
International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

DOI : 10.5121/ijnsa.2014.6503 35

REDUCING THE COGNITIVE LOAD ON

ANALYSTS

THROUGH HAMMING DISTANCE BASED

ALERT AGGREGATION

Peter Mell
1
, Richard Harang

2

1
 National Institute of Standards and Technology, Gaithersburg, MD, USA

2
 U.S. Army Research Laboratory, Baltimore, Maryland, USA

ABSTRACT

Previous work introduced the idea of grouping alerts at a Hamming distance of 1 to achieve lossless alert

aggregation; such aggregated meta-alerts were shown to increase alert interpretability. However, a mean

of 84023 daily Snort alerts were reduced to a still formidable 14099 meta-alerts. In this work, we address

this limitation by investigating several approaches that all contribute towards reducing the burden on the

analyst and providing timely analysis. We explore minimizing the number of both alerts and data elements

by aggregating at Hamming distances greater than 1. We show how increasing bin sizes can improve

aggregation rates. And we provide a new aggregation algorithm that operates up to an order of magnitude

faster at Hamming distance 1. Lastly, we demonstrate the broad applicability of this approach through

empirical analysis of Windows security alerts, Snort alerts, netflow records, and DNS logs. The result is a

reduction in the cognitive load on analysts by minimizing the overall number of alerts and the number of

data elements that need to be reviewed in order for an analyst to evaluate the set of original alerts.

KEYWORDS

Alert aggregation, Cognitive load, Hamming Distance, Hypergraphs, Security logs

1. INTRODUCTION

Human review of security logs is a difficult and labor-intensive process. This is especially true in

the area of intrusion detection systems (IDSs) which often suffer from extremely high false posi-

tive rates (see, e.g. [1] [2] [3] [4], among others). This problem is exacerbated in signature-based

systems such as Snort
1
 [5], where broadly-written rules may trigger repeatedly on innocuous

packets. This large number of false positive results creates a significant workload for IDS ana-

lysts, who must sort through them in order to locate the relatively few true positives. It is thus

desirable to automate abstraction and correlation of the logs so as to enable analysts to make effi-

cient decisions.

The work of [6] mitigated this problem by providing an algorithm to aggregate Snort intrusion

detection alerts with discretely-valued fields by combining those that are at most Hamming dis-

tance 1 apart. This approach was shown effective in both reducing the number of resulting meta-

alerts that need to be reviewed by analysts and in increasing their interpretability (see [6] for ex-

1 Any mention of commercial products or reference to commercial organizations is for information only; it does not

imply recommendation or endorsement by the U.S. government nor does it imply that the products mentioned are nec-

essarily the best available for the purpose.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

36

ample meta-alerts). Related alerts were merged, reducing human analysis time and enabling more

rapid identification of significant threats. Furthermore, the reduction of alerts to meta-alerts was

lossless in that the original alerts could be reconstructed from the meta-alerts. This was important

because it provided analysts all alert information when making relevancy decisions. The method

achieved an average alert reduction of 83.2 % applying their method to 30 days of Snort alerts

grouped by hour, with an execution complexity of O(n
2
) where n represents the number of alerts.

While the reduction on Snort alerts using a Hamming distance of 1 was significant, the remaining

number of meta-alerts was still considerable (although it should be understood that their data was

taken from a large enterprise-scale production network). For example, a mean 24 hour time slice

of 84023 alerts was reduced to a mean of 14099 meta-alerts by aggregating on hourly batches.

Reviewing such a number of meta-alerts on a daily basis still represents a challenge despite the

improvement.

In this work, we address this limitation by investigating several approaches that all contribute

towards reducing the cognitive load on the analyst, by both reducing the overal number of alerts

and reducing the number of data elements that need to be reviewed in order for an analyst to

evaluate the set of original alerts. We also investigate approaches that providing more timely

analysis. In performing this exploration, we uncover several new aggregation capabilities not

available in the original work.

1) We explore how to decrease the number of meta-alerts alerts down to some user defined

maximum by varying the Hamming distance used for aggregation (the original work operated

only at a Hamming distance of 1). We find that increasing the Hamming distance monotonically

decreases the number of meta-alerts, while at the same time increasing the level of abstraction of

those alerts. Also, we empirically discover that there exists an operating point that presents a min-

imum number of overall data elements, consistently at low Hamming distances (universally be-

tween 1 and 4 in all of our data sets). This is important because the number of data elements re-

flects the amount of work that must be done by the analyst.

2) We explore how increasing bin sizes reduces the number of meta-alerts (something not

tested in [6]). For example, for Hamming distance 1 aggregation using the original algorithm, the

aggregation rate for Snort alerts rises from a mean of 83.2 % for hourly bins to 96.1 % for daily

bins. We can thus reduce the mean daily time slice of 14099 meta-alerts from [6] down to a mean

of 3276 meta-alerts. This is a much more manageable workload for human review by a large en-

terprise.

3) Lastly, we present a new O(nlogn) hypergraph based aggregation algorithm that can run up

to an order of magnitude faster at small Hamming distances, thus facilitating on-demand analysis

of larger time slices. Furthermore, its construction allows for a streaming mode where alerts are

analyzed upon arrival and aggregated meta-alerts dumped on demand, a capability that cannot be

replicated using the intrinsically batch-oriented approach in [6]. The new algorithm provides

slightly better aggregation (a 4.9 % improvement for daily bins of Snort alerts at a Hamming dis-

tance of 1).

The original research also focused solely on a single Snort IDS data set. In this work, we demon-

strate more general applicability of the Hamming distance aggregation approach by applying it to

three new data types: Windows security alerts, Cisco version 5 Netflow, and Domain Name Ser-

vice (DNS) request logs. We also reevaluate the Snort data set from [6] for comparative purposes.

Lastly, we improve upon the original work by providing a Public domain Python 2.7.3 implemen-

tation for our new aggregation algorithm (available at [7]).

In summary, the primary contributions of this paper are:

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

37

─ An analysis of how increasing Hamming distance decreases the number of meta-alerts. Also

we empirically discover that there exist operating points that that yield a minimum number of

overall data elements at consistently low Hamming distances (typically on the order of √�

where m is the number of columns in the data).

─ The discovery that increased bin sizes reduces the number of meta-alerts.

