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ABSTRACT 

 
Malware writers have employed various obfuscation and polymorphism techniques to thwart static analysis 

approaches and bypassing antivirus tools. Dynamic analysis techniques, however, have essentially 

overcome these deceits by observing the actual behaviour of the code execution. In this regard, various 

methods, techniques and tools have been proposed. However, because of the diverse concepts and 

strategies used in the implementation of these methods and tools, security researchers and malware 

analysts find it difficult to select the required optimum tool to investigate the behaviour of a malware and to 

contain the associated risk for their study. Focusing on two dynamic analysis techniques: Function Call 

monitoring and Information Flow Tracking, this paper presents a comparison framework for dynamic 

malware analysis tools. The framework will assist the researchers and analysts to recognize the tool’s 

implementation strategy, analysis approach, system-wide analysis support and its overall handling of 

binaries, helping them to select a suitable and effective one for their study and analysis.  
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1. INTRODUCTION 

 
The internet has evolved exponentially since it was first launched in 1960. It has grown 

increasingly from a four node communication model to a highly interconnected and sophisticated 

network providing more and more services inheriting boundless benefits. The marketplace of 

products and services are broadening on a global level, new ways of social interactions are 

established and online banking has given new dimensions to banking operations. However, these 

benefits have also motivated the people with malicious intents who are looking for any 

opportunities to fulfill their objectives. Malware is one of the key mediums to furnish these 

malicious intents. 

 

Legitimate users are protected from such malicious codes by the security vendors who provide 

them a software, antivirus, which identify and analyze these codes and alert the user accordingly. 

Typically, antivirus is equipped with a signature database which is used in the matching process 

to identify potential known or common threats. Malware analyst obtains a piece of suspected code 

and analyzes it to find whether it is harmful or not. When a threat in a code is confirmed, the 

analyst looks for a particular pattern of the threat and develops a signature for that code (malware) 

and is added to the signature database to confront a particular malware in the future. This manual 

process though seems trivial and does the job but is subjected to time consumption and errors as 

there exist a number of variant of the same code. Statistics shows that anti-malware vendors are 

experiencing thousands of malicious codes each day. McAfee, for instance, received more than 

20,000 malware samples of mobile alone in 2012 [1]. According to NQ Mobile, mobile malwares 
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alone has grown up to 163% and has increased to more than 65000 in 2012 [2]. Hence there is a 

need to automate the process to support quick, effective and timely analysis of such samples.  

 

Typically, two methods are used to perform malware analysis; Static and Dynamic analysis. The 

distinguishing ground between the two techniques is that the dynamic analysis observes a 

malicious behavior while a sample code is executed whereas; the static approach does not execute 

the code. Though, they differ in the techniques used, a number of methods and tools were 

proposed to serve the same objectives of malware analysis. In this paper, two most common 

techniques used in dynamic malware analysis: Function call monitoring and Information Flow 

Tracking (IFT) will be conversed. Understanding these two techniques gives a general and 

holistic picture of a malware executable. Functional Call Monitoring aims to investigate the 

functional behavior and IFT provides and understanding of what data a malicious binary is 

interested in during execution. Thus, provides the analyst a fair idea of: for what reasons does a 

malware misbehave. However, analyzing a malware has turned into a crucial as well as an 

essential skill for security professionals and forensics investigators. Malware analysis not only 

enables an analyst to realize the malevolent code objectives but also gives an understanding of the 

evolving trend of a malware thus providing an analyst a tool to enrich the detection techniques. 

Due to the diversity of concept and strategies used in the implementation of these methods and 

tools, security researchers and analyst finds it difficult to select an appropriate tool for their 

investigations. Therefore, a framework is presented that aims to provide a platform to identify and 

understand the techniques that various tools offer to an analyst and the strategies they implement 

in accomplishing dynamic malware analysis thus helping them to select an optimum method or 

tool for their investigations. 

