document 

without knowing what the document contains. In the proposed blind signature scheme,the 

requester picks a blinding factor k to compute the blind message 

( ). ( )(mod )eh m T k Mα = .Thus, the signer could not know the message m. 

4.3. Unforgeability: 

The security of our scheme is based on the difficulty of solving the factoring problem and 

discrete logarithmic problem of Chebyshev polynomials. It is hard to find a valid signature s on 

any message m to pass the verification ( ) ( )(mod )eh m T s M= . 

4.4. Untraceability: 

The security of our scheme is based on the difficulty of solving the factoring problem and 

discrete logarithmic problem of Chebyshev polynomials. No one can forge a valid signature 

pair s on message m to pass the verification ( ) ( )(mod )eh m T s M= . 

5. CONCLUSIONS 

This paper suggests a secure and efficient blind signature scheme based on Chebysev 

polynomials. First the properties of Chebyshev polynomial are discussed. Based on these 

properties blind signature scheme is introduced. This signature can be broken easily if the 

security parameters are not selected properly. To ensure the cryptosystem secure, few principles 

for parameter selection have been proposed . In the RSA based blind signature scheme, the 

security depends on intractability of large integer factorization problem, while the ElGmal blind 

signature and Schnorr blind signature based on intractability of discrete logarithmic problem. In 
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the proposed blind signature, the security depends upon both the intractability of the integer 

factorization and discrete logarithms of Chebyshev polynomials. The proposed scheme utilizes 

fewer numbers of bits due to inherent property of Chebysev polynomials as compared to its 

blind signature scheme counterpart such as RSA blind signature scheme. The proposed blind 

signature scheme is suitably illustrated using a bank example.  
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