─ Provision of a new O(nlogn) hypergraph based aggregation algorithm that has streaming mode

capabilities, better aggregation, and up to an order of magnitude improvement in runtime at

small Hamming distances.

─ Evidence of the applicability of Hamming distance aggregation to four data sets: Snort, Win-

dows security events, Netflow, and DNS.

─ Provision of public domain Python 2.7.3 code for our new aggregation algorithm.

The impact of these results is as follows. The results that minimize the number of alerts to review

reduce the context switching that an analyst must perform between reading distinct alerts. The

results that minimize the number of data elements to review reduce the overall amount of data

that an analyst must ingest to understand the set of original alerts (and a certain view of their

relationships). The results that increase the speed of analysis (and offer a streaming mode

operation) reduce the latency in which an analyst receives the data to review. The provision of

working code enables immediate testing and use by operational groups.

The development of the work is as follows. In section 2, we discuss related work. In section 3, we

provide a definition and an example of Hamming distance aggregation. In section 4 we present a

new Hamming distance aggregation algorithm and section 5 discusses our expansion to the

previously published algorithm. In section 6 we describe the input data sets and our experiment;

section 7 provides the results. Although covered in [6], section 8 reviews the intuition behind the

Hamming Distance aggregation approach. We also provide our experience with its use and feed-

back from operational analysts. Section 9 summarizes our conclusions.

2. RELATED WORK

The problem of alert aggregation has been addressed from a variety of perspectives. A more gen-

eral overview is presented in [6], however in brief, alert aggregation approaches fall into two

broad categories.

The first category involves expert knowledge used to construct a system for classifying,

correlating, and ranking alerts based on external knowedge of existing attacks [3] [8] [9] [10]

[11] [12], network vulnerabilities [3] [9], or both [10]. Rules may also be aggregated using user-

defined similarity metrics based on expert knowledge [3], and some alerts may be completely

ignored outright if prior knowledge suggests that they are irrelevant [13].

The second category encompasses probabilistic and data mining approaches, which are used to

group and aggregate alerts without requiring the construction and maintenance of external data

stores or schema. IDS alerts are often discrete in nature, however, which often poses a challenge

to such methods [14]. Nevertheless, a variety of approaches [1] [15] [16] have been developed in

this area that have been empirically demonstrated to be effective, even when they rely on

assumptions (such as a Gaussian distribution of continuous features) that while functional in

practice are clearly not accurate in a theoretical sense.

Recent work somewhat related is found in [17]. They identify frequent patterns in alert logs by

use of the Frequent Pattern Outlier Factor (as developed by [18]), classifying variable-length

alerts by identical subsequences of values and ranking them by the frequency of the subsequences

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

38

in the data. The top arbitrary quantile of alerts with the least common patterns are presented as

‘candidate true alerts’ and the rest discarded. While our work also classifies on identical subse-

quences, our goal is aggregation of similar alerts into a reduced set of meta-alerts without discard-

ing any data.

3. OVERVIEW OF HAMMING DISTANCE AGGREGATION

Hamming distance aggregation at an aggregation distance of d may merge a group of alerts into a

meta-alert if the alerts have at most d fields that do not match. An alert may be merged only with

itself to create a meta-alert that covers only that single alert. We define an optimal Hamming dis-

tance aggregation as the smallest possible set of meta-alerts that cover all original alerts at some

maximum Hamming distance d.

As an example, consider the alerts in Table 1. Alerts 4 and 5 may be aggregated at Hamming dis-

tance 1 into meta alert (B,F,*), where * is equal to the set (J,K), because they disagree only on

one column, 3. Alert 1 cannot be aggregated because it has two columns, 2 and 3, whose values

do not match any other alerts. In this way, alerts 2 and 3 also may not be aggregated with any

other alerts because each disagrees with all other alerts on 2 columns.

Table 1. Example set of alerts to be aggregated

Alert

Number

Column

1

Column

2

Column 3

1 A C G

2 A D H

3 A E I

4 B F J

5 B F K

4. HYPERGRAPH-BASED ALGORITHM

This section provides a new hypergraph based Hamming distance aggregation algorithm that op-

erates in O(nlogn) through leveraging a set cover approximation algorithm.

4.1 Leveraging Set Cover

In the set cover problem as described in [19] we are provided “a finite set X and a family F of

subsets of X, such that every element of X belongs to at least one subset in F.” The problem is to

find the minimal subset, S, of F such that S includes all elements of X. Thus, the union of the sub-

sets in S must be equal to X. More formally, given X and F as described above where �� �
�, �	 �
: � � 	, we wish to find a minimal �

:���� � � �. The set cover problem is known

to be NP-complete [20] and is thus not currently tractable in polynomial time.

It can be proven that Hamming distance aggregation can be reduced to an instance of the set cov-

er problem (proof omitted for space). Conceptually, each alert is encoded as an element of X.

Each possible grouping of alerts separated by a Hamming distance of at most d is encoded as an

element of F. Identification of all such possible groups can be done in O(n) time where n is the

number of alerts, as described later in this paper. Through this, any Hamming distance aggrega-

tion problem can be reduced to a set cover problem in polynomial time. It therefore follows that

any algorithm that can solve the set cover problem may be adapted to solve the Hamming dis-

tance problem. There exists a widely cited greedy approximation algorithm for set cover [21], and

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

39

in this paper we propose to use this approach to approximate optimal Hamming distance aggrega-

tion.

The greedy approximation algorithm for set cover is as follows [19]:

Set Cover Approximation (X,F)

1. Remaining=X

2. Soln_set= None

3. While Remaining is not None

a. Select an element, S, of F that maximally covers the elements in Remaining

b. Remove from Remaining the elements in S

c. Add to Soln_set the subset S

4. Return Soln_set

As analyzed in [19] there exists an implementation that has time complexity O(∑ |�|���); with

Hamming distance aggregation the size of S may be equal to n, the number of alerts. Furthermore,

the number of elements in F is always greater than or equal to n since in the worst case each alert

may be merged only with itself to form a meta-alert. Using this analysis, the greedy set cover

approximation algorithm has a time complexity of O(n
2
) when applied to Hamming distance ag-

gregation. A major contribution of our work is to use unique characteristics of Hamming distance

aggregation to reduce this time complexity to O(nlogn).