 

The rest of the article is organized as follow: In section 2, an understanding of malware analysis 

will be highlighted, and preliminaries of Function Call monitoring and Information Flow 

Tracking will be conversed. In section 3, the proposed framework is presented. A summary of 

selected tools to be analysed and compared will be briefly described in section 4. Section 5, will 

provide a comparative analysis of the discussed tools and finally, the paper will be concluded in 

section 6. 

 

2. MALWARE ANALYSIS 

 
Malware is a piece of software or program that deliberately fulfill the malicious attempts of an 

attacker. Malware comes in many forms with different objectives. The common terms used to 

classify different types of malwares are Trojan, worm and virus, etc. [3]. Traditionally, they were 

developed either for fun factors to show one's capabilities or for highlighting weaknesses within a 

system. However, today, these motivations have gone to the highest level of treachery. Now we 

can see a spectrum of motivation ranging from personal to national level interest and a whole new 

underground economy is based on malwares these days [4]. Stuxnet [5] is one of the latest 

pictures of such motivations. Malwares are propagated using numerous infection vectors such as 

exploiting vulnerability on a client system, through an open or vulnerable network service, using 

removable devices [5, 6] or through social engineering. To combat against malwares, systems are 

now equipped with antivirus programs. Most of the antivirus programs consist of a scanner and a 

signature database. The scanner matches file on the user system and matches them against the 

available signatures. An alert is generated and the user is informed when a match is found. 

 

Typically, two standard approaches are used to analyze the behavior of a malicious program. 

Dynamic analysis is a set of methods that are used to understand the behavior of a program during 

its execution while static analysis is used to investigate a program without executing it. The 

following subsections will elaborate static analysis and the shortcomings associated with it. 
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2.1. Static Analysis 
 
Analyzing a program to observe its behavior by investigating it without execution is commonly 

known as static analysis. It can be performed in numerous ways depending upon the availability 

of the code and its representation. Static analysis can assist in evaluating the memory errors and 

can improve the correctness of a program execution if it source code is available [7, 8]. It can also 

be used to inspect a binary executable with different tools [9]. Static analysis can be prompted 

before or after dynamic analysis or can be done as a standalone procedure. Sometimes it is 

performed to see if the analysts have missed anything suspicious after the dynamic analysis. And 

is performed pre-dynamic analysis to analyze and understand the behavior prior to the code 

execution in a live environment. 

 

2.1.1. Shortcomings of Static Analysis 

 

Because source code of most of the programs is not readily available makes the static analysis 

approach harder to combat the malicious programs thus reduces its application. Analyzing 

binaries with static approaches have inherited complications and challenges. Some of the 

malwares with strong evasion and obfuscation techniques such as the presence of Opaque 

Constants make the disassembling of a binary executable ambiguous due to which the resulting 

code cannot be analyzed precisely [10]. Disassembling remains the essential part of the static 

analysis of binaries which can be easily made ambiguous by simple obfuscation measures. Such 

obfuscation techniques obscure the program flow, making the variables inaccessible and disable 

the tracking of values stored in a register. These limitations of the static approach motivate the 

development of analysis techniques that can overcome the mentioned code evasions and 

transformations and to analyze a malicious program accurately and reliably. 

 

2.2. Dynamic Malware Analysis 

 
Dynamic analysis is the process of executing malware in a monitored environment to observe its 

behaviors [11]. While a monitored program executes, it provide a detailed information readily 

such as URL accessed, files created and accessed, information transferred, registry keys creation 

and so forth. In this section, a detailed discussion will be made on two most common techniques 

used in dynamic analysis: Information Flow Tracking and Function Call Monitoring. 

Furthermore, a description of various approaches and concepts used to accomplish these 

techniques will also be elaborated. The objective of the underlying discussion is to understand 

two vital aspects of analyzing a malicious program i.e. their functional behavior and the data or 

information they are interested in while they execute. 

 

2.2.1. Information Flow tracking 

 
Information Flow Tracking (IFT) approaches are used to monitor programs from the perspective 

of how the program processes the data. During the analysis, suspected or interested data is tainted 

or labeled before it is processed and its propagation is then observed when the data is processed. 

Because of the tainting data, information flow tracking is also termed as Taint Analysis [12]. In 

[13], the author illustrates information flow tracking process with a simple example reviewed 

below in table 1. Considered a stack location, z, is an unsafe location. A received data, x, from the 

network is considered suspicious and is tainted. During processing, x is copied to another 

location, y. Now during program execution if the program jumps to the already tagged location z, 

an alarm will be raised indicating a malicious activity. 
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Table1. Simple Information Flow Tracking 

 

Program Execution Information Flow Tracking 

….. Tag(z) = 1 Suspicious location is tagged unsafe 

Received (&x); Tag(x) = 1 Unsafe data tagged 

y = x; Tag(y) = Tag(x) 

….. ….. 

Jmp z; Raise Alarm, as z is already tagged as unsafe & suspicious 

 

Some of the key concepts used in the process of IFT analysis are described below: 

 

• Tainted Sources and Destinations: Taint sources are the components of an Information 

Flow Tracking system that labels interested or suspicious data in the system. They taint the 

data and give them as an input to the system. Tainted destinations, on the other hand, are 

the elements which respond to a tainted data introduced by the taint sources in a tailored 

mechanism. Responses can either be triggering another source or raising an alert. 

• Direct Tainted Data: As the name implies, direct tainted data refers to labelling an operand 

directly. The common rule of data tainting is that when a tainted source value is moved or 

copied to another operand, the destination operand is also tainted [14]. However, an IFT 

system may contain more than one direct tainted operands involved in a single (or multiple) 

instruction(s) with distinct labels as depicted in table 2. A guideline should be maintained 

that direct how these tainted operand should be handled. For example, the most suspicious 

or interested operand can be monitored over the other or they can be analyzed in a 

combined manner under a common label. 

 
Table 2. Direct Data Tainting 

 

Program Execution Information Flow Tracking 

y = x; Tag(y) = Tag(x)  Direct tainted data with distinct tags 

y = y + x; 
Tag(y) = Tag(x) + Tag(x)  Direct tainted data with distinct 

tags in an arithmetic operation 

 

• Tainting Addresses: Pointer or address tainting is used when the information flow 

tracking system is used to observe non-control data exploits or analyzing sensitive 

information leakage and is done by generating an address using a tainted data [15]. When 

an address A is tainted, it is detected as a malicious activity if A is de-referenced during 

the program execution. Consider the example in table 3 below: 

 
Table 3. Tainting Addresses 

 

Program Execution Information Flow Tracking 

x = 0; Tag(y) = Tag(x)  Direct tainted data with distinct tags 

A = &x;  Tainted Address A generated using tainted value X 

A = 1; Tainted Address A is de-referenced – Generate Alarm 

 

• Control Dependencies: Besides data and address tainting, information flow tracking can 

also be performed using control flow tainting. For instance, an instruction X is control 

dependent on instruction B, if B controls the execution of A [15]. An illustration of 

control-flow tainting is provided in table 4. It implies that an address or data can only be 

tracked if another tainted operand on which its execution is dependent is also processed 

by the system.  
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Table 4. Control Flow Tracking 

 

Program Execution Information Flow Tracking 

If (A == 0) { B == 1; } T ag(B) � T ag(A) = 0 

 

• Taint Policy: Taint policy is a set of rules that direct how a taint analysis should be 

carried out within the information flow tracking system and covers three aspects of taint 

analysis; taint Introduction, Propagation and Checking [15]. Taint introduction rules 

direct how taint should be introduced to the system, propagation specifies how taints 

statuses are to be updated for data derived from tainted or untainted operands and 

checking is performed to validate the taint status and the corresponding action to be 

taken. 