4.2 Algorithm Description

In this section, we describe a high level approach using hypergraphs to aggregate alerts at varying
Hamming distances. We then prove that the algorithm always extracts a meta-alert representing
the largest available grouping of unaggregated alerts during each iteration, thus implementing the
greedy approximation to the set cover problem. In the next section, we provide an efficient im-
plementation and evaluate the algorithmic complexity.

In order to reliably extract all meta-alerts using a Hamming distance of d, we construct a hyper-
graph over the space of alerts, where each alert represents a node in the hypergraph, and each
edge connects all nodes that are at most Hamming distance d from each other. If our alert set to be
aggregated has n alerts with m, columns, we thus construct a hypergraph with n nodes, each node
having mCd edges connecting it with other nodes in the graph (where mCd is the binomial coef-
ficient). Each hyperedge thus represents a potential meta-alert and is labeled with the value of the
meta-alert. Note that the field(s) that differ between the alerts covered by a hyperedge is denoted
in a meta-alert by the wildcard ‘*’ character. The hyperedge label then represents all alerts cov-
ered by it.

Using the example of the previously discussed Table 1 for illustrative purposes with a Ham-
ming distance of 1, alert 1 would be entered as a node labeled with the tuple (A,C,G), and be cov-
ered by three hyperedges: (*,C,G), (A,*,G), and (A,C,*). Similarly, alert 5 in Table 1 would be
entered as a node labeled (B,F,K) and be covered by hyperedges (*,F,K), (B,*,K), and (B,F,*).
Note that alert 4 in Table 1 with label (B,F,J) would also be covered by hyperedge (B,F,*), indi-
cating that both nodes covered by that hyperedge could be aggregated into a single meta-alert.
Hyperedge (B,F,*) is the only hyperedge covering more than one node. The complete Hamming
distance 1 aggregation hypergraph for the alerts is provided in

Figure 1.

The power of this construction is that the largest meta-alert at some Hamming distance d can be
easily determined by finding the largest hyperedge and examining the covered nodes.

International Journal of Network Security & Its Applications (IJN

Figure 1. Hypergraph for Alert Aggregation Example

We now present our high level algorithm for Hamming distance 1 aggregation

the greedy set cover approximation algorithm:

1. In the initial collection step, we assemble the alerts into a hypergraph.

2. To extract the meta-alert covering the most available alerts, we identify the hyperedge with

the largest incident node count; this edge and all nodes incident upon this edge are removed

from the graph and processed into a meta

date meta-alert. This handling of ties is consistent with published implementations of the

greedy set cover approximation algorithm

3. The statistics of the hypergraph are updated to reflect the removed nodes. In particular, the

incident node count for each hyperedge must be updated to reflect the removal of the nod

associated with the meta-alerts.

4. Proceed from step 2 in the updated hypergraph.

This algorithm is straightforward

the remaining data for each iteration. However, its performance is signi

search for the next hyperedge to convert to a meta

hypergraph after the removal of the largest meta

to our algorithm to address these com

4.3 Implementation Details

Assume that there are n alerts with

tance d. Our implementation of the high level algorithm is given below.

Step 1: Hypergraph Construction

The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every

possible hyperedge label (e.g. for

hyperedge label is used as a key

hdict keys represent the hyperedges and the values

representing the nodes covered by the respective hyperedge. Thus, the total complexity of hype

graph construction is O(n×(mCd)

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September

. Hypergraph for Alert Aggregation Example

We now present our high level algorithm for Hamming distance 1 aggregation that implements

the greedy set cover approximation algorithm:

In the initial collection step, we assemble the alerts into a hypergraph.

alert covering the most available alerts, we identify the hyperedge with

count; this edge and all nodes incident upon this edge are removed

from the graph and processed into a meta-alert. In case of a tie, we arbitrarily choose a cand

. This handling of ties is consistent with published implementations of the

edy set cover approximation algorithm [19].

The statistics of the hypergraph are updated to reflect the removed nodes. In particular, the

incident node count for each hyperedge must be updated to reflect the removal of the nod

alerts.

Proceed from step 2 in the updated hypergraph.

is algorithm is straightforward and will always produce the single largest meta-alert possible in

the remaining data for each iteration. However, its performance is significantly impacted by the

search for the next hyperedge to convert to a meta-alert as well as the process of updating the

hypergraph after the removal of the largest meta-alert. The next section discusses optimizations

to our algorithm to address these computational challenges and presents time complexity results.

Implementation Details

alerts with m data fields per alert being aggregated at a Hamming di

Our implementation of the high level algorithm is given below.

1: Hypergraph Construction

The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every

for d=1, (*,C,G), (A,*,G), and (A,C,*)) in O(n×(mCd

 for inserting the alert into a hash table referred to as ‘hdict’

keys represent the hyperedges and the values are themselves smaller hash tables

the nodes covered by the respective hyperedge. Thus, the total complexity of hype

)).

SA), Vol.6, No.5, September 2014

40

that implements

alert covering the most available alerts, we identify the hyperedge with

count; this edge and all nodes incident upon this edge are removed

alert. In case of a tie, we arbitrarily choose a candi-

. This handling of ties is consistent with published implementations of the

The statistics of the hypergraph are updated to reflect the removed nodes. In particular, the

incident node count for each hyperedge must be updated to reflect the removal of the nodes

alert possible in

ficantly impacted by the

alert as well as the process of updating the

alert. The next section discusses optimizations

putational challenges and presents time complexity results.

being aggregated at a Hamming dis-

The hypergraph is constructed by iterating through each alert (e.g., (A,C,G)) and generating every

d)) time. Each

referred to as ‘hdict’. The

themselves smaller hash tables

the nodes covered by the respective hyperedge. Thus, the total complexity of hyper-

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

41

Step 2: Singleton Removal

This step extracts as meta-alerts all alerts (or groups of identical alerts) that cannot be aggregated

with any other alerts because no hyperedge connects them to another distinct alert. This can be

done in O(n×(mCd)) time.