• Over and Under-tainting: These are the two types of errors that can be experienced 

during information flow tracking analysis [15]. Overtainiting occurs when the system 

marks a data as tainted when it is not derived from a tainted source. Undertainting occurs 

when the analysis process misses a value to be tainted in the information flow tainting. 

 

2.3. Function Call Monitoring 

 
A function is a subroutine or a code block in a program that execute specific operations. They are 

used whenever a code or task is repeated. This property makes functions reusable and easy to 

maintain if changes are required for a particular procedure. Functions are designed in an abstract 

manner with more semantic oriented approach rather than focusing on the implementation details 

which make it adaptable for many platforms. From the analysis perspective, such abstraction 

provides an understanding of the overall behavior of a program. A function call is a simple 

command which invokes a function by calling its name. Functions are usually monitored by 

intercepting the calls made to it.  

 

The process of hooking is used to capture the function calls. The monitored program is operated 

in such a way that whenever a call to a function is made, the hook function is also invoked. Hook 

is a function itself which implements the analysis procedure and performs tasks like logging 

target program execution, observes intermediary function calls and analyzing various inputs and 

outputs. 

 

The get an understanding of dynamic analysis in the context of functions and function calls, the 

under mention terminologies are explained to recognize how functions and function calls are 

triggered, the tasks they perform and the level they execute on. 

 

• Application Programming Interface: API is a set of programming specifications that 

perform various functionalities. Operating Systems provide various API libraries of 

object classes, functions, data structures, and variables that are grouped together to 

accomplish common functions. They are offered at different layers of operating system. 

Windows Cryptography API [16], for instance, focuses on the provision of constants, 

command-line tools and functions, etc. required by the cryptography and certificate 

services used in a Window operating system. 

• System Calls: Operating Systems provides two modes of program execution: User and 

Kernel mode. User programs such as word processing, imaging applications and 

browsing, etc. are executed in the user mode while the operating system runs its own 

programs in kernel mode. User mode processes don’t have a direct access to the system 

level which can only be accessed by kernel mode process [17]. However, in order to 

perform various tasks such as creating a file on disk, a user mode process have to call a 
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system level process. In operating systems, this is facilitated through special APIs called 

System Calls. The user mode switches to the kernel mode when a system call is triggered 

and the request can be executed then in a privileged mode at system level. Although there 

are some kernel level malwares which gain privileges to extract sensitive information 

such as Rootkits [18] however, most of the malwares infects user mode processes and 

make their way to the privileged kernel mode. Another way of invoking system calls in 

Windows operating systems are the Windows Native APIs. However, they differ from the 

usual managed APIs (discussed earlier) which remain the same in every operating while 

the native APIs varies from one service pack to another [19]. Some user mode processes 

use native APIs as a communication medium between higher level APIs and the system 

calls. Generally, a legitimate user mode application connects to the kernel level (system 

calls) through Windows API however; a malware may bypass the managed API layer 

triggering the native APIs directly to execute malicious code at the kernel level. As a 

result, the dynamic analysis tools which use API hooking to observe malicious behavior 

skip these malwares unnoticed. 

• Hooking: API hooking enables the analyst to track specific behavioral elements of the 

program execution such as intermediary calls and parameters used in a function. Hooking 

to native interfaces can provide a truer and detail behavioral analysis of a malicious 

function and provide an insight to reveal suspicious activities bypassing the managed 

APIs. From the context of implementation, hooking can be performed in a variety of 

ways to circumvent malicious code from its execution. The simple way of hooking onto a 

function is to insert the hook function appropriately into the code, provided that the 

source code is readily available. [20] provides a set of function in GNU Compiler 

Collection (GCC) to support function hooking using flags during code compilation. 

Binary analysis mechanisms, for instance, [18], can be used to detect and analyze 

functional behavior, if binary executable are in hand. 

Windows operating systems support function hooking using the Detours Library [21]. It 

implements function hooking whenever a monitored function is called by diverting the 

control flow to a hook. When the hook function is initialized for analysis, it then calls in 

monitored function itself. Another way to achieve function hooking is debugging. It 

allows the analyst to insert breakpoints into the code at defined functions to observe its 

behavior. A number of techniques to debug Windows programs can be found at [22]. 

Breakpoints give a full control at the debugger level to access various process 

components for analysis. 

• The Trace: The resulting product of function hooking is termed as a function trace. It is 

more like an analysis report containing rich information such as the parameters accessed 

and processed and the extended functions called by the monitored function. However, a 

raw trace file may be very complicated to understand and analyze. Different tools and 

methods are available which sort the trace information in a required semantic 

representation. Malicious and legitimate behavior of a function can be reviewed by using 

a graph where the differences between the graphs can show the presence of malicious 

activity [23]. 

 

3. PROPOSED FRAMEWORK 

 
This section details the key concepts and strategies based on which the proposed framework is 

developed. They are necessary to understand or analyse dynamic malware analysis tools. 

 

3.1. Analysis Level and Environment 

 
Analysis system can be implemented at different level of an operating system. Its design 

assessment depends upon the type of malwares under investigation and the level of information 
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extraction. Kernel mode analysis can extract rich information such as the systems calls and the 

intermediary Native APIs called. As a privileged mode operation, kernel mode analysis can hide 

its execution from the user level malwares [18]. On the other hand, user mode analysis can 

provide a detail description of the managed API calls and the invoked functions. However, it 

cannot retrieve the information on the invoked native APIs and corresponding system calls. 

Analyzing malwares in native environment can lead to infections therefore analysis is done in a 

protected environment to analyze the monitored programs thoroughly without any risk of 

infection. Analysis can be performed in an emulated environment which enables an analyst to 

execute a binary program without being infected. The process is usually carried in a Sandbox 

which allows a program to be executed in an environment where all systems components such as 

I/O devices, CPU, memory and network services are emulated [24]. Similar kind of approach is 

the Virtual Machine Monitoring (VMM) where analysis is carried out in a virtual, isolated 

machine that runs on a real (host) system. 

 

3.2. Monitored Process 

 
A vital property of an analysis tool is its capacity to monitor to multiple processes at the same 

time. Most of the analysis techniques observe a single process however; malwares usually tend to 

be dependent on other actions (processes) or conditions to be triggered such as logic bombs [3]. 

Monitoring multiple processes enables an analyst to perform an in-depth investigation of 

activities and execution paths executed by a malware. Thus, in order to evaluate an analysis tool 

we can breakdown the analysis to single, spawned (where a monitored process activates a child 

process) and system-wide process monitoring. 

 

3.3. Analysis Method 

 
Analysis techniques refer to the investigation methods which are used or available in a particular 

tool. The two important analysis techniques focused this paper are the function call monitoring 

and IFT. However, the implementation or analysis level of a tool restricts an analyst to investigate 

a malware by using only few analysis methods. For instance, if an analysis tool is implemented in 

user mode, an analyst cannot observe or monitor the system calls or the intermediary native APIs. 

Thus as a thumb rule, tools incorporating more analysis methods and options provides a better 

analysis environment and produce positive as well as detailed results. 

 

3.4. Unpacking the Binaries 

 
Packing is a process in which a binary executable is packed in a transformed version of a 

program, which has a different syntax but have the same semantics. This technique is now used 

by most of the malware writers to hide the malware semantics from an analysis tool using 

different obfuscation and encryption measures. An unpacking module is appended with the 

packed malware, which is activated in the memory of the victim’s system thus leaving no trace on 

the secondary memory. Though, analysis can be performed after the malware is unpacked but it is 

more advantageous for the analysts to perform analysis while it is packed as it enables them to 

understand the unpacking techniques used. Various techniques such as Reconstruction [25], Write 

xor Execute (W⊕X) Policy [26] or detecting packer with packer’ signature database is used to 

handle packed binaries. 