Step 3: Sorted Hyperedge Tree

Next we create a red-black tree to sort the hyperedges by size. For all keys in the hdict, we look

up the number of alerts covered by each hyperedge in O(n×(mCd)). This creates all key-value

pairs of the form (hyperedge label, number of covered alerts). Each key-value pair is inserted into

the tree sorted by the number of covered alerts in O(n×(mCd)×log(n×(mCd))).

Step 4: Extract Meta-Alerts

We now iteratively identify the largest hyperedge, create an associated meta-alert, and call step 5

to update the data structures to reflect removal of the hyperedge and all covered alerts. This can

be done in O(n×log(n×(mCd))). In each meta-alert we store the hyperedge label and the values

corresponding to the ‘*’ fields (we don’t store each alert separately), unless all alerts in the hyper-

edge are identical in which case we simply store a single copy of the alert along with the number

of times it is repeated.

Step 5: Data Structure Update

For each meta-alert extracted in step 4, this step must update the data structures to make them

ready for identification and removal of the next largest hyperedge. Doing this involves three

parts: 1) removing the chosen hyperedge from the tree, 2) removing the chosen hyperedge from

hdict, and 3) removing the covered alerts from all other hyperedge entries in hdict and then updat-

ing the hyperedge sizes in the tree. An amortized analysis yields O(n×(mCd)×log(n×(mCd))).

All five steps together then produce a time complexity for the entire algorithm of

O(n×(mCd)×log(n×(mCd))). We treat m as a constant since for a particular data set, the number of

fields will be fixed. For d=1 then, we get O(nlogn) which empirically gives us up to an order of

magnitude improvement over the O(n2) Hamming distance 1 aggregation in [6].

Note that, in contrast to the aggregation process described in [6], which evaluates a single column

at a time across all alerts, the present method can operate in an incremental method. At any point

in the collection process, the construction of the hypergraph in step 1 may be briefly suspended

and an arbitrary number of meta-alerts may be extracted, at each stage updating the hypergraph to

account for the removal of the alerts covered by the meta-alert (a single iteration of step 3, fol-

lowed by alternating 4 and 5 for as many meta-alerts as desired). The updated hypergraph may

then immediately begin accepting additional alerts.

To limit the mCd growth from overwhelming the execution time, we have coded in a threshold

value. If mCd exceeds the threshold then we permanently wildcard the field with the greatest en-

tropy and then try to run the algorithm again with (m-1)C(d-1). If this value still exceeds the thre-

shold then we repeat the process iteratively, walking down the mCd curve until we fall below the

threshold. This thresholding mechanism is crucial for enabling fast operation at mid-range Ham-

ming distances.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

42

5. COLUMN-BASED ALGORITHM

The prior approach presented in [6] was designed to work only at a Hamming distance of 1. Like

our algorithm, it iteratively attempts to extract the largest available meta-alert until no alerts are

left. It identifies the largest available meta-alert through iteratively identifying columns having

maximal sets of alerts with the same value in order to identify meta-alerts. More specifically, it

finds the alert column with the maximum number of identical values and creates a subset of the

alert database based on alerts with that value in that column. This procedure is done repeatedly

and the set of alerts to be aggregated into a particular meta-alert narrows with each iteration.

When one final column is left, unique values have been identified for all other columns. The algo-

rithm has now identified a meta-alert with an alert Hamming distance of 1.

For our work, we expand this algorithm to aggregate over variable Hamming distances. We do

this by stopping the column identification and subset operation once m-d columns have been cho-

sen and the values “fixed” for those fields to create the next meta-alert. Unfortunately, this algo-

rithm will not always extract the largest grouping from the set of available alerts as proven in

Theorem 1 below. Thus, it does not implement its greedy set cover approach perfectly and the

size of the successively extracted meta-alerts is may not be monotonically decreasing. In our em-

pirical studies, the size was never monotonically decreasing and thus non-optimal with respect to

following the set cover approximation algorithm.

Theorem 1: The column-based algorithm may not choose the largest available alert grouping.

Proof by counterexample: Assume that the algorithm will always select the largest available alert

grouping at Hamming distance 1 and consider the data shown previously in Table 1. It will first

pick column 1 because it has three “A” values and it will subset alerts 1, 2, and 3 because they

have that value. It will then look at columns 2 and 3 for those alerts and will be unable to identify

any alerts to aggregate because they are all at Hamming distance 2. The resulting meta-alert for

this iteration will contain only a single alert (a random choice of alert 1, 2, or 3) in order to meet

the Hamming distance 1 constraint. However, this is a contradiction to our assumption that the

greedy algorithm always extracts the largest set of alerts first because the actual largest grouping

with a Hamming distance of 1 is a grouping with alerts 4 and 5. Q.E.D

6. EXPERIMENTAL DESIGN

We apply variable Hamming aggregation to four distinct sets of data. To show general applicabil-

ity of the approach, we evaluate DNS request logs, Cisco v5 Netflow data, and Microsoft Win-

dows security logs. For comparative purposes, we evaluate the Snort IDS dataset from [6].

The Windows logs were Event Viewer security logs (.EVTX) monitoring the file system accesses

of 11 workstations over a period of 6 months in 2013. We performed extensive tests on aggregat-

ing other Windows security event types but omit the results due to space limitations (the results

are similar except for variance in the optimal Hamming distance required to minimize the number

of data elements). We chose file system access events for this work as an example Windows alert

type with both a large number of instances in the data set as well as a large number of data fields.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

43

Table 2. Experiment Data Sources

Data source Number of

fields

Number of

records

Snort alerts 11 2300000

DNS request

logs

7 6310856

Cisco Netflow

records*

13 14066423

Windows file

system events

24 78485

*Typical Cisco v5 Netflow records contain 22 fields; 9 of which (2 mask fields, 2 padding fields,

2 ASN-related fields, 2 interface-related fields, and the nexthop field) could not be populated due

to hardware limitations.

Our experiment compares our hypergraph aggregation algorithm against the column-based algo-

rithm in [6] (that, as discussed previously, we modified to enable aggregation across variable

Hamming distances). We focus on varying the Hamming distance and batch sizes in order to see

the effect on the number of meta-alerts and data fields presented to the analysts while recording

execution times.

All experiments were performed on commodity computers using 3GHz quad-core Intel proces-

sors and 8GB of RAM running Python version 2.7.2.