 

4. TOOLS AND TECHNIQUES 
 

This section presents a summary of eight most cited tools and techniques that incorporate 

Function Call monitoring and IFT to approach dynamic malware analysis. Furthermore, a brief 
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overview will be provided on how individual tools address the features and strategies discussed in 

section 3.  

 

Panorama [27] is a comprehensive malware analysis tool which implements data and address 

tainting techniques of IFT. The given system provides a holistic system-wide investigation in an 

emulated environment. An informationtrace in the form of a taint graph is presented during the 

analysis of a monitored program and contains information like network packets payload, function 

parameters and data accessed during the execution. While a program is emulated, the analysis is 

performed at the kernel level to intercept the system calls and APIs are invoked. The system 

designers, however, didn’t address the notion of unpacking the binaries in this tool. 

CWSandbox [28] is a Function Call monitoring tool that supports both user and kernel mode 

behavior analysis to observe calls made to the APIs and systems calls. A hook function, that 

implements a monitoring function, is invoked each time when an API is called. A control process 

is defined which monitors and report the analysis whenever a hook function is called. This 

enables the analyst to monitor and analyze the child processes that can be launched by a malware. 

To increase the performance of the analysis process, a custom DLL is compiled before the 

analysis process in order to have a quick access to the required hook functions. API and systems 

calls are written into a trace file that provides a top-bottom view of functions calls made during 

the execution. 

 

Ether [29] uses hardware virtualization techniques to monitor functional behavior of a program 

on individual instruction level. A trap flag is setup when a monitored program is launched. This 

enables the analyst to debug the program’s functional behavior as the trap flag is used as a 

breakpoint during execution. The presented technique can only retrieve system call information 

which is implemented using the SYSENTER instruction. The implemented flagging phenomenon 

also enables tracking and recording of program instructions resulting in reporting of rich 

information to the analyst detailing individual instruction execution. 

 

TQana [30], is an Internet Explorer browser plug-in that analyze the dynamic behavior of a 

Spyware. TQana can observe the functional behavior as well as the information trace of spyware 

execution. The analysis performed is emulated at the kernel level where the monitoring program 

has access to all the calls made. Tainting or IFT is implemented using the Navigate event of the 

web browser which introduce taints to the system whenever a URL is entered in the address bar, 

or a link is clicked on a web page. Furthermore, contents accessed by a web browser and 

bookmarks are also tainted. API and System call monitoring is implemented using the Component 

Object Model subsystem (COM). 

 

For future attacks, malwares like Rootkits and Spywares hook themselves to system APIs and is 

activated on desired events. This hooking is done in a stealthy mode to avoid detection. 

Hookfinder [31] is a tool that is used to identify and detect these bogus hooks, presenting the 

findings in a detailed report. Hookfinder is implemented in emulated environment where analysis 

is carried out with kernel mode privileges. Hook detection is done by monitoring the control flow 

of the system processing. The tool observes the data and address taints and whenever the control 

flow (instruction pointer) is diverted to an unexpected API or system call (or a tainted value in 

this case), it detects a hook and alerts the analyst. The analysis is done on a single-process level. 

The analysis report presented reflects the specific API or function to which a hook was attached 

and a trace of how the instruction pointer was manipulated. 

 

Norman Sandbox [32] is a functional call monitoring system which is implemented in a simulated 

environment where analysis is performed in the user space. It is designed to analyze worms and 

viruses which use network shares and email as infection vectors. The authors argued that it can be 

used to analyse packed malware binaries as the infection is already contained in a simulated 

environment. However, they didn’t provide any unpacking technique instead suggested that in 
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order to increase analysis performance, packers can be detected with known databases containing 

packer signatures. Moreover, it is advised to simulate all network services as some malware 

intends to use various network ports and services, for instance, SMB 137/138/445 in case of 

network sharing. If a read or write request to certain service is returned null, the malware might 

terminate its existence resulting the analysis to fail entirely.  

 

Justin [33] is a scheme to handle packed binaries. The theme of this model is that a malware can 

be detected immediately after the binary is unpacked by its unpacking routine so that it is readily 

available to be detected by any antimalware software. The scheme can be used as a plugin on the 

top of an AV which doesn’t provide the analysis and detection of un-packer. The external anti-

malware software is activated once the Write xor Execute condition is detected as true in the 

memory. The scheme is based on two assumptions:  

 

i. Irrespective of the packing techniques used by a malware, the original binary will execute 

from the same memory address after it is unpacked.  

ii. After the unpacking, full control is given to the original packed binary. 

 

Logically, these two assumptions remain valid for most of the malwares. However, they can be 

seen as very strict rules and can be bypassed by malwares which evade detection techniques using 

multiple layers of packing. 

 

PolyUnpack [34] on the other hand is more focused on the un-packer execution. It observes the 

dynamic behavior of the un-packer execution using both static and dynamic analysis. The packed 

binary is disassembled and is analysed in a static approach while the packed binary is executed 

and is observed dynamically at each instruction level. Both the operations are done at the memory 

level. The packer code is identified by comparing the instruction trace in both the dissembled and 

the executed binaries. If, in either of the analysis the trace is not matched, it indicates the packed 

code is about to be unpacked.  

 

5. COMPARATIVE ANALYSIS 

 
This section presents an analysis of the summarized tools as per the proposed framework detailed 

in section 3. The objective of this analysis is to provide the reader a clear idea of how the 

mentioned tools and techniques incorporate implementation strategies and the support they 

provide for function call monitoring and IFT analysis. A comparative analysis is shown in the 

table 5. 

 

It can be seen that most of the tools, Panorama, CWSandbox, TQana, HookFinder, Justin, have 

focused the kernel level implementation to get a detail understanding of the malware. Malware 

uses different APIs to call common system calls. They are more interested in system calls to 

achieve privilege access. APIs provide a medium to connect to them which implies that analysis 

concentration should be more focused on intercepting and analyzing system calls. This trend can 

be seen in the studied tools where all of them provide mechanisms to analyze the system calls. 

IFT is only offered in HookFinder, TQana and Panorama. However, the objective of performing 

information tainting is different. HookFinder implements IFT to detect the stealthy hooks within a 

system whereas, TQana and Panorama provide tainting techniques to monitor and analyze 

sensitive information leakage. 
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Table 5. Comparative Analysis 

 

Strategies Panorama 
CW 

Sandbox 
Ether TQana 

Hook 

finder 
Norman Justin 

Poly 

Unpack 

Mode 

User - �     - - - �  � �  

Kernel �  �  � �  �  - � - 

Environment 

Emulated �  - - �  �  - - - 

Virtual - - � - - �  - - 

Methods & Support 

API Hooking �  �  - �  �  �  - - 

System Calls �  �  � �  �  �  - - 

Packer 

Analysis 
- - - - - -  �  

Packer 

Reconstruction 
- - - - - - - �  

W ⊕ X Policy - - - - - - � - 

Trace �  �   - �  - - - 

IFT �  - -  �    

Process Scope 

Single - �  � �  �  �  � �  

Spawned -  - - - - - - 

System Wide �  - � �  - - - - 

 

6. CONCLUSION 
 

In this paper, two key techniques of dynamic analysis, IFT and Function Call Monitoring, were 

detailed. Due to the diversity of concepts and strategies associated with these techniques, it is 

hard to identify and select a suitable tool. A framework is presented which highlight the key 

attributes of interest in dynamic malware analysis and provides a general yet detailed enough 

reference to compare and analyse different analysis tools. 
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