7. EXPERIMENTAL RESULTS

The hypergraph approach of the present work, even when threshold values are used, reliably pro-

duces aggregation results that are as good as or better than the work of [6]. This is in respect to

both the number of meta-alerts created, as well as the total reduction in data elements. We also

find that increasing batch sizes results in a significant reduction in the number of meta-alerts and

a lesser reduction in the number of data elements provided to the analysts (for both algorithms).

Universally across our 4 data sets, the optimal Hamming distance for reduction of data elements

was small, varying from 1 to 4. With respect to execution time, our hypergraph based algorithm

can be orders of magnitude faster at lower Hamming distances. It is these Hamming distances that

should be most useful as the alerts are abstracted the least and the number of data fields is minim-

al. In some low Hamming distance cases, the column based approach was incomputable, making

use of the hypergraph algorithm necessary. Additionally, the preference towards larger batch sizes

further supports use of our O(nlogn) hypergraph approach over the O(n
2
) column based algo-

rithm. We now discuss the empirical results supporting these findings.

7.1 Reduction in Number of Meta Alerts Through Increasing Hamming Distance

As the Hamming distance of aggregation increases, the total number of meta-alerts drops in a

non-increasing fashion, to the trivial minimum of 1 when the Hamming distance is equal to the

number of columns (since in a data set with m columns, the maximum possible Hamming dis-

tance between two items is m, and hence all items may be collected within a single meta-alert).

Results for Snort, DNS, and Flow data are provided in Figure 2, below. Note that in each case,

there is a Hamming distance at which the number of meta-alerts drops dramatically; in all cases

that we examined, this distance corresponds to the optimal Hamming distance with respect to

total number of data elements presented (see the following section).

International Journal of Network Security & Its Applications (IJN

Figure 2. Reduction in number of meta

7.2 Reduction in Number of Data Elements Through

We empirically discovered that, for each data type, there exists a Hamming distance that min

mizes the number of data elements presented to the user. Furthermore, these global optimal

Hamming distances are small (between 1 and 4

though the number of fields varies between 7 and 24. This is important because these Hamming

distances are those for where the meta

rationally useful. Note the correlation in

number of fields.

Table 3. Optimal Hamming Distance for Hypergraph Algorithm Data Element Reduction

Data source

Snort alerts

DNS request

logs

Flow records

EVTX records

Discussed further in later sections, the column based approach of

tage with respect to execution time at these lower Hamming distances

We now look at data element

Figure 3, Figure 4, and Figure 5

results as compared to the original

cases with the exception of flow data, note t

graph-based algorithm displays fewer elements than the column

hypergraph approach is thresholding the total number of permitted hyperedges. In the case of

flow data, the column-based algorithm outperforms the hypergraph approach for several values of

Hamming distance; this is attributable to the thresholding, and the advantage to the column

algorithm vanishes if the threshold is expanded to 500 (not shown). It is also w

for the flow data, the total aggregation time required at Hamming distance 4 (the optimal distance

for the column-based algorithm) for the

hypergraph approach, using a batch size of 10

approach (discussed in more detail below), this further limits its usefulness in this case.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September

. Reduction in number of meta-alerts as Hamming distance increases.

Reduction in Number of Data Elements Through Adjusting Hamming Distance

We empirically discovered that, for each data type, there exists a Hamming distance that min

mizes the number of data elements presented to the user. Furthermore, these global optimal

Hamming distances are small (between 1 and 4) for all data types as shown in Table

though the number of fields varies between 7 and 24. This is important because these Hamming

distances are those for where the meta-alerts are abstracted the least and are most likely t

rationally useful. Note the correlation in Table 3 between the optimal Hamming distance and the

. Optimal Hamming Distance for Hypergraph Algorithm Data Element Reduction

Data source Number of

fields

Optimal

Hamming dis-

tance

Snort alerts 11 2

DNS request 7 1

Flow records 13 3

EVTX records 24 4

Discussed further in later sections, the column based approach of [6] has a significant disadva

tage with respect to execution time at these lower Hamming distances.

data element reduction curves and compare the two algorithms.

 show the proportion of displayed data elements in the aggregated

original Snort alerts, DNS requests, and flow files, respectively

cases with the exception of flow data, note that when the values are distinguishable, the hype

rithm displays fewer elements than the column-based approach, even though the

proach is thresholding the total number of permitted hyperedges. In the case of

based algorithm outperforms the hypergraph approach for several values of

tance; this is attributable to the thresholding, and the advantage to the column

algorithm vanishes if the threshold is expanded to 500 (not shown). It is also worth noting that

for the flow data, the total aggregation time required at Hamming distance 4 (the optimal distance

based algorithm) for the column-based algorithm is 123.6s, versus 60.7

hypergraph approach, using a batch size of 10000. Due to the poor scaling of the column

approach (discussed in more detail below), this further limits its usefulness in this case.

SA), Vol.6, No.5, September 2014

44

Adjusting Hamming Distance

We empirically discovered that, for each data type, there exists a Hamming distance that mini-

mizes the number of data elements presented to the user. Furthermore, these global optimal

Table 3, even

though the number of fields varies between 7 and 24. This is important because these Hamming

alerts are abstracted the least and are most likely to be ope-

between the optimal Hamming distance and the

. Optimal Hamming Distance for Hypergraph Algorithm Data Element Reduction

has a significant disadvan-

show the proportion of displayed data elements in the aggregated

, respectively. In all

hat when the values are distinguishable, the hyper-

based approach, even though the

proach is thresholding the total number of permitted hyperedges. In the case of

based algorithm outperforms the hypergraph approach for several values of

tance; this is attributable to the thresholding, and the advantage to the column-based

orth noting that

for the flow data, the total aggregation time required at Hamming distance 4 (the optimal distance

sus 60.7s for the

000. Due to the poor scaling of the column-based

approach (discussed in more detail below), this further limits its usefulness in this case.

International Journal of Network Security & Its Applications (IJN

Figure 3. Data element reduction for Snort alerts using a batch size of 10000.

thresholded at 250 hyperedges per node.

Figure 4. Data element reduction for DNS requests using a batch size of 10000. Hypergraph aggregation

thresholded at 250 hyperedges per node.

Figure 5. Data element reduction for flow data using a batch size of 10000. Hypergraph aggregation thr

sholded at 250 hyperedges per node.

7.3 Reduction in Number of Meta Alerts Through Increasing

The reduction in number of meta

for aggregation. As additional alerts are added to the set available for aggregation, the likelihood

that two alerts will fall within the minimum required Hamming distance of each other increases,

and so the average number of meta

the inherent redundancy of the data.

Netflow logs, each aggregated under their respective optimal Hamming distances, using a thr

shold of 250; comparisons with the column

running times. Note that at a batch size of 1000 alerts the algorithm is still capable of substantial

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September

Data element reduction for Snort alerts using a batch size of 10000. Hypergraph aggregation

thresholded at 250 hyperedges per node.

. Data element reduction for DNS requests using a batch size of 10000. Hypergraph aggregation

thresholded at 250 hyperedges per node.

. Data element reduction for flow data using a batch size of 10000. Hypergraph aggregation thr

sholded at 250 hyperedges per node.

Reduction in Number of Meta Alerts Through Increasing Batch Sizes

The reduction in number of meta-alerts can also be influenced by the number of alerts available

for aggregation. As additional alerts are added to the set available for aggregation, the likelihood

that two alerts will fall within the minimum required Hamming distance of each other increases,

so the average number of meta-alerts may be expected to approach some limit determined by

the inherent redundancy of the data. Figure 6 displays this effect for the DNS, Snort alert, and

, each aggregated under their respective optimal Hamming distances, using a thr

shold of 250; comparisons with the column-based algorithm are not provided due to prohibitive

. Note that at a batch size of 1000 alerts the algorithm is still capable of substantial

SA), Vol.6, No.5, September 2014

45

Hypergraph aggregation

. Data element reduction for DNS requests using a batch size of 10000. Hypergraph aggregation

. Data element reduction for flow data using a batch size of 10000. Hypergraph aggregation thre-

Batch Sizes

also be influenced by the number of alerts available

for aggregation. As additional alerts are added to the set available for aggregation, the likelihood

that two alerts will fall within the minimum required Hamming distance of each other increases,

alerts may be expected to approach some limit determined by

displays this effect for the DNS, Snort alert, and

, each aggregated under their respective optimal Hamming distances, using a thre-

algorithm are not provided due to prohibitive

. Note that at a batch size of 1000 alerts the algorithm is still capable of substantial

International Journal of Network Security & Its Applications (IJN

reduction of alerts; however as more alerts are added to the collection the number of meta

remaining relative to the original number of alerts decreases sharply for both the Snort alert and

the Netflow data sets, and a slight but measurable amount for the DNS request record data set.

Figure 6. Ratio of meta-alerts to alerts

Thus, following the selection of an optimal Hamming distance, the overall aggregation perfo

mance of the algorithm may be further improved by increasing the total number of

to it. While there is little reason to suspect that the column

improvements with respect to aggregation effectiveness (and limited experimentation

– confirms that at the batch sizes tested the same monoto

complexity of that algorithm generally rapidly reduces the utility of this approach. The improved

time complexity of the hypergraph algorithm allows much greater flexibility in the selection of

the batch size to aggregate, thus enabling further gains in aggregation.

7.4 Reduction in Number of Data Elements Through Increasing Batch Sizes

While selecting the correct hamming distance can allow for optimization of

elements presented to an analyst, the

aggregation can also have a significant impact.

number of data elements for comparatively small batch sizes across three data types, while

8 shows the impact for a larger range of batch sizes for Snort alerts.

In minimizing the number of data elements presented to an analyst, our aggregation system

should use as large a batch size as is feasible given time and memory constraints a

Hamming distance for the data type in question. The

empirically to change with variations in

batch.

Figure 7. Data

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September

reduction of alerts; however as more alerts are added to the collection the number of meta

relative to the original number of alerts decreases sharply for both the Snort alert and

the Netflow data sets, and a slight but measurable amount for the DNS request record data set.

alerts to alerts for DNS, Snort, and Flow data types at optimal Hamming distances.

Thus, following the selection of an optimal Hamming distance, the overall aggregation perfo

mance of the algorithm may be further improved by increasing the total number of alerts

to it. While there is little reason to suspect that the column-based algorithm would not see similar

improvements with respect to aggregation effectiveness (and limited experimentation

confirms that at the batch sizes tested the same monotonic effect appears to hold), the high time

complexity of that algorithm generally rapidly reduces the utility of this approach. The improved

time complexity of the hypergraph algorithm allows much greater flexibility in the selection of

aggregate, thus enabling further gains in aggregation.

Reduction in Number of Data Elements Through Increasing Batch Sizes

While selecting the correct hamming distance can allow for optimization of the number of data

elements presented to an analyst, the total number of alerts that are presented to the algorithm for

aggregation can also have a significant impact. Figure 7 shows the impact of batch size on the

number of data elements for comparatively small batch sizes across three data types, while

shows the impact for a larger range of batch sizes for Snort alerts.

In minimizing the number of data elements presented to an analyst, our aggregation system

use as large a batch size as is feasible given time and memory constraints a

the data type in question. The optimal Hamming distance does not

empirically to change with variations in batch size, and so may be rapidly select

. Data Element Reduction as Batch Size Increases

SA), Vol.6, No.5, September 2014

46

reduction of alerts; however as more alerts are added to the collection the number of meta-alerts

relative to the original number of alerts decreases sharply for both the Snort alert and

the Netflow data sets, and a slight but measurable amount for the DNS request record data set.

for DNS, Snort, and Flow data types at optimal Hamming distances.

Thus, following the selection of an optimal Hamming distance, the overall aggregation perfor-

alerts provided

based algorithm would not see similar

improvements with respect to aggregation effectiveness (and limited experimentation – not shown

nic effect appears to hold), the high time

complexity of that algorithm generally rapidly reduces the utility of this approach. The improved

time complexity of the hypergraph algorithm allows much greater flexibility in the selection of

Reduction in Number of Data Elements Through Increasing Batch Sizes

number of data

number of alerts that are presented to the algorithm for

shows the impact of batch size on the

number of data elements for comparatively small batch sizes across three data types, while Figure

In minimizing the number of data elements presented to an analyst, our aggregation system

use as large a batch size as is feasible given time and memory constraints at the optimal

does not appear

batch size, and so may be rapidly selected via a test

International Journal of Network Security & Its Applications (IJN

Figure 8. Data Element Reduction for Snort alerts (Hamming distance 2) with

graph

7.5 Execution Time Comparison

We compared the execution time of the column
algorithm using all four data sets. We focused on both varying the number of alerts processed as
well as the Hamming distance used. In

Figure 9, we show the execution time of both algorithms

We chose a Hamming distance of 2 because that

number of data fields presented to analysis (

increasingly more time, as was expected given its O(

hypergraph approach.

Figure 9. Aggregation of Snort Alerts at Hamming distance 2

The difference between the algorithms is even more pronounced at Hamming distance 1. Revisi

ing the analysis of [6], at Hamming distance of 1 (not sho

an order of magnitude slower for daily alert bins (containing a mean of 84023 alerts).

In Figure 10 we explore this variance in

the EVTX data. The column-based approach performs extremely well at higher Hamming di

tances but the execution time increases dramatically at low Hamming distances. It fails even to

complete at Hamming distances less than 3

among our data sets. The column

other data sets, but can be over an order of magnitude slower. The hypergraph algorithm performs

very fast at low Hamming distances but slows down in the mid

for some data sets due to the combinatorial term in the com

used. Using thresholding, the hypergraph algorithm

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September

eduction for Snort alerts (Hamming distance 2) with Larger Batch

graph Algorithm Thresholded at 250)

Execution Time Comparison

We compared the execution time of the column-based approach of [6] against our hypergraph
algorithm using all four data sets. We focused on both varying the number of alerts processed as
well as the Hamming distance used. In

, we show the execution time of both algorithms on an increasing number of Snort alerts.

We chose a Hamming distance of 2 because that was empirically discovered to optimize the

number of data fields presented to analysis (discussed earlier). The column-based approach takes

as was expected given its O(n2) complexity, compared to the O

. Aggregation of Snort Alerts at Hamming distance 2

The difference between the algorithms is even more pronounced at Hamming distance 1. Revisi

, at Hamming distance of 1 (not shown) the column-based algorithm is over

an order of magnitude slower for daily alert bins (containing a mean of 84023 alerts).

explore this variance in execution time relative to the Hamming distance

based approach performs extremely well at higher Hamming di

n time increases dramatically at low Hamming distances. It fails even to

at Hamming distances less than 3 due to the EVTX data having 24 columns,

. The column-based approach does complete at all Hamming distances for

other data sets, but can be over an order of magnitude slower. The hypergraph algorithm performs

very fast at low Hamming distances but slows down in the mid-ranges, preventing its completion

due to the combinatorial term in the complexity analysis unless thresholding is

the hypergraph algorithm can execute fast for all data sets and Ha

SA), Vol.6, No.5, September 2014

47

atch Sizes; Hyper-

against our hypergraph
algorithm using all four data sets. We focused on both varying the number of alerts processed as

an increasing number of Snort alerts.

ally discovered to optimize the

based approach takes

compared to the O(nlogn)

The difference between the algorithms is even more pronounced at Hamming distance 1. Revisit-

based algorithm is over

an order of magnitude slower for daily alert bins (containing a mean of 84023 alerts).

Hamming distance using

based approach performs extremely well at higher Hamming dis-

n time increases dramatically at low Hamming distances. It fails even to

columns, the largest

at all Hamming distances for the

other data sets, but can be over an order of magnitude slower. The hypergraph algorithm performs

, preventing its completion

unless thresholding is

execute fast for all data sets and Ham-

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

48

ming distances. Note how thresholding causes spikes in the execution time as the combinatorial

term is decreased to values below the threshold. At the minimum threshold value of 1, the execu-

tion time becomes so small as to overlap the x-axis in Figure 10.

The lower Hamming distances are ideal candidates for operational use. At these distances, the

alerts are abstracted the least and thus directly provide details to aid human analysis. Given the

inability of the column approach to process certain scenarios (especially those most likely to be

operationally useful), we claim that the hypergraph algorithm is necessary for variable Hamming

distance alert aggregation and not just an incremental improvement over our expanded version of

the column based approach.

Figure 10. Mean Execution Time to Aggregate EVTX Alerts

8. INTUITIVE UNDERSTANDING AND OPERATIONAL USE

While explained in [6], we review here the intuition behind the usefulness of the Hamming Dis-

tance aggregation approach in reducing the cognitive burden to the analysts. We also discuss our

experience with the approach and qualitative results from operational use.

In enterprises with well-funded security teams, there may exist a requirement to review every

alert produced from a certain set of sensors. The example set of operational alerts from [6] meas-

ured 2.3 million Snort alerts a month. For each alert, an analyst would have to review the corres-

ponding set of values in the data fields. To evaluate the next alert, the analyst would have to re-

peat this procedure. The alerts are thus evaluated independently and there is a mental context

switch between alerts. Related alerts are often scattered throughout the data set, requiring explicit

searching by the analyst to find them.

Hamming distance aggregation groups together related alerts into meta-alerts (it doesn’t delete

any alerts or data). A grouping of alerts share many data fields in common. An analyst only has to

read and absorb each common data field once for the entire group. In analyzing each individual

alert, only the unique field values need to be perused. In some cases, the analyst can discount an

entire group based on the common values and avoid even read the unique values. This can hap-

pen, for example, in a horizontal attack scenario where the unique values are the individual ad-

dresses attacked. Based on the common values, the analysts can evaluate the group of alerts.

Without Hamming Distance aggregation, such related alerts would be scattered and hidden

among many other alerts.

Analysts often find that Hamming Distance aggregation creates large groupings out of the many

‘trash’ alerts that can be discarded after an evaluation of the common fields. Related attacks may

end up in small groups. Unusual attacks tend not to be grouped and stand out to analysts because

of the small group size. This said, Hamming Distance aggregation does not guarantee to put

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

49

‘trash’ in large groups and interesting alerts in small groups. A more significant benefit is in

bringing together duplicate but scattered data fields values so that each value can be read only

once by the analyst (as opposed to being re-read every time an instance of the duplicated value is

encountered). Such benefits enhance the ability of large security teams to review, for example, the

2.3 million alerts per month cited in [6].

To validate our results empirically (though qualitatively), our Hamming Distance aggregation

code was provided to operational analysts who used it on actual security logs taken from a large

enterprise network. Their feedback supports the usefulness of the approach through informal

evaluation. Qualitative feedback indicates that Hamming distance based alert reduction at low

Hamming distances both reduces analysis time and enhances interpretation of the alerts. Quantifi-

cation of these observations require a formal human study, were outside the scope of our experi-

ments, and so must be addressed in future work.

9. CONCLUSIONS

Variable Hamming Distance alert aggregation can reduce the cognitive load on the analysts with

respect to minimizing the number of alerts and data elements. Our aggregation algorithms enable

efficient human review of large sets of original alerts without removing or abstracting away any

data. While the algorithm in [6] successfully reduced the number of data elements, it only consi-

dered a Hamming distance of 1, limiting its ability to effectively aggregate some data without

manual adjustments. In addition, its limited scaling with respect to the number of data points as

well as the dimensionality of that data restrict its applicability to large data sets, which we dem-

onstrate further reduces its ability to effectively aggregate them. We present an algorithm with

improved worst-case time complexity capable of handling arbitrary Hamming distance aggrega-

tion, as well as an approximate implementation that can significantly reduce the constant terms in

the time and memory complexity to no greater than a specified maximum value. We demonstrate

that even the approximate version of the algorithm has performance with respect to aggregation at

least equal to that of the original algorithm in [6] while improving time requirements for optimal

hamming distances, particularly when using large batch sizes. This improvement in time com-

plexity allows for aggregation of larger batches of data, thus further improving the effectiveness

of aggregation in practice. Our algorithm has further benefits in its ability to handle on-line or

streaming data, which we propose to examine further in future work. Future work will also ex-

amine the relationship between processing time, assessment accuracy, and perceived effort on the

part of analysts under different levels of alert aggregation and data element reduction.

10. ACKNOWLEDGMENTS

This research was sponsored by the U.S. National Institute of Standards and Technology and the

Army Research Labs, and was partially accomplished under Army Contract Number W911QX-

07-F-0023. The views and conclusions contained in this document are those of the authors, and

should not be interpreted as representing the official policies, either expressed or implied, of the

Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to re-

produce and distribute reprints for Government purposes, notwithstanding any copyright notation

hereon.

11. REFERENCES

[1] H. Farhadi, M. AmirHaeri and a. M. Khansari, "Alert Correlation and Prediction Using Data Mining

andHMM," The ISC International Journal of Information Security, pp. 1-25, 2011.

[2] H. Debar and A. Wespi, "Aggregation and Correlation of Intrusion-Detection Alerts," in Recent Ad-

vances in Intrusion Detection, Springer, 2001, pp. 85--103.

[3] F. Cuppens, "Managing alerts in a multi-intrusion detection environment," in Proceedings of the 17th

Annual Computer Security Applications Conference, 2001.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.5, September 2014

50

[4] J. J. Treinen and R. Thurimella, "A framework for the application of association rule mining in large

intrusion detection," in Recent Advances in Intrusion Detection, Berlin Heidelber, Springer-Verlag,

2006, pp. 1-18.

[5] M. Roesch, "Snort -- lightweight intrusion detection for networks," Proceedings of the 13th USENIX

conference on System administration, pp. 229--238, 1999.

[6] R. E. Harang and P. Guarino, "Clustering of Snort Alerts to Identify Patterns and Reduce Analyst

Workload," MILCOM proceedings, 2012.

[7] P. Mell, "Hyperagg: A Python Program for Efficient Alert Aggregation," 2013. [Online]. Available:

http://csrc.nist.gov/researchcode/hyperagg-mell-20131227.zip

[8] J. Zhou, M. Heckman and B. C. A. B. M. Reynolds, "Modeling network intrusion detection alerts for

correlation," ACM Transactions on Information and System Security, vol. 10, no. 1, 2007.

[9] A. Siraj and R. B. Vaughn, "Alert Correlation with Abstract Incident Modeling in a Multi-Sensor

Environment," International Journal of Computer Science and Network Security, pp. 8-19, 2007.

[10] A. Siraj and R. Vaughn, "A cognitive model for alert correlation in a distributed environment," Intel-

ligence and Security Informatics, pp. 1017--1028, 2005.

[11] B. Morin, L. Me, H. Debar and M. Ducasse, "M2D2: A formal data model for IDS alert correlation,"

Proceedings of the 5th international conference on Recent advances in intrusion detection, pp. 115--

137, 2002.

[12] P. Ning, D. Xu, C. G. Healey and R. S. Amant, "Building Attack Scenarios through Integration of

Complementary Alert," Proceedings of the 11th Annual Network and Distributed System Security

Symposium, 2004.

[13] T. Chyssler, S. Burschka, M. Semling, T. Lingvall and K. Burbeck, "Alarm Reduction and Correla-

tion in Intrusion Detection Systems," in DIMVA, Dortmund, Germany, 2004.

[14] B. Morel, "Anomaly Based Intrusion Detection and Artificial Intelligence," in Intrusion Detection

Systems.

[15] A. Hofmann and B. Sick, "Online Intrusion Alert Aggregation with Generative Data Stream Model-

ing," IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, pp. 282-294,

2011.

[16] L. Wang, A. Liu and S. Jajodia, "An Efficient and Unified Approach to Correlating,Hypothesizing,

and Predicting Intrusion Alerts," Computer Security--ESORICS 2005, pp. 247-266, 2005.

[17] H. Gabra, A. Bahaa-Eldin and H. Mohamed, "Data Mining Based Technique for IDS Alerts Classifi-

cation," arXiv preprint arXiv:1211.1158, 2012.

[18] Z. a. X. X. a. H. Z. a. D. S. He, "Fp-outlier: frequent pattern based outlier detection," Computer

Science and Information Systems/ComSIS, vol. 2, no. 1, pp. 103--118, 2005.

[19] T. Cormen, C. Leiserson and R. Rivest, in Introduction to Algorithms, The MIT Press, McGraw-Hill

Book Company, 1994.

[20] V. Chvatal, "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Re-

search, vol. 4, no. 3, pp. 233-235, 1979.

[21] P. Slavik, "A tight analysis of the greedy algorithm for set cover," in STOC '96 Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, 1996.

